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Preface

In a paper by Professor H. Schwerdtfeger {3], the one-
dimensional affine group was studied by embedding it in a
projective plane. Geometrical concepts were interpreted
within the group and constructions were found for group-
theoretical operations. Thus, geometrical properties led
to relations within the group and group-theoretical proofs

were found for theorems of the projective plane.

The first seven sections of this thesis present Profes-
sor Schwerdtfeger's work but from a different point of
view; the main difference lies in the introduction of the=-
orem 1 of paragraph 6.l. This theorem plays a fundamental
réle in suﬁsequent sectionse Section 8 gives a new proof
of Pappus' theorem. Finallyg in section 9 two classes of
conics are investigated from the group-theoretical point
of view. Thus, section 9 partially solves the problem of

describing all conics from within the group.

il.




% 1., Definitions.

Let ® be the field of real numbers. We shall define
the one-dimensional affine group over W to be the set of

functions, ¢ = {f:R=>R|f(x) = ax + =, a,xeR, a#0}

We shall represent an element T &€ ngy the ordered pair

(a, &) if £(x) = ax + & . We shall also denote elements of

Cf by capital letters, e.g. A, By Cy eouy Xy Ly seos

For A, B e.(%the product AB is defined as being the
composition of A and B as functions. If A& = {a, &) and
B = (b, #) then AB = (ab, ap +d). We see immediately

that this operation is not commubtative.

The unit element corresponds to the ldentity mapping

f{x) = x and will be represented dy I = (1, 0J.

The inverse of A = (a, «) will be A-lz-(a"l, 2"t
Since the associative law holds for functions, we see

that C% forms a group with respect to the operation de-

fined above.

Let us identify the element A = (a, =) of (] with the

point (a, &) in the cartesian plane.




2

All real values can be taken by &, and all real values,
except zero, can be taken by a; therefore all the points
of the plane, except those on the y-axls, correspond to
group elements. For this reason, we shall consider the
yvw-3x1ls as an exceptional line with respect to our group.

We shall denote this line by %Loa

It will be to our advantage if we turn our plane into
a projective plane by adding a straight line at infinity,
which will be considered as a second exceptional line

with respect to our group Of. This line we shall denote

by ey o

The plane minus these two exceptional lines will be
called the (j-plane. Let %. be a line in the projective
plane, such that & # &, and % # 3 we shall call
o= LN O the Q§-line carrying § . S is said to be
the support of ¥'. In general it will be clear from the
context whether we mean a (%uline or a line in the pro=-
jective plane; in this case, we shall identify the two

and refer to them by the same symbol.

If two lines have no common point in the Cgmplane3
there are two possibilities: either their common point
lies on &, or on &g . In the first case we say that the
lines are O-parallel, and in the second case, that they

are o -parallel. We shall denote this &, {|5 %, and




&1 e &2 respectively.

The intersection of 3§, and %o will be called AU,

§ 2. Elementary properties.
The following propositions are easily proved:

2.L. Any two points in the (j-plane can be joined by

a unique straight line in the C%mplanee

2.2, Any two lines in the L%«plane are either O=paral=-
lel, cw=parallel or meet in one point of the (j~-plane.

and

2,3. Each of the relations is reflexive,

symuetric, and transitive, l.e. they are equivalence re-

lations.

2., The lines Eio and &, divide the plane into two re=

gions.

2.5, To any line & not through W there is exactly
one O=parallel and exactly one w-parallel through every
given point A & (3 if the point A is on & these two par-

allels coincide, otherwise they are different,




2,6, To any line through 4L, there is one and only one
parallel line through each point of The (gwplaneg iee.

both parallelisms coincide.

2.7. To any two lines @.1 and ‘&2 not passing through
4y, there exists a unique line ¥ such that & “m ‘3.,,1 and

2 Mo &,y 1t & anda 8, coincide, then § =% = P

§ 3. Algebraic definition of straight lines and parallel-

ismsa

3.1. Consider the normalizer, VIA‘? of an arbitrary ele-
ment A € Ogﬁhere A# I. ?\A = {Xx| XA = AX} is a subgroup
of CE, Let A = (a, o) and X = (x, ¥), then XA = (xa, xx+Y¥)
and AX = (ax, ay + «)j therefore XA = AX if and only if
the following relation holds:

(a = 1)y = 66X = o ' (1),
But 4 # I = a = 1 and « cannot vanish simultaneously and
therefore (1) is a linear equation and represents a
straight line. Obviously I, A ¢ YLA; therefore V\A is the

straight line through I and A,

Now let £ be any line through I and let A be any point
on &, such that A # I. Y‘(A is the line through I and 4,

therefore & = N ,. Hence, all lines through I are of the

A
form YIAQ




3.2. Consider BW, = {BY|Y¥ ¢ W}, a coset of W, in q.
B, = {X|B™% ¢ W and B™X = (b™x, b7ty - v78) ang
X ¢ W, then (a - 1371y - b™R) = k(b™Lx) - «, i.e.
(a - L)y =elx + (a - L)B - bkt (2),

if BT

Since A # I, (2) contains x or y or both linearly and
therefore represents a straight line. Thus B\ﬁA is the
straight line through B and BA. Similarly we show that
V?AB is the straight line through B and AB.

3.3. Notice that if B ¢ W,, then WV, [\ BW, = @ thus W
and BWA are either O-paraliel or Q@-parallel. If a = 1,
(1) and (2) represent two vertical lines, therefore two
Co-parallel lines. Now comparing (1) and (2) we see thatl
for a # 1, the slopes of W, and BY, are both ¢/(a -~ 1),
and therefore WA“m Bl We also find that W, “O N, Be

3.k, BN, is co-parallel to W, and passes through B.
By §§ 2.5 and 2.6, there is only one such line; therefore
ir W _WN, and if B e ¥, then Bo= BNy

Let ‘& Dbe any line in the Oé-«pl}ane, By &6 2.5 and 2.6,
there is a line whieh is ¢o-parallel to ‘& and passes
through I. This line must be of the form Vip for some
A # I. Suppose B ey, then § = BW - From this, we see
that all lines of ()‘a are df the form Bit, with A # L.

B, W Wy and Wy \_B"M, for any B, B' < (j}, therefore




Bl B, - Conversely if % oo &' and & = BW, then

3 N Wy end so &' (|, W,. If B'e ' then St = B,
Two o -parallel lines, o and &', can therefore be write
ten in the form BY?A and ]B'Vlﬁ‘*9 where B¢ ¢, B' « {' for

some A # L.

