Double Categories The best thing since slice categories

 $(https://www.mscs.dal.ca/\sim pare/FMCS1.pdf)$

Robert Paré

FMCS Tutorial Mount Allison

May 31, 2018

1 / 35

Double categories

- A double category is a category with two kinds of morphisms 😊
- A double category is two categories with the same objects @
- A double category is a category object in Cat ©

A has

- objects A, A', \ldots the objects of \mathbf{A}_0
- morphisms $A \xrightarrow{f} A'$, the *objects* of \mathbf{A}_1
- composition $A \xrightarrow{f} A' \xrightarrow{f'} A'' = A \xrightarrow{f' \circ f} A''$
- identities $1_A: A \longrightarrow A$.

Double categories (cont.)

- A₀ also has morphisms another kind, internal
 - $A \xrightarrow{V} \bar{A}$
 - Composition $A \xrightarrow{v} \bar{A} \xrightarrow{\bar{v}} \tilde{A} = A \xrightarrow{\bar{v} \bullet v} \tilde{A}$
 - Identities id_A : A → A
- A₁ has morphisms too morphisms between external morphisms cells

Double categories (cont.)

• Cells compose in A₁

• Also have an "external" composition given by

o and • are associative and unitary on arrows and cells

4 / 35

Double categories (cont.)

Interchange

Also identity interchange laws

$$1_F \bullet 1_v = 1_{\bar{v} \bullet v}$$

$$1_F \bullet 1_V = 1_{\bar{V} \bullet V} \qquad \qquad \mathrm{id}_g \circ \mathrm{id}_f = \mathrm{id}_{g \circ f} \qquad \qquad 1_{\mathrm{id}_A} = \mathrm{id}_{1_A}$$

$$1_{\mathsf{id}_A} = \mathsf{id}_{1_A}$$

Double categories

• So a double category has two kinds of morphisms \rightarrow and \rightarrow and cells \downarrow tying them together

Many instances of this:

- External/internal
- Total/partial
- Deterministic/stochastic
- Classical/quantum
- Linear/smooth
- Classical/intuitionistic
- Lax/oplax
- Strong/weak
- Horizontal/vertical

Double categories formalize this

Double categories are categories with two related kinds of morphisms

The usual suspects

• Rel – Sets, functions, relations

$$\begin{array}{ll}
A \xrightarrow{f} B \\
R \downarrow & \leq & \downarrow S \\
C \xrightarrow{g} D
\end{array}$$

$$a \sim_{R} c \Rightarrow f(a) \sim_{S} g(c)$$

If **A** is a regular category we can also construct $\mathbb{R}el(\mathbf{A})$

ullet \Box $oldsymbol{A}$ - $oldsymbol{A}$ any category - the double category of commutative squares in $oldsymbol{A}$

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow^{h} & & \downarrow^{k} \\
C & \xrightarrow{g} & D
\end{array}$$

There is a *subdouble category* of pullback squares $\mathbb{P}b\Box \mathbf{A}$

• $\mathbb{Q}\mathcal{A} - \mathcal{A}$ is a 2-category – the double category of *quintets* in \mathcal{A}

$$\begin{array}{ccc}
A \xrightarrow{f} B \\
\downarrow h & \downarrow k \\
C \xrightarrow{g} D
\end{array}$$

Slices

A category, **A**, has a nerve \cdots $A_3 \Longrightarrow A_2 \Longrightarrow A_1 \Longrightarrow A_0$

- Drop the bottom arrows and we get a new category $A_3 \stackrel{\longrightarrow}{\longrightarrow} A_2 \stackrel{\longleftarrow}{\longleftarrow} A_1$
 - objects are arrows of A
 - morphisms $(f) \xrightarrow{x} (g)$ are commutative triangles $G \xrightarrow{x} C$

- It is the disjoint union of all slices $\sum_{\Delta} \mathbf{A}/A$
- By dropping the top arrows, we also get a category whose objects are again arrows of **A** but morphisms $(f) \xrightarrow{y} (\bar{f})$ now are commutative triangles

• We get the disjoint union of all coslices $\sum_{B} B/\mathbf{A}$

Slices (cont.)

