
Theory and Applications of Categories, Vol. 40, No. 5, 2024, pp. 130–179.

RETROCELLS

For Marta Bunge, constant friend for over half a century

ROBERT PARÉ

Abstract. The notion of retrocell in a double category with companions is introduced
and its basic properties established. Explicit descriptions in some of the usual double
categories are given. Monads in a double category provide an important example where
retrocells arise naturally. Cofunctors appear as a special case. The motivating example
of vertically closed double categories is treated in some detail.
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Introduction

In [17] an in-depth study of the double category Ring of rings, homomorphisms, bimodules
and linear maps was made, and several interesting features were uncovered. It became
apparent that considering this double category, rather than the category of rings and
homomorphisms or the bicategory of bimodules, could provide some important insights
into the nature of rings and modules.

An important property of the bicategory of bimodules is that it is biclosed, i.e. the ⊗
has right adjoints in each variable so that we have bijections of linear maps

M //N ;T P

N ⊗S M // P

N // P ⊘RM
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for bimodules

R

T .

•
P ##

S

R

;;
•M

S

T .

•N

��

We use (a slight modification of Lambek’s notation for the hom bimodules [14]): P ⊘RM
is the T -S bimodule of R-linear maps M // P , and T -linear for N ;T P . Both P ⊘RM
and N ;T P are covariant in P but contravariant in the other variables. This is for 2-cells
in the bicategory Bim but it does not extend to cells in the double category Ring, which
casts a shadow on our contention that Ring works better than Bim.

The way out of this dilemma is hinted at in the commuter cells of [11] (there called
commutative cells) introduced to deal with the universal property of internal comma
objects. That is, to use companions to define new cells, which we call retrocells below,
and thus recover functoriality.

After a quick review of companions in Section 1, we introduce retrocells in Section 2
and see that they are the cells of a new double category, and if we apply this construction
twice, we get the original double category, up to isomorphism.

Section 3 extends the mates calculus to double categories where we see retrocells ap-
pearing as the mates of standard cells. A careful study of dualities in Section 4 completes
this.

Retrocells in the standard double categories whose vertical arrows are spans, relations,
profunctors or V-matrices are analyzed in Section 5. They correspond to various sorts of
liftings reminiscent of fibrations.

Section 6 studies retrocells in the context of monads in a double category. It is seen
that, while Kleisli objects are certain kinds of universal cells, Eilenberg-Moore objects are
universal retrocells. In SpanA, monads are category objects in A and internal functors
are cells preserving identities and multiplication. Retrocells, on the other hand, give
cofunctors.

In Section 7 we extend Shulman’s closed equipments to general double categories, and
establish the functoriality of internal homs, covariant in one variable and retrovariant in
the other, formulated in terms of “twisted cospans”.

We end in Section 8 by re-examining commuter cells in the light of retrocells and
see that this leads to an interesting triple category, though we do not pursue the triple
category aspect.

The results of this paper were presented in preliminary form at CT2019 in Edinburgh
and in the MIT Categories Seminar in October 2020. We thank Bryce Clarke, Matt
Di Meglio and David Spivak for expressing their interest in retrocells. We also thank the
anonymous referee for a careful reading and numerous suggestions resulting in a much
better presentation.
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1. Companions

The whole paper will be concerned with double categories that have companions, so we
recall the definition, principal properties we will use, and establish some notation (see [10]
for more details).

1.1. Definition. Let f :A // B be a horizontal arrow in a double category A. A com-
panion for f is a vertical arrow v:A • // B together with two binding cells α and β as
below, such that

A B
f
//

A

A

A AA

B

•v

��
α

B B

A

B

A B
f // B

B

β = idf and

B B .

A

B

•v

��

A BB

B .

β

A B
f
//

A

A

A AA

B

•v

��
α

= 1v

We can always assume the vertical identities are strict and usually denote them by
long equal signs in diagrams, as we just did. Of course horizontal identities are always
strict, and we use a similar diagrammatic notation.

The vertical identity on A, idA, is a companion to the horizontal identity 1A, with
both binding cells the common value 1idA = id1A ,

A A .

A

A

A AA

A .

1

If f :A // B and g:B // C have respective companions (v, α, β) and (w, γ, δ) then gf
has w • v as companion with binding cells

A B
f
//

A

A

A BB

B

idf

B Cg
//

B

B

B BB

C

•w

��
γ

A B
f
//

A

A

A AA

B

•v

��
α

B B

A

B

A AA

B

•v

��
1v

and

C C

B

C

•w

��

B BB

C

1w

C C .

B

C

•w

��

B C
g // C

C .

δ

B B

A

B

•v

��

A B
f // B

B

β

B C

B

B

B C
g // C

C

idg

Two companions (v, α, β) and (v′, α′, β′) for the same f are isomorphic by the globular
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isomorphism

B B .

A

B

•v

��

A B
f

B

B .

β

A B//

A

A

A AA

B

•v′

��
α′

We usually choose a representative companion from each isomorphism class and call
it (f∗, ψf , χf )

A B
f
//

A

A

A AA

B

•f∗
��

ψf

B B .

A

B

•f∗

��

A B
f // B

B .

χf

The choice is arbitrary but it simplifies things if we choose the companion of 1A to be
(idA, 1idA , 1idA). In all of our examples there is a canonical choice and for that (1A)∗ = idA.

To lighten the notation, we often write the binding cells ψf and χf as corner brackets
in diagrams:

A B
f
//

A

A

A AA

B

•f∗
��

⌜ and

B B .

A

B

•f∗

��

A B
f // B

B .

⌟

We also use = and for horizontal and vertical identity cells.
There is a useful technique, called sliding, where we slide a horizontal arrow around

a corner into a vertical one. Specifically, there are bijections natural in every way that
makes sense,

D E
h

//

A

D

•v

��

A CC

E

•w

��

A B
f // B C

g //

α ←→

D E
h
//

A

D

•v

��

A B
f // B

E

B

C

•g∗
��
C

E

•w
��

β
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and also

C E

A

C

•v

��

A B
f // B

E

•w

��
C Dg

// D E
h
//

α ←→

D E .
h
//

A

D

A B
f // B

E .

•w

��

A

C

•v
��
C

D

•g∗
��

β

If we combine the two we get a bijection

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

D D

C

D

•g∗
��

C BB

D

•w
��

C B

A

C

•v
��

A AA

B

•f∗
��

α̂

which is, in a sense, the conceptual basis for retrocells. That, and the idea that f and f∗
are really the same morphism in different roles.

We refer the reader to [9] for all unexplained double category matters.

2. Retrocells

Let A be a double category in which every horizontal arrow has a companion and choose
a companion for each (with idA as the companion of 1A).

2.1. Definition. A retrocell α in A, denoted

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��

ks α

is a (standard) double cell of A of the form

D D .

B

D

•w
��

B CC

D .