Similarly we show ’Y’{AB Ho Wy and if - HO 'é'ZA and if
B & $then ¥ = W,B. All lines can also be written in
the form W,B. W,B ||, W,B' and if § Yy &' and & = W,;3B
then &' = ¥,B' for some B'e ',

.5, Defi = W . % is a straight line through
3.5 ene'% (lgl)'gh.a g UE
I =(1, 0) and (1, L), and therefore is a vertical line.
We see that -Qia cuts “&O on b and therefore 4\& passes
through U. 4 = {(1, )|« ¢ R}

3.6. By § 2.6 the lines through A which ave O=-parallel
and those which are ce=-parallel o % coincide. Therefore

A-@g = iaA wnich shows us that —% is a normal subgroup of

Us A< G-

3.7. Let A = (a, &} and B = (b, B) then we see that
1

BAB ™ = (a, (1 -~ a)a + b« (3.
Note that A and BAB™ belong to the same vertical line,
i.e. BAB™Y 1lies on the line which is parallel to % and

which passes through A. BAB Ve A'Q‘a = XA,




3.8, Conversely let A Qﬁ} and let C eAQB, A = {a,; &)
(¢ = «3/(1 = a)e

it

and ¢ = (a, §). Since a # 1, set S
Setting B & (1, 8) we obtain BAB™ = (a, (1L - a)B + <)
thus BAB™L = (ay #) = C. Therefore if A and C are two
eleFaents of a proper coset of -@,a? there exists a unique
B ¢ 4 such that BAB™ = C. A%, is the conjugate class of
A. Note also that for any A, Be (j, A ¢ 4 there is a u-

1 N

nique H e 4 such that BAB™ = HAH™,

3.9, Let A, C ¢ g, A = (1, &) and C = (1, 9) then
BAB™Y = (1, be) where B = (b, @), If o 2 0 and ¥ % O
choose b = 1/a and then BAB™L = (L,% ) = C. Therefore if
A+ Iand C+ I there is a B such that BAB™ = C. Thus
»‘éa -{11 is a conjugate class, {1} being a conjugate class

of its own.

Note that if B ¢ 4 taen BAB™Y = (1, «) = A and there-
fore ﬁa is commutative. In fact it is easily seen that 523
is isomorphic to the additive group of the real numbers, .

since (L, e)(1, B) = (L, o + B,

§ 4. Consequences of section 3.

4,1, If Te W, and T # I, then Wqp = W,. This is obvi-

ous since ‘ﬂA and VlT are both straight lines and




I, T & ‘ﬁAﬂ Vp; therefore Y, = V.

4.2. We shall now prove a group-theoretical relation
which we shall often use in the segquel. Let Ay, B "-Og:@
A # L, B‘ﬂA is & straight line passing through B and BA.
'Now= \)}BAB"IB is also a straight line passing thyough B
and (BAB™)B = BA. We conclude that BYl, = Vg,;-1B or
BYIABWE‘ = WBAB"""

4,3, For A, Be U, A¢ S, W, # % and therefore B,
is ;10‘&: parallel to .Qb o Let Heﬁbr\B\QAe H e BYl, = BN, = E(,.
There is obviously only one such H. Similarly there exlsts

a unique H'<e A such that YI,B = YH',

Y,k, A31 lines through I, except la, are conjugate to
one another. Let one of these lines be \ﬂA and another
be W', Let Be &l /1 W'. Then by § %.1, W' = Vlg. But
since Be A%, by § 3.8 there exists H ¢ 4 such that
saE™ = B, But now EWE™L = Wyg-v = Vg by § k.2, which

proves our assertion.

4.5, For B G%s Ke \Qa, K can be represented as a come

mitator |H, B] = K, H € %o Indeed, KB ¢ %B and therefore

by § 3.8 there exists H ¢ 'Qé such that KB = HBE™L, Post-

multiplying by B‘“l? we obtain X = HBH“]'B“E‘; therefore

K = [H, B] as was claimed.




b.6. & is the commtator subgroup of g Indeed, let
A, Be(], la, 3] = asA” ig-L, |
(1) If B e % then ABA™" e 4 and it follows that
(aBa~typ~t = [4, Bl ¢ L
(ii) If B ¢ then by § 3.8 there is an element H & Jo

such that ABA™ 1 = EBH™L and therefore 1A, Bl = HEBE™*B™!

but BHTB™ ¢ 4 and thus {4, B € 4.
Therefore all commutators lie in %, and by § 4.5 all
elements of -% are commutators. % is consequently the

commutator subgroup of C%a

+,7. Because -% is the commutator subgroup of (%9 the
factor group C%/%i is abelian and frou this we coanclude

that %AB = 4BA and that ABSy = BA%@

§ 5. Collineations.

Definition: A collineation is a one-to-one mapping of the
plane onto itself, in which the image ol every

line is a line.

5.1. Consider the function fT:Cﬂ-%%%@ fT(X) = TX where
T is a fixed element of Cga Tz is one-to-one and onto.
Now any straight line in Cﬂ can be written AWBQ
fT(AﬂB) = TAﬂB which is another straight line. fy is
therefore a collineation of the (%qplane@ fgfis even an




affine transformation in the sense that co-parallels are
transformed into oo -parallels and O-parallels are trans-
formed into O-parallels, Indeed, if A‘i’iB and A'flg are two
W-parallel lines then fT(A‘ﬂB) = TAY{B and fT(A”ﬁB) = TA”RB
which are oo-parallel, i.e. $ o & = fo(3) W I &)
Also let ‘ﬂBA and YRBA? be any two O-parallel lines., Then
£ Vga) = ‘I.’??BA and £o( NgAt) = TigA'.