- We get a double category Slice A
 - Objects are morphisms of A
 - Horizontal arrows are slice morphisms (converging triangles)
 - Vertical arrows are coslice morphisms (diverging triangles)
 - Cells

$$\begin{array}{ccc}
(f) & \xrightarrow{\times} (g) \\
\downarrow^{y} & & \downarrow^{z} \\
(\bar{f}) & \xrightarrow{\bar{\chi}} (\bar{g})
\end{array}$$

are commutative tetrahedra: need $x = \bar{x}$, z = y and

Spans

A a category with pullbacks Span(**A**) has same objects as **A**

• horizontal arrows are morphisms of A

• vertical arrows
$$A$$
 are spans S \bar{A}

 $A \xrightarrow{f} B$ • cells $S \downarrow \qquad \stackrel{\alpha}{\Rightarrow} \qquad \downarrow^T$ are commutative diagrams $\bar{A} \xrightarrow{g} \bar{B}$

vertical composition uses pullbacks

Weak double categories

Span(A) is not exactly a double category, it's a weak double category

 Same basic data and operations but vertical composition is only associative and unitary up to coherent globular isomorphism

• Span(**Set**) = Set

Another fundamental weak double category is Cat

- Objects are small categories
- Horizontal arrows are functors
- Vertical arrows are profunctors
- Cells are natural transformations

Double functors

A double functor $F: \mathbb{A} \longrightarrow \mathbb{B}$ consists of three functors F_0, F_1, F_2 making corresponding squares commute

preserves all compositions and identities

Example

A functor $F: \mathbf{A} \longrightarrow \mathbf{B}$ induces a double functor $\Box F: \Box \mathbf{A} \longrightarrow \Box \mathbf{B}$

$$\begin{array}{cccc}
A & \xrightarrow{f} & A' & FA & \xrightarrow{Ff} & FA' \\
\downarrow^g & & \downarrow^{g'} & & \downarrow^{Fg} & \downarrow^{F\alpha} & \downarrow^{Fg'} \\
\bar{A} & \xrightarrow{\bar{f}} & \bar{A}' & & F\bar{A} & \xrightarrow{F\bar{g}} & F\bar{A}'
\end{array}$$

Proposition

Every double functor $\Box A \longrightarrow \Box B$ is of this form

Proof.

$$\begin{array}{ccccc} A \stackrel{f}{\longrightarrow} A' & FA \stackrel{Ff}{\longrightarrow} FA' \\ \downarrow^f \downarrow^{} & \alpha & \downarrow^{1}_{A'} & \longmapsto & F'f \downarrow^{} & F\alpha & \downarrow^{1}_{FA'} \\ A' & \longrightarrow A' & FA' & \longrightarrow FA' \\ \downarrow^{}_{1_{FA'}} FA' & & & \end{array}$$

Questions

Homework: What are double functors $Slice A \longrightarrow Slice B$ like?

Open question: What are double functors $\mathbb{P}b\Box A \longrightarrow \mathbb{P}b\Box B$ like?

Spans

For categories A and B with pullbacks, a pullback preserving functor F : A → B gives

$$\mathbb{S}$$
pan $F : \mathbb{S}$ pan $A \longrightarrow \mathbb{S}$ pan B

- Preservation of vertical composition comes from preservation of pullbacks and only holds up to coherent isomorphism
- Span A and Span B are weak double categories and Span F is a weak, or pseudo, double functor

Lax double functors

A lax double functor $F : \mathbb{A} \longrightarrow \mathbb{B}$ has the same data as a strict one

- preserves horizontal composition
- for vertical composition there are given globular comparison cells

satisfying the "usual" coherence conditions

- For an oplax double functor, $\phi(\bar{v}, v)$ and $\phi(A)$ go in the opposite direction
- For a pseudo double functor they are isomorphisms