•g∗
��

B C

A

B

•f∗
��

A AA

C

•v
��

α

2.2. Theorem. The objects, horizontal and vertical arrows of A together with retrocells,
form a double category Aret.
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Proof. The horizontal composite βα of retrocells

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��

ks α

D F
k
//

B

D

B E
h // E

F

•x

��

ks β

is given by

F F

E

F

•x

��

E EE

F

•x

��
=

E E

A

E

•(hf)∗

��

A AA

E

∼=

A

B

•f∗
��
B

E

•h∗
��

F F

E

F

E DD

F

•k∗
��

βE D

B

E

B BB

D

•w

��

B B

A

B

A AA

B

•f∗
��

=

F F

D

F

D DD

F

•k∗
��

=

D D

B

D

B CC

D

•g∗

��

αB C

A

B

A AA

C

•v

��

F F

C

F

C CC

F

•(kg)∗

��

∼=

C C

A

C

A AA

C

•v

��
=

where the ∼= represent the canonical isomorphisms (hf)∗ ∼= h∗ • f∗ and (kg)∗ ∼= k∗ • g∗,

E E

A

E

•(hf)∗

��

A EE

E

⌟

A B
f // B Eh //A B

A

A

A B
f // B

BB E

B

B

B BB

E

•h∗
��

⌜

A B

A

A

A AA

B

•f∗
��

⌜

B B

A

B

A AA

B

•f∗
��

=

and

F F

D

F

•k∗

��

D DD

F

•k∗
��

=

F F .

D

F

D Fk // F

F .

⌟

D D

C

D

•g∗

��

C D
g // D

D

⌟

D F

D

D

D F
k // F

F

C F

C

C

C CC

F

•(kg)∗
��

⌜

The vertical composite α′ •α of retrocells

C ′ D′
h
//

C

C ′

•v′

��

C D
g // D

D′

•w′

��

ks α
′

C D

A

C

•v

��

A B
f // B

D

•w

��

ks α
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is

D′ D′

D

D′

•w′

��

D DD

D′

•w′

��
=

D D

B

D

•w

��

B CC

D

•g∗

��

B C

A

B

•f∗

��

A AA

C

•v

��
α

D′ D′ .

D

D′

•
��

D C ′C ′

D′ .

•h∗
��

α′D C ′

C

D

C CC

C ′

•v′

��

C C

A

C

A AA

C

•v

��
=

Horizontal and vertical identities are

C C

A

C

•v

��

A AA

C

•v

��

ks 1v =

C C

A

C

•v

��

A CC

C

=A C

A

A

A AA

C

•v

��
and

A B
f
//

A

A

A B
f // B

B

idf =

B B .

B

B

B AA

B .

•f∗
��

=B A

A

B

•f∗

��

A AA

A

There are a number of things to check (horizontal and vertical unit laws and associa-
tivities as well as interchange), all of which are straightforward calculations and will be
left to the reader. It is merely a question of writing out the diagrams and following the
steps indicated schematically below.

The identity laws are trivial because of our conventions that (1A)∗ = idA and vertical
identities are as strict as in A.

For retrocells

C0 C1g1
//

A0

C0

•v0

��

A0 A1
f1 // A1

C1

•v1
��

ksα1

C1 C2g2
//

A1

C1

A1 A2
f2 // A2

C2

•v2
��

ksα2

C2 C3 ,g3
//

A2

C2

A2 A3
f3 // A3

C3 ,

•v3
��

ksα3

α3(α2α1) is a composite of 17 cells arranged in a 4× 7 array represented schematically as

∼=

α3

∼=

α2

α1

∼=
∼=

(1)

.
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The empty rectangles are horizontal identities and the∼= represent canonical isomorphisms
generated by companions.

(α3α2)α1 on the other hand is of the form

∼=
∼=

α3

α2

∼=

α1

∼= (2)

.

It is now clear what to do. Switch α3 with ∼= in (1) and α1 with ∼= in (2) to get

α3

α2

α1

in the middle in both cases. The 4× 2 block on the left in (1) becomes

∼=

∼=

.

which is not formally the same as 4 × 2 block in (2), but they are equal by one of the
coherence identities for ( )∗. We write it out

A3 A3

A0

A3

•(f3f2f1)∗

��

A0 A0A0

A3

∼=

A0

A2

•(f2f1)∗

��
A2

A3

•f3∗
��
A3 A3

A2

A3

A2 A2A2

A3

•f3∗
��

=

A3 A3

A0

A3

A0 A0A0

A3

A0

A1

•f1∗
��
A1

A2

•f2∗
��

∼=

=

A3 A3

A0

A3

•(f3f2f1)∗

��

A0 A0A0

A3

∼=

A0

A1

•f1∗
��
A1

A3

•(f3f2)∗

��

A1 A1

A0

A1

A0 A0A0

A1

•f1∗
��

=

A1

A2

•f2∗
��
A2

A3 .

•f3∗
��

A3 A3

∼=
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There may be something to worry about here because (f2f1)∗ ∼= f2∗ • f1∗ involves χf2f1
whereas (f3f2)∗ ∼= f3∗ • f2∗ involves χf3f2 which are unrelated. However both χf2f1 and
χf3f2 cancel in the composites. The left hand side is

χf3f2f1

ψf3

ψf2f1
χf2f1

ψf2

ψf1

and when we cancel χf2f1 with ψf2f1 leaving idf2f1 , that composite reduces to

χf3f2f1

ψf3

ψf2

ψf1

as does the right hand side.
The 4× 2 block on the right is the same with the roles of ψ and χ interchanged. This

completes the proof of associativity of horizontal composition of retrocells.
The associativity for vertical composition is much simpler as it does not involve ψ’s

or χ’s, only the associativity isomorphisms of A. In particular if A were strict, then Aret

would be too, and the proof of associativity would be merely a question of writing down
the two composites and observing that they are exactly the same.

For interchange consider retrocells

C0 C1h1
//

B0

C0

•w0

��

B0 B1
g1 // B1

C1

•w1

��

ks β1

C1 C2 .
h1
//

B1

C1

B1 B2
g2 // B2

C2 .

•w2

��

ks β2

B0 B1

A0

B0

•v0

��

A0 A1
f1 // A1

B1

•v1
��

ksα1

B1 B2

A1

B1

A1 A2
f2 // A2

B2

•v2
��

ksα2

Then the pattern for (β2β1) •(α2α1) is
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∼=

α2

α1

∼= ∼=

β2

β1
∼=

and for (β2 •α2)(β1 •α1) it is

∼=

α2

β2

α1

β1

∼=

.

The two ∼= in the middle of the first one are inverse to each other,

g2∗ • g1∗
∼= // (g2g1)∗

∼= // g2∗ • g1∗ ,

so each of (β2β1) •(α2α1) and (β2 •α2)(β1 •α1) is equal to

∼=

α2

α1

β2

β1

∼=

completing the proof.

2.3. Theorem. (1) Aret has a canonical choice of companions.
(2) There is a canonical isomorphism of double categories with companions

A
∼= // Aret ret

which is the identity on objects and horizontal and vertical arrows.
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Proof. The companion of f :A // B in Aret is f∗, f ’s companion in A with binding
retrocells

B B

A

B

•f∗

��

A B
f // B

B

ks =

B B

B

B

•idB

��

B BB

B

• idB
��

B B

A

B

•f∗

��

A AA

B

•f∗
��

1

and

A B
f
//

A

A

A AA

B

•f∗
��

ks =

B B .

A

B

•f∗

��

A AA

B .

•f∗
��

A A

A

A

•idA

��

A AA

A

• idA
��

1

The binding equations only involve canonical isos so hold by coherence.
A cell α in Aret ret, i.e. a retrocell in Aret is

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��

ks α =

D D

B

D

•w

��

B CC

D

•g∗

��

B C

A

B

•f∗

��

A AA

C

•v

��
α in Aret

=

D D

C

D

•g∗

��

C DD

D

• idD
��

C D

A

C

•v

��

A BB

D

•w

��

A B

A

A

•idA

��

A AA

B

•f∗
��

α in A
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and these are in canonical bijection with

C D .g
//

A

C

•v

��

A B
f // B

D .