Sut Mgh = THGT™-TA = Woon-aTA and TWgA! = Vipgp-1TA'
which is O=parallel to WTB’L“’iTA“

Therefore $ 5 $1=> £,(2) lig £20 800

We may also note that for any line % of the (j-plane,
-1 :
£008) fl & and fa (&) §o TET

5.2. Consider the function gT:Cg i (,i defined by
gT(X) = XT for a fixed T ¢ Ul. &q is one~to-one and onto,
and since every line of (J can be written in the form
WBA, then by the same reasoning as in § 5.1, g is a col=-
lineation of ths O&wplanee & is also an affine trans-
formation in the same sense as above. Furthermore
2.0 8) g% and gp( &) i T"F8 T, for any line 3§ in the
Q(J)eplanee

5.3, Let U: Qé ——>-U(§ be any aubomorphism of Oég @ is, of
course, one-to-one and onto. B’ & WB.@BB' = B'B
> 9(EB1) = UBIB) <> URYB) = KBHYB)
<@ (1) ¢ ?’(@(B); therefors ¥ Mig) = ‘??@(B)o If Mg 5
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any straight line then Q(Ay) = @A) Wepy which is
another straight line. ¥ is then a collineation. @ 1is
also an affine transformation. Indeed, let AﬂB and AﬁWB
be two oo -parallel lines. Then‘?(AﬁB) = @(AYW@(B> and
®lamg) = C{’(A')‘fl@(m , therefore C‘?(AWB)\\GQK?(A'QB)Q
Similarly if }ﬁBA and wﬁBA' are two O-parallel lines then
Pngh) = WQ?(B)@(A) and 9(NA") = Yl(?(B}(?(A')ﬁ there=
rore % g 8= 908 Iy 98N, -

In particular the mapping Q(X) = axa~t (conjugation by

A) 'j,s a collineation.

5.4, Consider the mapping h:Uj—>(jdefined by h(X)= xL,
If AWy is an arbitrary line of the (j-plane,
- =,
n(aVy) = n(Ngih(a) = Ngh

n is one-to-one and onto, therefore it is a collineation

of Oga

which is a straight line.

h is not an affine transformation, but 1t maps OO-par-
allel lines into O-parallel lines and conversely; we
shall say that h is anti-affine. Indeed, if AWy and AfMg

1

are any two c©~parallel linss then h(A‘ﬂB) = ‘ﬁBA“ and

h(A“ﬂB) = WBA'“l and therefore h(A.“ﬂB) \10 h(A‘ﬁB)a

similarly if % Mg % then h( &) N _h( ).

5.5. Extension of fn, gp, @, and h to collineations of

the projective plane T7.




Let P be any point of the projective plane. We shall
denote the set of all Ca»lines whose support passes
through P by [Pj; this is the pencil of lines with centre
P. Since L, 8p, and @ are affine transformations and h
is anti-affine, to any pencil of lines having its centre,
figcnl éo'or €. there corresponds a pencil with centre,
Ay on & 5 or . Hence we define W (M) = N where
. is any of the four types of collineations. In this way
we ﬁave extended " to a collineation of the projective
plane W fn, 8q, and @, all mep §, onto 8o and Ho, OBLO
%oy Whereas h maps &, onto & and $oo onto &y I
fixes @%npointwise and & fixes é;o pointwise. If W is
any normalizer meebting ‘ﬁ,o and ‘S«m in N and A" then
n(W) = A4 and bl N =N

Obviously all finite combinations of i‘Tg gpy @ and h,
as functions, are collineations, but in all cases U is

a fixed point.

5.6. Application.

©, being an automorphism, fixes I. ﬂé is the straight
line through W and I, two fixed points, therefore
®(h) = % for all automorphisms of U, i.e. Ay is a

characteristic subgroup of (}éa

5.7. We shall now introduce a special kind of colline

12,




13.

eation which we shall use in section 9. (cf. ill ? 2.3.)

Definition 1: If a collineation fixes every line through
a given point C, we say that the collin-
eation is central. The point C is called

the cenire of the collineation.

The following properties of central collineations are

easily proved:

1. A centre of a collineation 1is an invariant point

of this collineation.

5. A collineation with two different centres 1s

the identity.

3. If in a central collineation a line not through
the centre is invariant, then every point of this line
is invariant.

4, A collineation with two different lines of in-

variant points is the identity.

We now state an important theorem concerning central

¢collineations.

Theoren 1: Every central collineation which is not the

identity has one and only one line of invariant points.

Definition 2: The line of invariant points of a central

collineation is called its axis.




Note that the axis of a central collineation may or may

not pass through the centre.

We shall now state a fundamental Theorem on the exls-—

tence of central collineations.

Theorem 2: Given three collinear points 0, P, P' such
that O # P and 0 # P! and a line ¥ not passing through
P or P', there exists a unique central collineation with

centre 0, axis &, end transforming P into P'.
Bxamples:

(1) £ is a central collineation with axis & whose
centre is the intersection of "&O with Mg Indeed, all
lines through the intersection of ‘&O with ‘HT are O=par-
allel to V1, and are therefore of the form Wpde
i‘T( YiTA) = TWTA = Y(TA, which proves our assertion.

(ii) Similarly g is a central collineation whose cen=-

tre is the intersection of &, with W,. The axis is &ge

(iii) As we saw in §§ 3.8 and 3.9 the conjugate classes
in (] are the proper cosets of 3}3, j’é - 11} and {Ii.
Since, by conjugation, these classes are transformed into
themselves, the collineation (QAs}C“ﬁ’AKAml leaves all lines

through W fixed. It is therefore a central collineation

1)—%-9
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with centre . The axis of this collineation is the line
M, . By properties 3 and 4 of central collineations, ifCQA
leaves a line, not through U and different from My
fixed, then ?k is the identity mapping. If so, A is 1in the
centrum of (| but the centrum of (] is {1}, therefore

A= 1.

(iv) Consider the collineation hi:X—+X"+

. If WA is an
arbitrary line through I, then h(W,) = W,, therefore h
is a central collineation whose centre is I. Now from
theorem 1 we know that there exists one and only one line
of invariant points: the axis. U is invariant and there-
fore the axis passes through WU. If Vv is a point on the

=L op v% = 1. The axis is tnerefore the

axis, then V = V
set of all involutory elements of Cﬁg From what we have

seen, this line is of the form '%N“

We shall rebturn to this line in section 7,10,

8 6. Group-theoretical interpretation of geometrical

constructions.

6.1. Let A, B ¢ (Jwith A # B, then AVly -1y 1s the
straight line passing through A and B. BWB_aag ﬁAB"B

and W 1A also represent the same line and are there-

BA™
. 3 '
fore equal to AﬂA_LB.
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Note: In the sequel, we shall denote the (J-line whose
support passes through P and Q by PG, where P and Q are

two different points of the projective plane.

Proposition 1: Let ﬂlg R & '&O and .Q.E, .RL%‘ € '3\.%.}
wnere R, Ry ng L, # rLL Let A, and A, be any two

s

points of the ()Jmplane, Suppose That A e 8 ﬁ.zﬁ Ief R3
and A, € ‘R3‘R'M then the product A4, eﬁ.@ﬁl@

Tigure 1.