Examples

- Any functor $F: A \longrightarrow B$ (A, B with pullbacks) gives an oplax normal double functor $\operatorname{Span} F : \operatorname{Span} \mathbf{A} \longrightarrow \operatorname{Span} \mathbf{B}$
- Given a double category $\mathbb A$ and an object A of $\mathbb A$ we get a hom functor

$$\mathbb{A}(A,-): \mathbb{A} \longrightarrow \mathbb{S}et$$

$$X \longmapsto \mathbb{A}(A,X) = \{A \xrightarrow{f} X \mid f \text{ horizontal}\}$$

$$X \qquad \qquad \mathbb{A}(A,X)$$

where $\mathbb{A}(A, x)$ is the set of cells of the form $A \xrightarrow{f} X$ $\downarrow x$ $A \xrightarrow{f} X$ $\downarrow x$ $A \xrightarrow{f} X$

• A(A, −) is lax

Transformations

• Given double functors $F, G : \mathbb{A} \longrightarrow \mathbb{B}$, what should a transformation $F \longrightarrow G$ be?

Transformations

• Given double functors $F, G : \mathbb{A} \longrightarrow \mathbb{B}$, what should a transformation $F \longrightarrow G$ be?

• The first was external; this is internal!

Theorem

Doub (strict double categories) is cartesian closed

Horizontal transformation

Definition

A horizontal transformation $t: F \longrightarrow G$ is given by the following:

- For every A in \mathbb{A} a horizontal arrow $tA : FA \longrightarrow GA$
- For every $v: A \longrightarrow \bar{A}$ in \mathbb{A} a cell

$$\begin{array}{ccc}
FA & \xrightarrow{tA} & GA \\
\downarrow & & \downarrow & \downarrow \\
Fv & \downarrow & tv & \downarrow & Gv \\
F\bar{A} & \xrightarrow{t\bar{A}} & G\bar{A}
\end{array}$$

satisfying

- Horizontal naturality (for arrows and cells)
- · Vertical functoriality (two conditions)

A vertical transformation is the transpose notion, horizontal and vertical are switched

Modifications

There are also double modifications

Definition

A modification

$$\begin{array}{cccc}
F & \xrightarrow{t} & G \\
\downarrow & & \downarrow \\
\phi & & \mu & \psi \\
\bar{F} & \xrightarrow{\bar{t}} & \bar{G}
\end{array}$$

is given by

$$\begin{array}{cccc}
& & FA & \xrightarrow{tA} & GA \\
A & & \downarrow & & \downarrow \\
& & & \downarrow & & \downarrow \\
& & & & \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow \\$$

satisfying the "obvious" conditions, determined by cartesian closedness in the strict case

Bicategories

- A bicategory \mathcal{B} gives a weak double category $\mathbb{V}\mathrm{ert}\,\mathcal{B}$ in fact a bicategory is the same as a weak double category all of whose horizontal arrows are identities
- A lax (oplax) morphism of bicategories $F: \mathcal{B} \longrightarrow \mathcal{C}$ gives a lax (oplax) double functor $\mathbb{V}\mathrm{ert} F : \mathbb{V}\mathrm{ert} \mathcal{B} \longrightarrow \mathbb{V}\mathrm{ert} \mathcal{C}$
- If $F, G: \mathcal{B} \longrightarrow \mathcal{C}$ are oplax, then a horizontal transformation

$$\mathbb{V}$$
ert $F \longrightarrow \mathbb{V}$ ert G

is an ICON (Lack)

A vertical transformation is a pseudo natural transformation

The internal theory of double categories

Companions

Definition

 $A \xrightarrow{f} B$ and $A \xrightarrow{v} B$ are companions if there are given cells (binding cells)

such that

Conjoints

Definition

 $A \xrightarrow{f} B$ and $B \xrightarrow{u} A$ are *conjoints* if there are given cells (conjunctions)

$$\begin{array}{ccccc}
A & \xrightarrow{f} & B & & B & \xrightarrow{1_{B}} & B \\
\downarrow id & & \downarrow u & & \downarrow \downarrow & & \downarrow id_{B} \\
A & \xrightarrow{1_{A}} & A & & A & \xrightarrow{f} & B
\end{array}$$

such that $\beta \alpha = \mathrm{id}_f$ and $\alpha \bullet \beta = 1_u$

Definition

 $A \xrightarrow{f} B$ is left adjoint to $B \xrightarrow{g} A$ if it is so in $\mathcal{H}or A$