•w

��
α′

Checking that composition and identities are preserved is a straightforward calculation
and is omitted.

2.4. Example. If A is a 2-category, the double category of quintets QA has the same
objects as A, the 1-cells of A as both horizontal and vertical arrows, and cells α

C Dg
//

A

C

•h
��

A B
f // B

D

•k
��

α =

C Dg
//

A

C

h

��

A B
f // B

D

k

��

α
{�

i.e. a 2-cell α: kf // gh. Horizontal and vertical composition are given by pasting. Every
horizontal arrow f :A //B has a companion, f∗, namely f itself considered as a vertical
arrow. A retrocell

C Dg
//

A

C

•h
��

A B
f // B

D

•k
��

ks α

is

D D

B

D

•k
��

B CC

D

•g∗

��

B C

A

B

•f∗

��

A AA

C

•h
��

α =

D D
1D

//

A

D

kf

��

A A
1A // A

D

gh

��

α
{�

i.e. a coquintet

C D .g
//

A

C

h

��

A B
f // B

D .

k

��

α ;C

Thus
(QA)ret = coQA = Q(Aco) .
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3. Adjoints, companions, mates

The well-known mates calculus says that if we have functors F,G,H,K,U, V as below
with F ⊣ U and G ⊣ V , then there is a bijection between natural transformations t and
u as below

C D
K
//

A

C

U

��

A BH // B

D

V

��

t +3 ←→

A B .
H
//

C

A

F

��

C DK //D

B .

G

��

uks

This is usually stated for bicategories but with the help of retrocells we can extend it to
double categories (with companions).

To say that two horizontal arrows are adjoint in a double category A means they are
so in the 2-category of horizontal arrows HorA. So h left adjoint to f means we are given
cells

A A

A

A

A AA

A

A B
f // B Ah //

ϵ and

B B

B

B

B BB

BB A
h
// A B

f
//

η

satisfying the “triangle” identities

A A

A

A

A AA

A

A B
f // B A

h //

ϵ

A B
f
//

A

A

A B
f // B

B

A B

A

A

A B
f // B

BB B

B

B

B BB

B

η

=

A B
f
//

A

A

A B
f // B

B

and

B A
h
//

B

B

B Ah // A

AA A

A

A

A AA

A

ϵ

A B
f // B Ah //B B

B

B

B BB

B

η

B A

B

B

B Ah // A

A =

B A
h
//

B

B

B A
h // A

A

.

To say that the vertical arrows are adjoint means that they are so in the vertical
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bicategory VertA. So x is left adjoint to v if we are given cells

A A

A

A

A AA

A

ϵ

A

C

•v

��
C

A

•x

��

and

C C

C

C

C CC

C

C

A

•x

��
A

C

•v

��

η

also satisfying the triangle identities.
Suppose we are given horizontal arrows f and h with cells α1 and β1 as below. In the

presence of companions we can use sliding to transform them. We have bijections

A A

A

A

A AA

A

α1

A B
f // B Ah //

←→

A A

A

A

A B
f // B

A

•h∗
��

α2 ←→

A A

A

A

A AA

A

α3

A

B

•f∗
��
B

A

•h∗
��

B B

B

B

B BB

B

β1

B A
h
// A B

f
//

←→

A B
f
//

B

A

•h∗

��

B BB

B

β2 ←→

B B .

B

B

B BB

B .

β3

B

A

•h∗

��
A

B

•f∗

��

3.1. Proposition. h is left adjoint to f with adjunctions α1 and β1 if and only if f∗ is
left adjoint to h∗ with adjunctions β3 and α3.

3.2. Theorem. Consider horizontal morphisms f and g and vertical morphisms v and
w as in

C D .g
//

A

C

•v

��

A B
f // B

D .

•w

��
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(1) If x is left adjoint to v and y left adjoint to w, then there is a bijection between cells
α and retrocells β as in

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

A B .
f
//

C

A

•x

��

C D
g // D

B .

•y

��

βks

(2) If h is left adjoint to f and k left adjoint to g, then there is a bijection between cells
α and retrocells γ as in

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

D C .
k
//

B

D

•w

��

B A
h // A

C .

•v

��

γks

Proof. (1) Standard cells α are in bijection with 2-cells α̂ in the bicategory VertA

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

D D

C

D

•g∗

��

C BB

D

•w

��

C B

A

C

•v

��

A AA

B

•α

��
α̂

and retrocells β are defined to be 2-cells in VertA

B B .

D

B

•y

��

D AA

B .

•f∗
��

D A

C

D

•g∗

��

C CC

A

•x

��
β

Then our claimed bijection is just the usual bijection from bicategory theory:

α̂: g∗ • v // w • f∗
β: y • g∗ // f∗ •x .

(2) From the previous proposition we have f∗ is left adjoint to h∗ and g∗ left adjoint to
k∗, and again our bijection follows from the usual bicategory one:

α̂: g∗ • v // w∗ • f∗
γ: v •h∗ // k∗ •w
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3.3. Corollary. (1) If f has a left adjoint h, g a left adjoint k, v a right adjoint x and
w a right adjoint y, then we have a bijection of cells

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

B A .
h
//

D

B

•y

��

D Ck // C

A .

•x

��
δ

(2) We get the same bijection if left and right are interchanged in all four adjunctions.

Proof. (1) We have the following bijections

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

D C
k
//

B

D

•w

��

B A
h // A

C

•v

��

βks ←→

B A
h
//

D

B

•y

��

D C
k // C

A

•x

��
δ

the first by direct application of part (2) of Theorem 3.2 and the second by applying part
(1) of Theorem 3.2 in Aret where x ⊣ v and y ⊣ w. Finally δ is a cell in (Aret)ret ∼= A.
(2) For this we use (1) first and then (2) in Aret

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

A B
f
//

C

A

•x

��

C D
g // D

B

•y

��

γks ←→

B A .
h
//

D

B

•y

��

D C
k // C

A .

•x

��
δ

Note that the statement of the corollary does not refer to retrocells or companions but
it does not seem possible to prove it directly without companions. The infamous pinwheel
[5] pops up in all attempts to do so.

4. Coretrocells

There is a dual situation giving two more bijections in the presence of right adjoints, but
the notion of retrocell is not self-dual. In fact there is a dual notion, coretrocell, which
also comes up in practice as we will see later.

Like for 2-categories there are duals op and co for double categories. Aop has the
horizontal direction reversed and Aco the vertical. If A has companions there is no reason
why Aop or Aco should, and even if they did there is no relation between the retrocells
there and those of A. Companions in Aop or Aco correspond to conjoints in A and we will
use these to define coretrocells.

For completeness we recall the notion of conjoint. More details can be found in [9].
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4.1. Definition. Let f :A //B be a horizontal arrow in A. A conjoint for f is a vertical
arrow v:B • // A together with two cells (conjunctions)

A A

A

A

A B
f // B

A

•v

��
α and

A B
f
//

B

A

•v

��

B BB

B

β

such that

A A

A

A

A B
f // B

A

•v

��
α

A B
f
//

B

A

B BB

B

β = idf and

A A

A

A

A B
f // B

A

•v

��
α

A B

B

A

•v

��

B BB

B

β

= 1v

.