Proof: Clearly the line 9.-;?{3 = Yl is a normalizer;
= AT

ﬁ;&z is co=parallel to W therefore S%lﬂz

@h is O-parallel to W therefore .}7{;&4 = Vo

Consider AVl A,. A VLA, (MA,) and therefore by § 5.1

AN A, W VA, Also A VIA, = gAz(A_l\{{) and by § 5.2




ANAS g AR . But R Al Na, and &Ry fig AN and
by § 2.7 there is only one such line, therefore
ARy, = AMA,; hence we conclude that AjA,¢ RiR.

Let us apply the collineation fBé to the plane TV,
where B, is an arbitrary element of Qg f is affine,
2 By
therefore ﬁ,l and R3 are transformed into points of the

line '&O; &2 and .RL}_ are transformed into points of ‘S

. is a fixed point of f therefore the images of .Rp

B 7

2

&2, R3 and Rlﬂ- will be different from W. Al is mapped

into B,ohq, I into Bsy A2 into B,A, and AlAg into ByAq A,
= - . _ =1

We are now in a position to state the fundamental thew

orem of this exposition.

Figure 2.

L7
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Theorem 1: Letd ,Blg 33 & féio and B 5, "8)+ & Sowhere
By By j«’ﬁy By # W, Let By, Byy By € Uj. Suppose that
By & B35y By € S, By and By € 385 then the product

B-.3B

1 2“183 = hé_;_::éla (See figure 2.)

We can generalize the result of theoren 1 to a general

2n-gon inscribed in two lines (nz2).

Theorem 2: Letb Rl, J?i.3, R59 sasy Hop 1€ by and
NP ‘Rm ‘Ré9 evey '9‘21'1 & ‘3~wwhere ng R oy 5239
RL‘_? e a9g Ran-?f‘u_a AlSO let Alg A29 08 g Aznwleu‘ie
Suppose that Ale Rl‘RN A, € Q2£35 A3é R352_45

A € R;_I_Q.5, cosy Ay 1€ o q R, then the product
=l

=], =]
AlAz ABA% A

soshny o Aon g € Sop e

Proof: By theorem 1, this is true for n = 2. Suppose
that it is true for n = k. Let &4, JRgy eoos R o1
‘Q’Zkfle Lo and Ro Riys ooy Ropyn € ¥, with

1 AiRpy Ay RyRgs ceey A€ fogenl Fopape DY the
induction hypothesis, A A, l“eA2kwle, &2}{5{1‘5 Applying
theoTem 1 to the quadrilateral with vertices ng ‘Qak?

R 2K+l

=1 =
(A4, Teoshny 9 dAny Thoyyq T Arhs o1 € Rogao g

. and by induction we see that our theorem is true for all

and 5, oy We see that’

=1 -1,

A 50 sh
n»2, For n = 1, we have a degenerate case which is trive

ials
Q:B.D,




If one of the first 2n = 1 cides is known in the 2n-gon
of the preceding theorem, then the last side 1is uniguely

determined as is expressed in the following Theorem.

Theorem 3: Usirg the notation of theorem 2, suppose

that R Ri,q = S §, not passing through W, then
- =1
&anl = Ahp

— -1 -1 o
SooRy = ApAy e B TTee by AF 1 1S even.

eeo‘&i”eAznml if 1 is odd and

proof: We shall prove our assertion for i odd, The case
where i is even being simllar.
Let Ay, Ay' € Siv Ay # A,'. By theoren 2, the following

relations hold:

el
ApAy T eouhae by g € Rop Ry

-1
A:LAZ sosAi'eeoA2nml & R21’1‘9“l°

The only line through these two points 1s obviously
1l

AlAz a2 n ‘g'io @ @Azn‘“’l.

T = -1
Therefore Sop Ry = Aphy 0w Ryoooboy g0

§ 7. The geometrical construction of operations in the

groupe.

7.1, Given A and B, construct AB. Choose Y to be any
normalizer # £ . Let W cut 30 and Swo in R3 and R,

1-90
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respectively. Construct the line through 5L2 and A meeting
%y in R4 and construct the line through §13 and B meet-
ing 4, in Ry,» Then by proposition 6.2.1, AB ¢ ﬁ;}éhy
Choose another normalizer Y', V(' # V] and WI* # Q@, Let
N meet 8o in Ryt MU' F N = Ayt # R,. Let the line
through {,' and A meet ?%O in lzl*a Since SQZ’ # R,
then R,'# R,; therefore & 'Ry' # 83 M.

AB = ig?]iqﬁ r\§;3§4 determines AB uniquely. This con=

struction is illustrated in figure 3.

Pigure 3.

Note that we could have arrived at the samse results by
observing that by theorem 6.2.3, A N, = AV B and
Q'R = AVUB. AB = AMB N\ ANz,




In special cases we can simplify our construction for

the product of A and B, by appropriate choices of Yl and

e,

(1) If &, B ¢ } and A ¢ Ny, choose W = W, and
' = Ny Since 4, B g’@a, it follows that W, W' # _Qb
and since A £ Ylg, it follows that W # W'.
ANMB = A.YIAB = WB. AMU'B = AMgB = ANg. Therefore from
the preceding considerations AB = VZAB 0 A.\QB determines

AB uniquely. See figure 4.

Figure 4.

(11) If 4, B ¢ R and 4 € Vlg, then we choose =Wy
and take W to be different from W, and G-
RNy = ANB = Wy, 4B = W, \ AMB determines AB

uniquely.

2L
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(131) If A € §but B¢ R, choose W' = Vig; then
5'11‘511;.’ = AW'B = AVIB., AB = AVig 1 AMlB determines AB
uniquely as loné as N1 # QIB and 1 # 45@ Note that if we
take @ = &, then 4B ¢ AVIB but the construction described
above for AMB is invalid. In this case, AWIB = $B which
is the straight line through % and B. Therefore
AB = ANy (\ 4B determines AB uniquely and is easily con-

structed.

(iv) If A and B €9, then AB ¢ -% also. Choose an arbi-
trary N # % ; then AB = § N AWM.

7.2, Given any line Wi # A%, construct n(W) = Wk,

Figure 5.
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Let Wl cut @\0 and &, in 513 and §12 respectively.
Construct the line through.ﬁlz and I meeting &, in 5119
Also construct the line through 513 and I meeting %o, in
SQk. By theorem 6.2.3, ji;ﬁi% = ITﬂ“lI = ¥R“lo (This con-

struction is illustrated in figure 5.)