 $A \xrightarrow{v} B$ is left adjoint to $B \xrightarrow{u} A$ if it is so in Vert A

Theorem

- (1) If f has a companion (conjoint) it is unique up to globular isomorphism
- (2) If f has companion (conjoint) v and g has companion (resp. conjoint) w then gf has companion $w \cdot v$ (resp. conjoint $v \cdot w$)
- (3) Any two of the following conditions imply the third
 - v is a companion for f
 - w is a conjoint for f
 - v is left adjoint to w in Vert \mathbb{A}

Proof.

Exercise!

Examples

• In \mathbb{R} el every function $f: A \longrightarrow B$ determines a relation $f_*: A \longrightarrow B$, its graph

$$\{(a,b) | f(a) = b\}$$

 f_* is the companion of fThe opposite relation $f^*: B \longrightarrow A$ is the conjoint of f

• In \mathbb{S} pan(**A**) every morphism $f: A \longrightarrow B$ has a companion and conjoint

In Cat, every functor F: A → B determines two profunctors F* and F*, its
companion and conjoint

Double limits

- The original motivation for studying double categories was to understand 2-dimensional limits
- There is now a well-developed theory of double limits
- Consider a couple of examples
- Tabulators
 Given a vertical arrow A → B in A its tabulator, if it exists, is an object T and a cell T

such that

for any other cell

there exists a unique horizontal morphism $c: C \longrightarrow T$ such that $\gamma = \tau c$, i.e.

There is a 2-dimensional universal property to keep in mind, the tetrahedron condition:

- A tabulator is effective if
 - t₀ has a conjoint t₀*
 - t_1 has a companion t_{1*}
 - the induced cell

is an isomorphism

• Rel(A), Span A, Cat have effective tabulators

Given a relation $R: A \longrightarrow B$ in Set, e.g. congruence mod p, we can tabulate it

$$T(R) = \{(a,b)|a \sim_R b\}$$
 and $T(R) \xrightarrow{t_0} A$ is the tabulator

Binary products

Given A and B in A, their product is an object $A \times B$ with two horizontal morphisms p_1 , p_2

which has the universal property for horizontal morphisms, i.e. it is a product in $\mathbf{Hor}(\mathbb{A})$.

It also has a 2-dimensional universal property: for cells

there exists a unique cell

such that $p_1(\alpha, \beta) = \alpha$ and $p_2(\alpha, \beta) = \beta$

An intermediate condition is to require the 2-dimensional condition only for globular cells, i.e. $u=\operatorname{id}$

Binary products (cont.)

A has binary products if

- (1) Every A, B has a horizontal product
- (2) Every $A \xrightarrow{v} C$, $B \xrightarrow{w} D$ has a product

$$\begin{array}{c|cccc}
A \times B & \xrightarrow{\rho_1} > A & A \times B & \xrightarrow{\rho_2} > B \\
\downarrow & & \downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
V \times W & & & \downarrow & \downarrow & \downarrow & \downarrow \\
C \times D & \xrightarrow{\rho_1} > C & , & C \times D & \xrightarrow{\rho_2} > D
\end{array}$$

We get a lax functor

()×():
$$\mathbb{A} \times \mathbb{A} \longrightarrow \mathbb{A}$$

- () \times () is normal (id_A \times id_B \simeq id_{A \times B}) if and only if products have the 2-dimensional universal property
- ullet We usually require that () imes () be pseudo

Examples

A has binary products

if and only if $\Box \mathbf{A}$ has binary products

if and only if \mathbb{S} pan(A) has binary products

However not $\mathbb{P}b\Box(\mathbf{A})$ nor $\mathbb{S}lice(\mathbf{A})$

Cat also has binary products

They are all pseudo

Note: The same holds for infinite products but for $\mathbb{C}at$ they are merely lax