As we said, this is the vertical dual of the notion of companion and therefore has the
corresponding properties. They are unique up to globular isomorphism when they exist
and we choose representation that we call f ∗. We have (gf)∗ ∼= f ∗ • g∗ and 1∗A

∼= idA. The
choice is arbitrary but in practice there is a canonical one and for that 1∗A is usually idA,
which we will assume.

The dual of sliding is flipping: we have bijections, natural in every way that makes
sense,

D E
h

//

A

D

•v

��

A CC

E

•w

��

α

A B
f // B C

g //

←→

D E
h

//

B

D

B C
g // C

E

•w

��

β

B

A

•f∗

��
A

D

•v

��

and

C E

A

C

•v

��

A B
f // B

E

•w

��
α

C Dg
// D E

h
//

←→

C D .g
//

A

C

•v

��

A B
f // B

D .

β

B

E

•w

��
E

D

•h∗

��

We now complete Proposition 3.1.
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4.2. Proposition. Assuming only those companions and conjoints mentioned, we have
the following natural bijections

A A

A

A

A AA

A

α1

A B
f // B Ah //

←→
A A

A

A

A B
f // B

A

•h∗
��

α2 ←→

A A

A

A

A AA

A

α3

A

B

•f∗
��
B

A

•h∗
��

OO

��

OO

��

A A

B

A

•f∗

��

B A
h // A

A

α4 ←→
A A

B

A

•f∗

��

B BB

A

•h∗
��

α5

OO

��

A A

A

A

A AA

A

α6

A

B

•h∗

��
B

A

•f∗

��

B B

B

B

B BB

B

β1

B A
h
// A B

f
//

←→
A B

f
//

B

A

•h∗
��

B BB

B

β2←→

B B

B

B

B BB

B

β3

B

A

•h∗
��
A

B

•f∗
��

OO

��

OO

��

B A
h
//

B

B

B BB

A

•f∗
��

β4←→
A A

B

A

•h∗
��

B BB

A

•f∗
��

β5

OO

��

B B .

B

B

B BB

B .

β6

B

A

•f∗
��
A

B

•h∗
��

The following are then equivalent.

(1) h is left adjoint to f with adjunctions α1 and β1

(2) h∗ is a conjoint for f with conjunctions α2 and β2

(3) f∗ is left adjoint to h∗ with adjunctions α3 and β3

(4) f ∗ is a companion for h with binding cells α4 and β4

(5) f ∗ is isomorphic to h∗ with inverse isomorphisms α5 and β5

(6) f ∗ is left adjoint to h∗ with ajdunctions α6 and β6.
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4.3. Definition. Suppose that in A every horizontal arrow f has a conjoint f ∗, then a
coretrocell

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��

α
KS

is a (standard) cell

C C

D

C

•g∗

��

D AA

C

•v

��

αD A

B

D

•w

��

B BB

A

•f∗

��

in A.
Coretrocells are retrocells in Aco. So all properties of retrocells dualize to coretrocells.

In particular we have a double category Acor whose cells are coretrocells. Dualities can
be confusing so we list them here.

4.4. Proposition. (1) If A has conjoints then Aop and Aco have companions and
(a) (Acor)op = (Aop)ret

(b) (Acor)co = (Aco)ret

(2) If A has companions then Aop and Aco have conjoints and
(a) (Aret)op = (Aop)cor

(b) (Aret)co = (Aco)cor

(3) Under the above conditions
(a) (Aret)coop = (Acoop)ret

(b) (Acor)coop = (Acoop)cor.

Passing between A and Aco switches left adjoints to right (both horizontal and vertical),
switches companions and conjoints, and retrocells with coretrocells. Thus we get the dual
theorem for mates.

4.5. Theorem. Assume A has conjoints.
(1) If x is right adjoint to v and y right adjoint to w, then there is a bijection between

cells α and coretrocells β

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

A B .
f
//

C

A

•x

��

C D
g // D

B .

•y

��

β
KS



RETROCELLS 149

(2) If h is right adjoint to f and k right adjoint to g, then there is a bijection between
cells α and coretrocells γ

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α ←→

D C .
f
//

B

D

•w

��

B A
g // A

C .

•v

��

γ
KS

Whereas we think of companions as vertical arrows isomorphic to horizontal ones, it
makes sense to think of a cell α as above as a cell

D D

C

D

•g∗

��

C BB

D

•w

��

α̂C B

A

C

•v

��

A AA

B

•f∗
��

(which it corresponds to bijectively) and reversing its direction would give a natural notion
of a cell in the opposite direction, thus giving retrocells. Coretrocells, on the other hand,
are less intuitive. We think of conjoints as vertical arrows adjoint to horizontal ones, and
although there is a bijection between cells α and cells

C C ,

A

C

•v

��

A DD

C ,

•g∗

��

α∨A D

B

A

•f∗

��

B BB

D

•w

��

this is more in the nature of a proposition than a tautology. Nevertheless, formally the
two bijections are dual, so have the same status. Reversing the direction of the α∨ gives
us coretrocells, and they do come up in practice as we will see in the next sections.

5. Retrocells for spans and such

If A is a category with pullbacks, we get a double category SpanA whose horizontal part
is A, whose vertical arrows are spans and whose cells are span morphisms, modified to
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account for the horizontal arrows

C Dg
//

A

C

•S
��

A B
f // B

D

•T
��

α =

C D .g
//

S

C

σ1

��

S T
α // T

D .

τ1

��

S T

A

S

OO

σ0

A B
f // B

T

OO

τ0

SpanA has companions f∗ and conjoints f ∗:

f∗ = A

A
1A

OO

A

B

f
��

and f ∗ = A

B
f

OO

A

A .

1A
��

A retrocell β is

C Dg
//

A

C

•S
��

A B
f // B

D

•T
��

βks =

D D

T ×B A

D

τ1p1

��

T ×B A S
β // S

D

gσ1

��

T ×B A S

A

T ×B A

OO

p2

A AA

S

OO

σ0

where

T Bτ0
//

T ×B A

T

p1

��

T ×B A A
p2 // A

B

f

��

is a pullback.
A coretrocell γ is

C Dg
//

A

C

•S
��

A B
f // B

D

•T
��

γ
KS

=

C C .

C ×D T

C

p1

��

C ×D T S
γ // S

C .

σ1

��

C ×D T S

B

C ×D T

OO

τ0p2

B BB

S

OO

fσ0
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When A = Set we can represent an element s ∈ S with σ0s = a and σ1s = c by an

arrow a •s // c. Then a morphism of spans α is a function

(a •s // c) 7−→ (fa •
α(s) // gc).

For a retrocell β, an element of T ×B A is a pair (b •t // d, a) such that fa = b so

we can represent it as fa •t // d. Then β is a function (fa •t // d) 7−→ (a •
βt // β1t) with

gβ1t = d. If we picture S as lying over T (thinking of (co)fibrations) then β is a lifting:
for every t we are given a βt

fa d•
t
//

a

fa

a β1t•
βt // β1t

d

_
OO

T

S

So it is like an opfibration but without any of the category structure around (in particular
we cannot say that “βt is over t”).