Note that if Wl is a normalizer, all four lines coincide

and M-t = W as it should be.

7.3, Given A e ()], consbruct a~t,

i

Figure 6.

If W and VWi ' are any two different lines, then
Wl # wl. cnoose WU # W', both passing through A

but not through U. Construct W=t ana WOl as indicated
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in § 7.2. a7b= WO owet,

We can simplify the comstruction by choosing Wi o= My
Then ‘m"’l = YIA”l = ﬂA and A”l = W\“l N Y{Aa (Bee fig-

ure}6@)

We note that if W = A% , then M-t o= ‘%A“l = A”l—%

1

which is the straignht line through U and A™". In view of

the preceding argument and § 7.2, we can novw construct

the inverse of any point or line in the Ogmplane@

7.%. Given A ¢ (jand W any normalizer, construct AV{A“]“,
(1) 1t = ‘Qa, then by ¢ 3.6, AVia=t = YL

(ii)

Figure 7.
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It § ¥ &, let W meet &, and S in R3 and R,
respectively. Construct the line through A and &2 meet-
ing ¥4 in R, Also construct the line through Ql and I
meeting &, in 52,4, (See figure 7.) Then Q-;Rll; A‘(’[A”‘La

Tndesd, by § 7.3, A™7¢ S R, and by theoren 6.2.3,
ARy = ahat - avla~t,

7.5. Given two normalizers W, W' # H, find ail A
such that W' = aNa™,

By ¢ 4.4, there exists at least one such A. Let W'
meet ‘&0 in Rl and N meet ¥4, in 51.2,, Let A« R1R2°
By § 7.%, W' = ana™t, conversely, let A'¢ Rlﬁaa Cone
struct the line through 9,2 and A' meeting & 4 in “’}"li'
At¢ S, R, therefore 240 ¢ S arpart = .ﬁl‘I Al
put NP = 9:;3, therefore A'WAI™Y # Vit
Hence {Al AMA™ = W1} = f7 A,

7;6@ Given A, B < (}3 and % an arbitrary line no%t through

U, construct A%B™E,

Let $ cut 8, and %, in S and R, respectively.
Construct RBI cutting %, in R,, and then construct
ﬁ?& cutting %, in R,. Also construct u@ cutting ‘&O
in _9.5, and then construct ﬁ.51 cutting 3o in Ry. (See
figure 8.) Then ﬁ;ﬂé = A%B~E. Indeed, according to
theoren 6.2.3, @6 = ar~tge~lr = ags™t.
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Pigure 8.

In particular, if we set A = B we obtain a comstruction

for A&A“’l, the conjugate of % by A.

7.7, If % and W are two lines not through ‘L, find
all couples (4, B) such that A¥B™' = W,

Referring to figure 8, let & cut % o and $e in R3
and &, respectively and M cut &, and %, in R}. and
g respectively. Construct VQ;E cutting &, in R, and
.51“7"61 cutting % in Rge BY § 7.6, if A e A, N, and
Be QR 5y then W = A%B™t. Conversely, suppose A“#ﬁl_‘ky




then ,RzA“ will meet &, in H,' # S, end therefore
ATET # Th for all T ¢ Oé S:,Lmzl.ll.ax*:i.;y9 if B' & R4g5 then

LBt # WM for all T ¢ (.

Consequently, {(A, B)| At~ = Wy - ﬁz_ﬁzxm5 (the

cartesian product of Rlﬁ.a and Q’L{.RS)"

We can now prove the following theorem.

Theorem 1: If % and W are two lines, not passing
through 1L or I, then there exists a unique A ¢ UA such
that 4% A"% = W,

Proof: Let Ry, S, 52.3, R Rgy R, be the same as
above (see figure 8). Suppose that 5215{2 ﬂo ﬁqﬁsg then
_R,l = .R,Sa But W = le?:éﬁ 9.55-}6 and by construction
I€ RgRgs which contradicts the fact that YA does not
pass through I. i[.‘l'lezc'a:i‘oI'ea9 15%-2\% Rg_ﬂsa Suppose,
now, that R1R2 “ .RL{_S}:S ;3 then Q, = §t), but
B o= 5’-2_351;4_ = _R3 1, and by construction I QRBRZ? con-
tradicting the hypothesis that ¥ does not pass through I.
Therefore ;81 2h JQL,P_({? Let 4 = R N, N Rq_&gg then
A¥at= M . since AR, and ﬂL&-RS are not paralilel,
they are not equal and there is obviously only one such A.

Q.EB.D.

In particular, if ¥ = Ylthen A = I which agrees with

§ 5.7, example 3.
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We note the principal results of these considerations:

(1) All lines through % are invariant under
tion. Each such line, except ‘i, 1s a complete

conjugate elements.

(1i) A1l lines through I, except 4 which is
are conjugate to one another; any such line 1s

under conjugacy only by its own eleuments,

conjuga-

class of

invariant,

invariant

(iii) Any two lines, not through U or I, are conjugate

to each other with a uniquely defined conjugating element.

7.8, Given A and Be (3, construct ABA™T.

Figure 9.

28.




Let 2 be any line through B, but not through L. Con-
struct AL A" as described in § 7.6. ABA™Ye %47t and
also ABA“léi‘%B, aBA™ is uniquely determined by the re-
lation ABA™L = A%A”T (1 43.

If B ¢-%vmacan simplify our construction by choosing
= WBa Then, construct AﬂBA“l as indicated in § 7.%
and B= AlA"L (| %8, This construction is illustrated in

figure 9.

7.9. Given 4, Be(j, construct [A, B] = asa~te™t,

(1)

Figure 10.

29»
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Note that [A, B] e 4, If B¢, then Vg # A and
{4, Ble ABA"lWB. Construct ABA™L as described in § 7.8
and then ABA”%QB is co-parallel %o YlB and passes through

asa™, [a, B) = ama~tg () 4. (See figure 10.)

(ii) Suppose that B! € BYl,, then B' = BA' where A’efﬂAa
siatgi=l = para~tar-ip=l = Bs~13"l. Therefore if B ¢ 4
but A ¢ %, choose Bfe Bil, but B¢ . It follows that
T4, 8] = apa~tpr~t= asa™p™ = [4, B], and now we can

use the construction described in (i).
(11i) If A, B ¥ then 4B = BA and therefore la, B] = I.

7,10, Construct the involutory line %V, i.e. the set

of a1l T # I such that T2 = I.

