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Intercategory

h
» Transversal composition strict
» Horizontal and vertical bicategorical (up to transversal iso)
> Interchange holds for horizontal and lateral cells
» For basic cells, o is lax with respect to e, i.e. we have
interchangers y
| .
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» Satisfy coherence conditions



Morphisms of intercategories ¢ : A—B

» Three kinds — all are strict in the transversal direction

» Lax-lax — horizontally and vertically lax
» Colax-lax — horizontally colax and vertically lax
» Colax-colax — horizontally and vertically colax

» (Co)laxity is for arrows and basic cells, e.g. vertical laxity
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> There are cells between any two of these kinds of morphisms
» We get a strict triple category ICat of intercategories



Duoidal category (a.k.a. 2-monoidal category)

M. Aguiar and S. Mahajan [1]
T. Booker and R. Street [3]
G. Bohm, Y. Chen, L. Zhang [2]

(D,®,1,K,J)

X is lax with respect to ®
It can be seen as an intercategory where general cubes are
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Horizontal composition is X, vertical is ®
X, 0, p, T arbitrary



Monoidal double category

M. Shulman [§]

Double category D with @ : D x D—1D and / : 1 —D strong
Associative and unitary up to coherent isomorphisms

Can be seen as an intercategory with cubes
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X, 0, 4, T all identities.



Monoidal double categories (continued)

Canrelax ® : D xD—=D and / : 1 —D to be lax or colax
E.g. A double category with a lax choice of finite products

For any intercategory A and object A of A we get two “monoidal
double categories”

HEnd(A) and VEnd(A)
A A——A
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In both cases, the x, 6, u, 7 can be arbitrary




Locally cubical bicategory
Garner and Gurski [5]
Categories weakly enriched in the monoidal 2-category DblSt:
Objects A, B, C, ...
Double categories A(A, B)
Strong functors 1—A(AA)

A(A, B) x A(B, C)—>= A(A, C)

Associative and unitary up to coherent isomorphism.
It can be seen as an intercategory where a general cube is

X, 9, 4, T are identities



True Gray category

A true Gray category is a category enriched in the monoidal
category of 2-categories with the Gray tensor product
The Gray tensor product classifies Gray functors of two variables

H:AxB—C
» H(A,—): B—=C 2-functor

» H(—,B): A—=C 2-functor
» Forevery f : A—A', g: B—= B’ a 2-cell
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True Gray category (continued)
Objects A, B, C
2-categories A(A, B)
Composition A(A, B) ® A(B, C) — A(A, C)
Corresponds to a Gray functor of 2-variables
o: A(A,B) x A(B,C)— A(A, C)

Can compose arrows
No horizontal composition of 2-cells — just whiskering
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True Gray categories as intercategories

» General cube looks like (for a 3-cell @« — @)
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» Horizontal composition of basic cells is given by the top
composite in (x)
» Vertical composition is given by the bottom composite

» This gives an intercategory with 6, i, 7 identities



True Gray categories as intercategories (continued)

There are connecting cells

A—f.B A——A
| - v
B——8B A—f> B
’r]f|€f = Idf and E = Idf
€f
A cell v is a commutativity cell if
n|ale = 1d
We have that
A8 eB
af alp

is the identity if either o or § is a commutativity cell



Spans in a double category
A a (weak) double category with a lax choice of pullbacks

AxzB——=B
We construct the intercategory Span(A). A general cube looks like
Ao Ao A1
l NG N
By B> B
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By B> B




Spans in double categories (continued)

» x and ¢ are not invertible in general
> u, T are identities
An arbitrary lax (resp. colax) functor A—1IB induces a colax-lax
(resp. colax-colax) morphism Span(A) — Span(BB)
» If A is a category with pushouts we have a double category of
cospans in A, Cosp(A)

» If A also has pullbacks Cosp(A) has a colax choice of
pullback. So we have SpanCosp(A)

» We also have Cosp(Span(A)). Call it
CSpan(A)

» Cherubini, Sabadini and Walters [4]



Also have Span(SpanA) denoted SSpan(A)

» A general cube is

» Morton [7], Grandis [6]

Denote SSpan(Set) by Set
For arbitrary intercategory A and A in A we have the hom functor

A(A,—) : A—Set

It is lax-lax
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