For a coretrocell γ, an element of C ×D T is a pair (c, b •t // d) with gc = d which we

can write as b •t // gc. γ then assigns to such a t an S element γ0t
γt // c with fγ0t = b,

i.e. a lifting from T to S

b gc ,•
t
//

γ0t

b

γ0t c•
γt // c

gc ,

_
OO

much like a fibration, though without the category structure.
This example shows well the difference between retrocells and coretrocells and their

comparison with actual cells.
The story for relations is much the same. If A is a regular category and

C Dg
//

A

C

•R
��

A B
f // B

D

•S
��

is a boundary in RelA, i.e. f and g are morphisms and R and S are relations, then in
the internal language of A, there is a (necessarily unique) cell iff

a ∼R c⇒ fa ∼S gc ,

there is a retrocell iff
fa ∼S d⇒ ∃c(a ∼R c ∧ gc = d)
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and a coretrocell iff
b ∼S gc ⇒ ∃a(a ∼R c ∧ fa = b).

Profunctors are the relations of the Cat world. There is a double category which we
call Cat whose objects are small categories, horizontal arrows functors, vertical arrows
profunctors, and cells the appropriate natural transformations. In a typical cell

C D
G
//

A

C

•P
��

A BF // B

D

•Q

��
t

t is a natural transformation P (−,=) // Q(F−, G =). Cat has companions and con-
joints:

F∗(A,B) = B(FA,B)

F ∗(B,A) = B(B,FA).

We denote an element p ∈ P (A,C) by an arrow p:A • // C. So the action of t is

t: (p:A • // C) 7−→ (tp:FA • // GC)

natural in A and C, of course.
A retrocell

C D
G
//

A

C

•P
��

A BF // B

D

•Q

��

ϕks

is a natural transformation ϕ:Q ⊗B F∗ // G∗ ⊗C P . An element of Q ⊗B F∗(A,D) is
an element of Q(FA,D), g:FA • // D. An element of G∗ ⊗C P (A,D) is an equivalence
class

[p:A • // C, d:GC //D]C .

So a retrocell assigns to each element of Q, q:FA //D, an equivalence class

[ϕ(q):A • // C, ϕ(q):GC //D].

We can think of it as a lifting, like for spans

FA D .•
q

//

A

FA

A C•
ϕ(q) // C

D .

C

GCGC

D
��

_

OO
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The lifting C does not lie over D, there is merely a comparison GC //D. Furthermore
the lifting is not unique, but two liftings are connected by a zigzag of C morphisms.
We have not spelled out the details because we do not know of any occurrences of these
retrocells in print.

Coretrocells of profunctors are similar (dual). We get a “lifting”

B GC .•
q

//

A

B

A C•
p // C

GC .

A

FAFA

B

OO
_

OO

A final variation on the span theme is V-matrices. Let V be a monoidal category
with coproducts preserved by ⊗ in each variable separately. There is associated a double
category which we call V-Set. Its objects are sets and horizontal arrows functions. A
vertical arrow A • // C is an A × C matrix of objects of V, [Vac]. A cell is a matrix of
morphisms

C Dg
//

A

C

•[Vac]

��

A B
f // B

D

• [Wbd]

��
[αac]

αac:Vac //Wfa,gc.

Vertical composition is matrix multiplication

[Xce]⊗ [Vac] = [
∑
c∈C

Xce ⊗ Vac].

Every horizontal arrow has a companion

f∗ = [∆fa,b]

and a conjoint
f ∗ = [∆b,fa]

where ∆ is the “Kronecker delta”

∆b,b′ =

{
I if b = b′

0 if b ̸= b′.

A retrocell

C Dg
//

A

C

•[Vac]

��

A B
f // B

D

• [Wbd]

��

ϕks
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is an A×D matrix [ϕad]

ϕad:Wfa,d
//
∑
gc=d

Vac .

A coretrocell

C Dg
//

A

C

•[Vac]

��

A B
f // B

D

• [Wbd]

��

ψ
KS

is a B × C matrix [ψbc]

ψbc:Wb,gc
//
∑
fa=b

Vac .

For example, if V = Ab, and we again represent elements of Vac by arrows a •v // c

(resp. of Wbd by b •w // d), then ϕ associates to each fa •w // d a finite number of elements

a •
vi // ci with gci = d

fa d•
w
//

a

fa

a ci•
vi // ci

d

_
OO

(i = 1, ..., n) .

Of course the dual situation holds for coretrocells ψ.
So we see that (co)retrocells in each case give liftings but of a type adapted to the

situation. For spans they are uniquely specified, for relations they exist but are not
specified, for profunctors only up to a connectedness condition and for matrices of Abelian
groups we get a finite number of them.

6. Monads

A monad in Cat is a quadruple (A, T, η, µ) where A is a category, T :A //A an endo-
functor, η: 1A // T and µ:T 2 // T natural transformations satisfying the well-known
unit and associativity laws. In [19] Street introduced morphisms of monads

(F, ϕ): (A, T, η, µ) // (B, S, κ, ν)

as functors F :A //B together with a natural transformation

A B
F
//

A

A

T

��

A BF // B

B

S

��

ϕ
{�
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respecting units and multiplications in the obvious way. He called these monad functors,
now called lax monad morphisms (see [15]). This was done, not just in Cat , but in a
general 2-category. Using duality, he also considered what he called monad opfunctors,
i.e. oplax morphisms of monads, with the ϕ in the opposite direction.

The lax morphisms work well with Eilenberg-Moore algebras, giving a functor

EM(F, ϕ):EM(T) // EM(S)

(TA a // A) 7−→ (SFA
ϕA // FTA Fa // FA)

whereas the oplax ones give functors on the Kleisli categories

Kl(F, ψ):Kl(T) //Kl(S)

(A
f // TB) 7−→ (FA

Ff // FTB
ψB // SFB).

The story for monads in a double category is this (see [8, 7], though note that there
horizontal and vertical are reversed). In general we just get one kind of morphism, the
oplax ones. If we have companions then we also get the lax ones, and if we also have
conjoints we have another kind. The 2-category case considered by Street corresponds to
the double category of coquintets which has companions but not conjoints.

Let A be a double category. A vertical monad in A, t = (A, t, η, µ) consists of an
object A, a vertical endomorphism t and two cells η and µ as below

A A

A

A

A AA

A

•t

��
η

A A

A

A

A AA

A

•t

��

µ

A

A

•t

��
A

A

•t

��

satisfying

A A

A

A

•t

��

A AA

A

•t

��
=

A A

A

A

A AA

A

•t

��
η

A A

A

A

A AA

A

•t

��

µ =

A A

A

A

•t

��

A AA

A

•t

��
1t =

A A

A

A

A AA

A

•t

��
η

A A

A

A

•t

��

A AA

A

•t

��
=

A A

A

A

A AA

A

•t

��

µ
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A A

A

A

•t

��

A AA

A

•t

��
=

A A

A

A

A AA

A

•t

��

µ

A

A

•t

��
A

A

•t

��

A A

A

A

A AA

A

•t

��

µ =

A A

A

A

A AA

A

•t

��

µ

A A

A

A

•t

��

A AA

A

•t

��
=

A

A

•t

��
A

A

•t

��
A A .

A

A

A AA

A .

•t

��

µ

A (horizontal) morphism of monads (f, ψ): (A, t, η, µ) // (B, s, κ, ν) consists of a hor-
izontal arrow f and a cell ψ as below, such that

A A

A

A

A AA

A

•t

��
η

A B
f
//

A

A

A B
f // B

B

•s

��
ψ =

A B
f
//

A

A

A B
f // B

B

idf

B B

B

B

B BB

B

•s

��
κ

and

A A

A

A

A AA

A

•t

��

µ

A

A

•t

��
A

A

•t

��
A B

f
//

A

A

A B
f // B

B

•s

��

ψ =

A B
f
//

A

A

•t

��

A B
f // B

B

•s

��
ψ

A B

A

A

•t

��

A B
f // B

B

•s

��
ψ

B B .