Figure 1l
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Let S be any line not passing through W or I. Con-
struct =% as indicated in § 7.2. Let B cut $eo and ?&0
in 522 and §L3 respectively. Construct Sigi cutting %%O
in 511 and .Q?I cutting e in 5,5 then @L;. = S5,
1z % flg ¥, then Ry = Q3 ana &= FoR, = Q18
but I € 9»1R2 contradicting the fact that & does not
vass through I. We conclude that @»“ﬁb P Similarly,
ve show that 2T, ®L, Let v = ORI v=g QR
= vt NS=v= V”’l9 therefore Ve = I, Taking
into account the considerations of § 5.7 example by, we

see that {T]2%= I, T # I} = 4V. (See figure 1l.)

§ 8, A group=theoretical proof for Pappus’ theoren.

Pheorenm (Pappus): If the vertices of a simple hexagon
lie alternately on a pair of intersecting lines, then the
three pairs of opposite sides will intersect in collinear

points.

Proof: Since there exist collineations which will send
any two different lines into any other two different lines,
there will be no loss in generality if we suppose That our

palr of intersecting lines are ‘§\O and 'g..me Let the hexa-

B

gon be ﬁlﬁaﬁﬁlﬁi 5&6 and let @\-2 and 53.)_%52.5 cut
in A, 52,2‘9,3 and ngé cut in B, @4 and }2,6_%1 eut

in C. (See figure 12.)
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Tigure 1l2.

If one of the Sli is equal to W, two of the points A,
B, C coincide and the theorem 1S obvious.

Suppose that no Ri ig equal to L. Since A& ﬁlﬁgg
thecrem 6.2.2 shows that AB“lCA"lBt&SQl§lés By § 4.7,
aB™roa™B 4 = can~ts=tBd = C%; therefore

Leats = Q5 N ch. But © = R Qg ) R, thersfore
~1 g~k
AB

ABTTCATTB

sptoaly = ¢ => am~lc = cp~ta = AB"FCB™t = CB

i

= CB“l &.WAB” . We conclude that C ¢ RAB“'B and thus

A, B and C are collinear.

QGEGDQ




§ 9. Conic sections.

9,1, Definition 1l: The set of all lines in the plane
passing through a point, P, is called a pencil of lines,

and will be denoted by [P]e

Definition 2: Two different pencils, {P} and {Q], are
said to be perspective if there i1s a one~to-one corre-
* spondence ¢:[P]-—+1Q] such that corresponding lines in-
tersect on the same line, i.e. if there exists a line &
such that for all Me (Pl, M N ¢(WH) N & # &. We
shall denote this by {P] = [Q1. (See figure 13.)

Figure 13.

Definition 3: Two pencils, [P] and [Q@), in the same
plane are said to be projective, IP] = @1, provided that
there exists a one-to-one correspondence between the
lines of [P] and those of {Q], and a finite number of

pencils {Rilg [Ryd, =oey iR, 1 such that(?]$[3ﬂ9@@==ﬁ%§

33.




and [R{] R [R.q} fori=1,2, ..., n-1; where the

one-to=-one correspondence between {P} and [Q] is the

composition of the correspondences between the successive

pencils,

Definition 4: The set of all points of intersection of
corresponding lines of two projective, non=-perspective
pencils [P] ahd [Q], such that P # Q, is called a conic

(point conic).

We shall now state an important theorem due To Pascal

(ef. HD).

Theorem 1: The points Py, Py, P39 Py s Psg Pgy no three
of which are collinear, lie on'a coniec if and only if the
three pairs of opposite sides of the simple hexagon

P1P2P3P%P5P6 meet in collinear points. (See figure 1lk.)

Figure 1k.

3.




Corollary: A conie is completely determined by five of

its points.

Note: Thnis theorem leads to a construction of the conic
passing through five given points, no three of which are

collinear.

Definition 5: A line which meefs a conic in one and

only one point is called a tangent to that conic.

If in Pascal's theorem (theorem 1), one of the sides of -

the hexagon cuts the conic in one point only, then two of
the vertices of the hexagon coinclde; from this, we get

the following theorem.

Theorem 2: If Py st P39 Pry P5 are points such that
no three are collinear, and if ﬁ”l is a line passing
through P1 but not through any of the other four points,
then there is a conlc through P, P29 P35 Py P5 and tan-
gent to &4, if and only if p:4 , meets 53_}?# in a point
collinear with the points of intersection of §Z§3 with

?1?5 and PP, with ?{:’?53 (See figure 15.)

Corollary: There is one and only one conic through four
given points, no three of which are collinear, and tan-

gent to a given line through one and only one of these

four points.

35,
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Figure 15.

Note: This theorem leads to a construction of the conic
passing through four points, no three of which are col-
linear, and tangent to a given line through one and only

one of these points.

It also leads to a construction of the tangent to a

conic through a point on that conic.

By further specialization of Pascal's theorem, we OD=

tain the two following theorems.

Theorem 3: If P13 Poy P3$ P, are points such that no
three are cbllinear3 and ?%l is a line through P, but
not through P,, P3 or Py, and %&2 is a line through P,
but .not through Pq, P3 or P, then Py, Py, P35 P, Lie on




a conic tangent to %, and &, if and only if *&2 meets
P1Pys ., meets P,Py, and PyP, meets P,P, in three col-

linear points. (See figure 16.)

Figure 16,

Theorem %: Let Py, Po, Pyy Py %15 &, be the same as
in theorem 3. Py, Py, P3? Py, 1lie on a conic tangent to
%&l and %&2 if and only if ﬁkl and %Kgg P,P) and P2P3a
§Z§3 and §Z§4 cut in three collinear points. (See fig~

ure 17.)

Corollary: A conic is determined by three of its points

and ﬁhe téngents at two of these points,

Theorems 3 and % lead to constructions for a conic,

given three of its points and the tangents at two of them.

37.




Figure 17.

9.2, 1et PR € () , define SBQ) = {X2| X € 28} . Note
that S(N,) & W, and that S(A%) € (AR)(a9) = Az*?%e

We shall now prove a theorem which will permit us to

determine a certain c¢lass of conics.

Theorem 1: If @ is any line not passing through AL or
I, then the points of S( &) lie on a conic passing through
I and tangent to ﬁ.o and oo at their points of intersec-

ticn with 5%8

38,
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Figure 18,

Proof: Let R and J3 be the points of intersection of
& with €, and $eo respectively. Let A € (%be any point
on & . Then 4°€ 5(%). Construct 5%22 neeting He, in R,
Construct also BT meetbing %%(3 in J%?a {See figure 18.)
Te B3, 4 e BR, A% ¢ RS and by theoren 6.2.1,
1A% = A ¢ TR/, Therefore S1', B3° and A are col-
linear; since the line through I and A% is M 4o which

2 lies on the

meets & in A, then by theorem 9.1l.3, A
conic through R, 3, I and tangent to ¢, and %o 2t S
and 3 respectively.

Q.E.D.




Let us denote the conic, passing through I and tangent

to ¥ o and S at 51 and & respectively, by 8 .

Consider the tangent to the conie & at the point I.
This tangent does not pass through K or & since it
touches the conic only in I, and is therefore not paral-
1l to ¥ . Let D be the intersection of & with this tan-
gent. The tangent is therefore W . D & L = pee 8 , but
p2 ¢ W, and therefore p2 = I, i.e. D belongs to the

involutory line “%V.»

Now let B be any point of B8, B # I, A, &. ‘a’iB cuts
{= in I and B; therefore WB does not pass through A or
J3, 1.6 WB. is not parallel <o & . Let A be the point of
intersection of Y|y with %. By theoren 1, A%e &, and
also A6 Yig; therefore A% = I or B. But on every line &
not through W or I, there is one and only one point D
such that D2 = I; since Yig 1s not tangent to % , then

2

A %D and thus A™ = 5,

We have therefore showa that all points of &, except
R and 3, belong to S(8), i.6. B = s(d) U iR, BEA
We shall say that S(&) is a %mconic or, when there 1is

no confusion, simply a conic.

Let us apply the collineation i’A:X ~7 AX to our conic.

We know that collineations send conics into conics, and




1.

tangents to a conic into tangents to the corresponding

conic. Let R be any line not passing through Al or I

then fA(S( $)) is a conic passing through A and tangent
to L, and &, at thelr points of intersection with

£, ( 2y = Ak,

£,(508) = {ax?{xeq) = {aa™n| 4™ty e 1}

fva~ly) veagy.

i

Definition: S,(R) = {xa™x|x g},

From the preceding argument?‘we may state the following

theoren.

Theorem 2: If & is any line not passing through AU or
A, then 8,(&) is a conic passing through A and tangent

to ‘ﬁo and 'ﬁam at their points of intersection with % .

Hote: S;:(%) = 8(¥).

Since a conic is determined by three points and the
tangents at two of them, and since $. and A are arbitrary,
we may conclude that gll coniecs tangent to ‘&O and ‘%%
are of the form 5, (&)

9.3. Properties of 8,( &)

(1) A conic being uniquely determined by three of its




points and the tangents at two of them, we conclude thatl

if Be SA( &), then SA( Q) = SB( %) and conversely.

fBxa~ x| X ¢ 33

= framtsty \ 37y e g3
vty ) veBQY

= 8552 (B R

i

(ii) fB(sA(g))

i

(iii) similarly, gg(S,(&)) = Sap(&B)s

(iv) Let % be any automorphism of (}, then
Q(s,( %)) = {QA™PCO | X € 23
@09 o) | Q) € QO
= (ve) "yl ve9rtnl

= S@(A)(Qs’(&))@

B

(v) n(s,(%)) = {ea™n™ xe 1}
xrtaxt | e 2y
fray | ¥ « 24

= SAng(\&ﬁl)o

i

i

(vi) We have seen that the tangent to S( &), at the
point I, cuts & on %ave Apply the collineation f,:X—¥AX
to this conic. £,(8(&)) = 8,(A%) and £,( 4V = RAVy
therefore the tangent to SA(Aﬁ) at the point A cuts A&
on *%AV., Replace A¥ Dby 2! and note that if As SB( S,
then SB( Qi o= S&( 2 1) and we can now state the following

1{“29




theorem,.

Theorem 1: If A is a point of the conic SZ( &%), then
the tangent to S85('&') at the point A cuts 2t in a point

or ‘%AV? where V2 = I, v # L.

(vii) Prom (vi), we know that the tangent to SA(E‘?\} at
a point B of sA(g) cuts ‘% on %BV. Since two conics are
tangent at a point if and oley if their tangents, at this

point, cocincide, we have the following theorem.

Theorem 2: Two conics, SA(§=) and §,,( &) cutting in
B, are tangent at B, if and only if & and &' cut in a

point of ‘%BVQ

We saw that if we apply the collineation h:}{:-‘av}{“l to
the conic S( &), we obtain sy, Tes(g) O sC™h
and % and &' meet on V; consequently, we have the

following corollary.

Corollary: The conic R(S(¥\)) = S(‘S\)“"l is tangent to

the conic S{( &) at the point I.

(viii) Suppose we are given a conic of the form S( &)
and two points A and B € % sueh that A, B € \%’@’ and such
that the line through A and B does not pass through W& or

1. Suppose, furthermore, that A, B and I are in the same

3,




region of the plane, as determined by ﬁ%o and &, in
§ 2.4, We shall construct a line %' such that S(&') is

a conlc passing through A& and B.

Pigure 19.

Let the intersections of “§A with 8(&) be A' and A%,
and let the intersections of *%B with S(%) be B! and BY.
ZTB! does not pass through I because, then, ATB! would
cut S(¥) in three points, which is impossible. ATB! does
not pass through U, since then AB would alsoc pass through
AL, which is contrary to hypothesis. By theorem 7.7.1,
there exists a uanique C such that C(ETEV)C™+ = EB. The
construction for this C is given in § 7;7a cargt e %A

and carc™te AB; therefore, carc™t = 4, Similarly, we see




that CB'C™% = B. Define R = c¥C™t,

s(g1) = s(cge™h) = o)™
A', Bte S(&), therefore 4, BeS('%'); hence ‘&' is our

required line.

If in the preceding consideration we had taken A" in-
stead of A! or B" instead of B', we would have obtained

different conics. There are four such conics.

If we have three non-collinear points A, B, C in the
same region of the plane, determined by“%o and &9 and
if no two are collinear with 4}, then we can construct a
line % such that S,(&) is a conic through &, B, C and
tangent to &, and $oo. We £ind, first of all, the conic

L 1

through I, A™"B and A™"C as above; then, we apply the

collineation fA:X~?AXa

9.%, We shall now study another class of conics which,
in a certain sense, are laverse to the class just stud=-

ied.
For b < (;1, define R(%%) = {X\Kzé%{,},
Hote that R(W,) 2 W and R(A%4) 2 4% .