B

B

B BB

B .

•s

��

ν

These are the oplax morphisms referred to above.
There are also vertical morphisms of monads, “bimodules”, whose composition requires

certain well-behaved coequalizers. They are interesting (see e.g. [18]), of course, but will
not concern us here.

If A has companions we can also define retromorphisms of monads. (See [3, 16].)

6.1. Definition. A retromorphism of monads (f, ϕ): (A, t, η, µ) // (B, s, κ, ν) consists
of a horizontal arrow f and a retrocell ϕ

A B
f
//

A

A

•t

��

A B
f // B

B

•s

��

ϕks
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satisfying

B B

B

B

B BB

B

s

��
κ

B B

A

B

•f∗

��

A AA

B

•f∗
��

=

B B

B

B

B AA

B

f∗

��

B A

A

B

A AA

A

•t

��
ϕ =

B B

A

B

•f∗

��

A AA

B

•f∗
��

=

A A

A

A

A AA

A

•t

��
η

B B

B

B

B BB

B

•s

��

ν

B

B

•s

��
B

B

•s

��

B B

A

B

•f∗

��

A AA

B

•f∗
��

=

A AA

A

•t

��
A

B

•f∗
��

B B

ϕ =

B B

B

B

•s

��

B BB

B

•s

��
=

B B

B

B

•s

��

B AA

B

•f∗
��

B A

A

B

•f∗

��

A AA

A

•t

��
ϕ

B B

B

B

B AA

B

•f∗
��

B A

A

B

A AA

A

•t

��
ϕ

A A

A

A

A AA

A

•t

��
=

B B

A

B

A AA

B

•f∗
��

A A

A

A

A AA

A

•t

��

µ

6.2. Proposition. The identity retrocell is a retromorphism (A, t, η, µ) // (A, t, η, µ).
The composite of two retromorphisms of monads is again one.

Proof. Easy calculation.

For a monad t = (A, t, η, µ), Kleisli is a colimit construction, a universal morphism of
the form

(A, t, η, µ) // (X, idX , 1, 1).

6.3. Definition. The Kleisli object of a vertical monad in a double category, if it exists,
is an object Kl(t), a horizontal arrow f and a cell

A Kl(t)
f
//

A

A

•t

��

A Kl(t)
f // Kl(t)

Kl(t)

π

such that
(1)

A A

A

A

A AA

A

•t

��
η

A Kl(t)
f
//

A

A

A Kl(t)
f // Kl(t)

Kl(t)

π =

A Kl(t)
f
//

A

A

A Kl(t)
f // Kl(t)

Kl(t)

idf
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(2)

A A

A

A

A AA

A

•t

��

µ

A

A

•t

��
A

A

•t

��
A Kl(t)

f
//

A

A

A Kl(t)
f // Kl(t)

Kl(t)

π =

A Kl(t)
f
//

A

A

•t

��

A Kl(t)
f // Kl(t)

Kl(t)

π

A Kl(t)

A

A

•t

��

A Kl(t)
f // Kl(t)

Kl(t)

π

Kl(t) Kl(t)

Kl(t)

Kl(t)

Kl(t) Kl(t)Kl(t)

Kl(t)

∼=

and universal with those properties. That is, for any

A B
X
//

A

A

•t

��

A BX // B

B

ξ

such that (1) ξη = id and (2) ξµ = ξ · ξ, there exists a unique h:Kl(t) // B such that
(1) hf = x and (2) hπ = ξ.

Just by universality, if we have a morphism of monads (h, ψ): (A, t, η, µ) // (B, s, κ, ν)
and the Kleisli objects Kl(t) and Kl(s) exist, we get a horizontal arrow Kl(h, ψ) such
that

B Kl(s) .g
//

A

B

h

��

A Kl(t)
f // Kl(t)

Kl(s) .

Kl(h,ψ)

��

This does not work for Eilenberg-Moore objects. Asking for a universal morphism of
the form

(X, idX , 1, 1) // (A, t, η, µ)

is not the right thing as can be seen from the usual Cat example, but also in general. For
such a morphism (u, θ), the unit law says

X X

X

X

X XX

X

1idX

X Au
//

X

X

X A
u // A

A

•t

��
θ =

X Au
//

X

X

X A
u // A

A

idu

A A

A

A

A AA

A

•t

��
η

i.e. θ must be ηu and this is a morphism. Thus monad morphisms (u, θ) are in bijection
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with horizontal arrows X // A. The universal such is 1A, i.e. we get

A A
1A

//

A

A

A A
1A // A

A

•t

��
η

not the Eilenberg-Moore object.

6.4. Definition. The Eilenberg-Moore object of a vertical monad (A, t, η, µ) is the uni-
versal retromorphism of monads

(X, idX , 1, 1)
(u,θ) // (A, t, η, µ)

X A .u
//

X

X

X A
u // A

A .

•t

��

θks

6.5. Proposition. Let A be a 2-category and (A, t, η, µ) a monad in A. Then (A, t, η, µ)
is also a monad in the double category of coquintets coQA, and a retromorphism

(u, θ): (X, idX , 1, 1) // (A, t, η, µ)

is a 1-cell u:X //A and a 2-cell θ: tu //u in A satisfying the unit and associativity laws
for a t-algebra. The universal such is the Eilenberg-Moore object for t.

Proof. This is merely a question of interpreting the definition of retromorphism in coQA.

We now see immediately how a retrocell (f, ϕ): (A, t, η, µ) // (B, s, κ, ν) produces, by
universality, a horizontal arrow

A B .
f

//

EM(t)

A

u

��

EM(t) EM(s)
EM(f,ϕ) // EM(s)

B .

u′

��

6.6. Example. Let A be a 2-category and QA the double category of quintets in A.
Recall that a cell in QA is a quintet in A

C D .g
//

A

C

h

��

A B
f // B

D .

k

��

α
{�
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Every horizontal arrow f has a companion, namely f itself but viewed as a vertical arrow.
A (vertical) monad in QA is a comonad in A. A morphism of monads in QA is then a
lax morphism of comonads, and a retromorphism of monads in QA is an oplax morphism
of comonads in A.

To make the connection with Street’s monad functors and opfunctors, we must take
coquintets (the α in the opposite direction) coQA. Now a monad in coQA is a monad in
A, a monad morphism in coQA is an oplax morphism of monads, i.e. a monad opfunctor
in A, whereas a retromorphism of monads is now a lax morphism of monads, i.e. a monad
functor.

It is unfortunate that the most natural morphisms from a double category point of
view are not the established ones in the literature. At the time of [19], people were more
interested in the Eilenberg-Moore algebras for a monad as a generalization of Lawvere
theories and their algebras, so it was natural to choose the monad morphisms that worked
well with those, namely lax morphisms, as monad functors. Now, with the advent of
categorical computer science, Kleisli categories have come into their own, and it is not so
clear what the leading concept is, and double category theory suggests that it may well
be the oplax morphisms.

6.7. Example. Let C be a category with (a choice of) pullbacks. As is well-known a
monad in SpanC is a category object in C. A morphism of monads in SpanC is an
internal functor.