Theorem 1: If “% is any line not passing through U or

I, then R('&) is the conic passing through A and the two

)‘5‘50
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points of intersection of ¥ with &, and &g, and tan-

gent to the normalizers through these two points.

Figure 20.

Proof: Let R and 2 be the intersection of & with “E-.O

end oo respectively. Let A€ R( 9.0, then A.zé ﬁ . Construct
A4 cutting % in A', and construct ZA cutting &, in
B, A e i, A% AR and A & AN'; therefore, by the-
oren 6.2.1, AAT2A = T ¢ SU.3'. By theorem 9.L.l, A lies
on the conic passing through'aﬁ_ﬂ M ,.8 and tangent to

the normalizers through R and J3 . (See figure 20.)

Conversely, lLet A be any point, A # U, .53&.9 f3, on the




conic through U, &, B and tangent %to the normalizers
through N and 3. Construct QA meeting & in KR! and
construct BA meeting ‘5\0 in 1. By theorem 9.l.%, we
know that I ¢ Q' 2'. A € _@Q‘? ITe .3 and Ae J3' 03 ;
therefore, by theorem 6.2.1, AI™A = 4% ¢ B = % and

consequently 4 &¢R(J&).

R{€) is therefore the reguired conic.

Let us apply the collineation fA:X-'?AX to our conilc
R(&). fA(R(‘&)) will be a conic passing through U ang
the points of intersection of A% with &4 and &o; the
tangents to the conic at these last two points will meet

in A.

£ (RO2)) = (x| x®en}
= (¥ ) @n2e sy
= fy | ra~ty e a},

1

Defining R, (&) = {x|za™x ¢ ], we can now state the

following theorem.

Theorem 2: If % is any line not passing through U or
4, then R,( %) is a conic passing through % and the two
points of intersection of ¥ with %, and %, and the

tangents at these last two points meet in A.

47,
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Note: R(%) = RI(“&)@

A conic is entirely determined by three points and the
tangents at two of them. We may choose A arbitrarily in
(.ﬁ and & arbitrarily, as long as it does not pass through
W or A, We conclude that we obtain all conics passing

through 1., but not tangent to ‘ﬁo or B e

Note that the class of conics Rﬁ(ﬁ) is inverse to the

class S,( %) in the sense that ¥ RA(SA( E\)) and
SA_(RA(‘@)) < ¥,

9,5, Properties of RA(‘&)e
(1) If % # % or A # A7, then R (%) » Ry, (&1

(11) £5(R (%)) = {BX | xa™% € 33
= ¢ | 37 tvateiy « 53}
fr\vntrenty

R, (BY).

[

(iii) Similarly, gg(R,(R)) = Ryp(&BI.

(iv) Let € be any automorphism of ()éfa
Q(r, () = {900 | 1™ « 8]
= 1900 | QmeaH90s 9]
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(v) n(R (2 = x| e 2
= )ttt e L
= {y\way e Xy
= RA-x(\;«-ﬂl)@

.

(vi) Consider the conic R( L) for some A not passing
through 4 or I. R{(%) passes through ‘. and so does the

line 4%V5,V2 = T. We have the following theorem.

Theoren L: The line %%U is bangent %o the conic R(OE)

at the point U .

Proof: Suppose R(L) and -%V meet in a point other than

2 '?" - I {! xﬁ\

fl
g...
m
)
o

U, say A. Then A%¢ %, but A ¢ 4V = 4

consequently, '%y i¢ tangent to R(X ) at U .

~

Nohe that theorem 1 is independent of “& and now apply
tne collineation fA:X"ﬁAX, Wa obtain the following, mors
general, theorem.

N

Theorem 2: If & 1s any line notv passing through ’Q g

) 4 ] R - SN e et s ]
A, then the tangent to the conic R, (&) at the point L
] 3 =1 A
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is the line %AV.:.

Corollary: If % and &t arse two lines not passing
through L or A, then the conics RA( &) and RA( ©1) are

tangent to each other at U .
9.6, Relations between SA( ©) and RA(‘%)@

We may notice that the properties of 8,( &) and RA(_%)

are somehow relabted. We shall now investigate this rela-

tion.

Let % be a line not passing thfough U or A. Let the

intersection of £ with *%A be HA. (See figure 21.)

Figure 21.




Let ¥ cut % and & in $1 and B respectively. Con-
struct A cutting g, in R', and A custing &4 in
B, Aefg, HA ¢ R and A ¢ 3R]'; therefore, by the-
orem 6.2.1, AGHA)MA = ®7la e TR, B

fore, by theorem 5.7.2, there exists a unique central col-

Aeg %A and there-

lineation, € , with centre H“lA. and axis ¥ , which trans-
forms A into U, i.e. O(A) =AU . SR’ passes through
H“lM the centre, and consequently c (TR = FTR'.
c(fa) = A = ¥, and c(FA) = BU = B

At e TR Qi a e TR 1= (A = 82
B e TR N FA=e(B) ¢ TB N fo=ra(B) = R
s Now RP = ¥,y therefore (&) = SR8 = AR,
Also B = %, therefore §( %) = ¢(BR) = B,
We 3N 3= s(U)ec(hy) N ol%s) = SN R
Therefore, ¢(UW) = A.

since 5,(3) is the conic through 2, 3, A and tangent
to 8, and $oe » then 6(8,('§)) is the conic through K ,
83, U and tangent to RR' and RAt, i.e
s(8,(8)) = B (5)»

Also R () is the conic through N,5 ,U% and tangent
to AR and J3R'; therefore (s'(RA('g)) is the conic
through S, 3, A and tangent to & and Foo s 1o

(R (8 = 5,(%)

From the preceding considerations we see that the tan=-

51.
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gent to R (&) at 4L , the tangent to S,(%) at 4, and &
are concurrent, i.e. the tangent to SA(ﬁ;) at A meets 3,

in a point orf ‘%AV, which agrees with theorem G.3.1.

Consider the tangents to SA(%J through the point "4,
& transforms SA(%K) into RA(%Q) aﬁd transforms a tangent
to SA(éL) into a tangent %o Rﬂ(ég); but all lines through
7~tA remain fixed and therefore the tangent to SA(E%)
through 1A is also tangent to RA(g.)@ Thus, we have the

following theoren.

Figure 22,
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Theorvem: Let o be any line not through U or A and
meeting ‘%A in HA, Then the common tangents to RA(g)
and SA(’&) meet in g, (See figure 22.)
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