A retromorphism of monads

A0 B0F
//

A0

A0

•A1

��

A0 B0
F // B0

B0

•B1

��

ϕks

is first of all a morphism F :A0
//B0 and then a cell

B0 B0

B1 ×B0 A0

B0

d1p1

��

B1 ×B0 A0 A0
ϕ // A0

B0

Fd1

��

B1 ×B0 A0 A0

A0

B1 ×B0 A0

OO

p2

A0 A0A0

A0

OO

d0

which must satisfy the unit law

A0 B1 ×B0 A0

⟨idF,1A0
⟩
//A0

A1

id

%%

B1 ×B0 A0

A1

ϕ

��
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and the composition law

B1 ×B0 A0 A1 .
ϕ

//

B1 ×B0 B1 ×B0 A0

B1 ×B0 A0

ν×B0
A0

��

B1 ×B0 B1 ×B0 A0 B1 ×B0 A0 ×A0 A1B1 ×B0 A0 ×A0 A1

A1 .

B1 ×B0 B1 ×B0 A0 B1 ×B0 A1

B1×B0
ϕ
// B1 ×B0 A1 B1 ×B0 A0 ×A0 A1

∼= // B1 ×B0 A0 ×A0 A1

A1 ×A0 A1

ϕ×A0
A1

��
A1 ×A0 A1

A1

µ

��

This is precisely an internal cofunctor [1, 2].
WhenC = Set, a cofunctor F :A + // B consists of an object function F : ObA //ObB

and a lifting function ϕ: (b:FA //B) 7−→ (a:A // A′) with FA′ = B

FA B
b
//

A

FA

A A′a // A′

B

_
OO

satisfying
(1) (unit law) ϕ(A, 1FA) = 1A
(2) (composition law)

ϕ(b′b, A) = ϕ(b′, A′)ϕ(b, A).

So F is like a split opfibration given algebraically but without the functor part.

If A has conjoints, we can define coretromorphisms of monads as retromorphisms in Aop

which now has companions, and monads in Aop are the same as monads in A. Explicitly,
an opretromorphism

(f, θ): (A, t, η, µ) // (B, s, κ, ν)

consists of a horizontal morphism f :A //B in A and an opretromorphism θ

A B
f
//

A

A

•t

��

A B
f // B

B

•s

��

θ
KS

=

A A

B

A

•f∗

��

B AA

A

•t

��

θB A

B

B

•g

��

B BB

A

•f∗

��
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such that

A A

B

A

•f∗

��

B BB

A

•f∗

��
=

B B

B

B

B BB

B

•s

��
κ

A A

B

A

B AA

A

•t

��

θB A

B

B

B BB

A

•f∗

��
=

A A

A

A

A AA

A

•t

��
η

A A

B

A

•f∗

��

B BB

A

•f∗

��
=

and

A A

B

A

•f∗

��

B BB

A

•f∗

��

B B

B

B

B BB

B

•s

��

=

ν

B

B

•s

��
B

B

•s

��

B BB

A

•f∗

��
A

A

•t

��
A A

θ =

A A

B

A

•f∗

��

B AA

A

•t

��

B A

B

B

•s

��

B BB

A

•f∗

��

B B

B

B

•s

��

B BB

B

•s

��

θ

=

A A

A

A

A AA

A

•t

��
=

A A

B

A

B AA

A

•t

��

B A

B

B

B BB

A

•f∗

��
θ

A A .

A

A

A AA

A .

•t

��

µ

A A

B

A

B BB

A

•f∗

��
=

Coretromorphisms do not come up in the formal theory of monads because the double
category of coquintets of a 2-category seldom has conjoints, but SpanC does, and we
get opcofunctors, i.e. cofunctors Aop // Bop. These consist of an object function
F : ObA //ObB and a lifting function

θ: (b:B // FA) 7−→ (a:A′ // A)

with FA′ = A

B FA
b
//

A′

B

A′ A
a // A

FA

_
OO

satisfying
(1) θ(A, 1FA) = 1A
(2) θ(A, bb′) = θ(A, b)θ(A′, b′).

This again illustrates well the difference between retromorphisms and coretromor-
phisms and, at the same time, the symmetry of the concepts. They all move objects
forward. Functors move arrows forward

(a:A // A′) 7−→ (Fa:FA // FA′),

cofunctors move arrows of the form FA //B backward

(b:FA //B) 7−→ (ϕb:A // A′)
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and opcofunctors move arrows of the form B // FA backward

(b:B // FA) 7−→ (θb:A′ // A).

All of this can be extended to the enriched setting for a monoidal category V which
has coproducts preserved by the tensor in each variable. Then a monad inV-Set is exactly
a small V-category and the retromorphisms are exactly the enriched cofunctors of Clarke
and Di Meglio [4], to which we refer the reader for further details.

7. Closed double categories

Many bicategories that come up in practice are closed, i.e. composition ⊗ has right
adjoints in each variable,

Q⊗ (−) ⊣ Q; ( )

( )⊗ P ⊣ ( )⊘ P .

Thus we have bijections

P //Q;R

Q⊗ P //R

Q //R⊘ P

We adapt (and adopt) Lambek’s notation for the internal homs. ⊗ is a kind of
multiplication and ; and ⊘ divisions.

7.1. Example. The original example in [14], though not expressed in bicategorical terms,
was Bim the bicategory whose objects are rings, 1-cells bimodules and 2-cells linear maps.
Composition is ⊗

R T .•
N⊗SM

//

S

R

;;
•M

S

T .

•N
##

(M is an S-R-bimodule, i.e. left S - right R bimodule, etc.) Given P :R • // T , we have
the usual bijections

N // P ⊘RM T -S linear

N ⊗S M // P T -R linear

M //N ;T P S-R linear

where
P ⊘RM = HomR(M,P )

N ;T P = HomT (N,P )

are the hom bimodules of R-linear (resp. T -linear) maps.
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7.2. Example. The bicategory of small categories and profunctors is closed. For pro-
functors

A C•
R

//

B

A

;;
•P

B

C

•
Q

##

we have
(Q;C R)(A,B) = {n.t. Q(B,−) //R(A,−)}

and
(R⊘A P )(B,C) = {n.t. P (−, B) //R(−, C)} .

7.3. Example. If A has finite limits, then it is locally cartesian closed if and only if the
bicategory of spans in A, SpanA, is closed (Day [6]).

For spans A oo
p0

R
p1 // B and B oo

τ0
T

τ1 // C, the composite is given by the
pullback T ×B R, which we could compute as the pullback P below and then composing
with τ1

A×B A× Too
A×τ0

R

A×B
��

R Poo P

A× T
��

A× T A× C
A×τ1
//

PB

i.e. T ⊗B ( ) is the composite

A/(A×B)
(A×τ0)∗ //A/(A× T )

∑
A×τ1 //A/(A× C) .∑

A×τ1 always has a right adjoint (A × τ1)
∗ and if A is locally cartesian closed so will

(A× τ0)∗, namely
∏

A×τ0 . So, for A
oo σ0 S

σ1 // C,

T ;C S =
∏
A×τ0

(A× τ1)∗S .

If we interpret this for A = Set, in terms of fibers

(T ;C S)ab =
∏
c

STbcac .

The situation for ⊘A is similar

(S ⊘A R)bc =
∏
a

SRab
ac .

These bicategories, and in fact most bicategories that occur in practice, are the vertical
bicategories of naturally occurring double categories. So a definition of a (vertically) closed
double category would seem in order. And indeed Shulman in [18] did give one. A double
category is closed if its vertical bicategory is. This definition was taken up by Koudenburg
[13] in his work on pointwise Kan extensions. But both were working with “equipments”,
double categories with companions and conjoints. Something more is needed for general
double categories.
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7.4. Definition. (Shulman) A has globular left homs if for every y, y •( ) has a right
adjoint y \•( ) in VertA.

Thus for every z we have a bijection

y •x // z

x // y \• z
in VertA

C C

A

C

A AA

C

•z

��

α

A

B

•x

��
B

C

•y

��
B B

A

B

•x

��

A AA

B

•y \• z

��
β

.

Of course there is the usual naturality condition on x, which is guaranteed by expressing
the above bijection as composition with an evaluation cell ϵ: y •(y \• z) // z

C C .

A

C

A AA

C .

•z

��

ϵ

A

B

•y \• z

��
B

C

•y

��

The universal property is then: for every α there is a unique β, as below, such that

C C

B

C

•y

��

B BB

C

•y

��
=

B B

A

B

•x

��

A AA

B

•y \• z

��
β

C C

A

C

A AA

C

•z

��

ϵ =

C C .

A

C

A AA

C .

•z

��

α

A

B

•x

��
B

C

•y

��

This shows clearly that \• has nothing to do with horizontal arrows, and the interplay
between the horizontal and vertical is at the very heart of double categories.

7.5. Definition. A has strong left homs (is left closed) if for every y and z as below
there is a vertical arrow y \• z and an evaluation cell ϵ such that for every α there is a
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unique β such that

C C

B

C

•y

��

B BB

C

•y

��
=

B B

A

B

•x

��

A A
f // A

B

•y \• z

��
β

C C

A

C

A AA

C

•z

��

ϵ =

C C .

A′

C

A′ A
f // A

C .

•z

��

α

A′

B

•x

��
B

C

•y

��

7.6. Proposition. If A has companions and has globular left homs, then the strong
universal property is equivalent to stability under companions: for every f , the canonical
morphism

(y \• z) • f∗ // y \•(z • f∗)

is an isomorphism.

Proof. (Sketch) For every f and x as below we have the following natural bijections of
cells

C C

A′

C

A′ A
f // A

C

•z

��

α

A′

B

•x

��
B

C

•y

��
C C

B

C

•y

��

B AA

C

•z

��

αB A

A′

B

•x

��

A′ A′A′

A

•f∗
��

B B

A′

B

•x

��

A′ A′A′

B

•y \•(z • f∗)

��
β

.

y \• z is strong iff we have the following bijections

C C

A′

C

A′ A
f // A

C

•z

��

α

A′

B

•x

��
B

C

•y

��
B B

A′

B

•x

��

A′ A
f // A

B

•y \• z

��
γ

B B

A′

B

•x

��

A′ A′A′

B

γ

A′

A

•f∗
��
A

B .

•y \• z

��

7.7. Proposition. If A has conjoints, then the strong universal property is equivalent
to the globular one.
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Proof. (Sketch) For every f and x as below we have the following natural bijections

C C

A′

C

A′ A
f // A

C

•z

��

α

A′

B

•x

��
B

C

•y

��

C C

A

C

A AA

C

•z

��

α̃

A

A′

•f∗

��
A′

B

•x

��
B

C

•y

��
B B

A

B

A AA

B

•y \• z

��

A

A′

•f∗

��
A′

B

•x

��

β̃

B B

A′

B

•x

��

A′ A
f // A

B

y \• z

��
β

All of the examples above have conjoints so the left homs are automatically strong.

Of course, y \• z is functorial in y and z, contravariant in y and covariant in z, but only
for globular cells β, γ

y′
β // y & z

γ // z′ ⇝ y \• z β \• γ // y′ \• z′ .

For general double category cells β, γ

C ′ Cc
//

B′

C ′

•y′

��

B′ B
b // B

C

•y

��
β and

C C ′
c′
//

A

C

•z

��

A A′a // A′

C ′

•z′

��
γ

we would hope to get a cell

B B′//

A

B

•y \• z

��

A A′a // A′

B′

•y′ \• z′

��
β \• γ

but b is in the wrong direction, and there are c and c′ in opposite directions. If we reverse
b and c then β is in the wrong direction. That was the motivation for retrocells.

7.8. Proposition. Suppose A has companions and is (strongly) left closed. Then a
retrocell β and a standard cell γ

C C ′
c
//

B

C

•y

��

B B′b // B′

C ′

•y′

��

βks

C C ′
c
//

A

C

•z

��

A A′a // A′

C ′

•z′

��
γ
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induce a canonical cell

B B′ .
b
//

A

B

•y \• z

��

A A′a // A′

B′ .

•y′ \• z′

��
β \• γ

Proof. (Sketch) A candidate ξ for β \• γ would satisfy the following bijections

B B′
b
//

A

B

•y \• z

��

A A′a // A′

B′

•y′ \• z′

��
ξ

B′ B′

A

B′

A A′a // A′

B′

•y′ \• z′

��

ξ

A

B

•y \• z

��
B

B′

•b∗

��

C ′ C ′

A

C ′

A A′a // A′

C ′

•z′

��

ξ

A

B

•y \• z

��
B

B′

•b∗

��
B′

C ′

•y′

��

and there is indeed a canonical ξ, namely

C ′ C ′

B′

C ′

•y′

��

B′ CC

C ′

•c∗

��

B′ C

B

B′

•b∗

��

B BB

C

•y

��

B B

A

B

•y \• z

��

A AA

B

•y \• z

��

C ′ C ′

C

C ′

C CC

C ′

•c∗

��

C C

A

C

A AA

C

•z

��

C ′ C ′ .

C

C ′

C C ′c // C ′

C ′ .

C C ′

A

C

A A′a // A′

C ′

•z′

��
β

=

=

ϵ

⌟

γ

In fact the cell β \• γ is not only canonical but also functorial, i.e. (β′β) \•(γ′γ) = (β′ \• γ′)(β \• γ).
To express this properly we must define the categories involved. The codomain of \• is
simply A1, the category whose objects are vertical arrows of A and whose morphisms are
(standard) cells. The domain of \• is the category which, for lack of a better name, we
call TC(A) (twisted cospans). Its objects are cospans of vertical arrows and its cells are
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pairs (β, γ)

B B′
b
//

C

B

OO

•y

C C ′c // C ′

B′

OO

•y′
βks

C C ′

A

C

•z

��

A A′a // A′

C ′

•z′

��
γ

where β is a retrocell and γ a standard cell. Also we must flesh out our sketchy con-
struction of y \• z. We can express the universal property of y \• z as representability of a
functor

Ly,z:A
op
1

// Set .

For v:A • // B, Ly,z(v) = {(f, g, α)|f, g, α as in (∗)}

f :A // A, g:B //B

C C .

A

C

A A
f // A

C .

•z

��

α

A

B

•v
��

B

B

•g∗

��
B

C

•y

��

(∗)

Some straightforward calculation will show that Ly,z is indeed a functor. The following
bijections show that y \• z is a representing object for Ly,z

C C

A

C

A A
f // A

C

•z

��

α

A

B

•v
��

B

B

•g∗

��
B

C

•y

��
B B

A

B

A A
f // A

B

•y \• z

��

A

B

•v
��

B

B

•g∗

��

α

B Bg
//

A

B

•v
��

A A
f // A

B

•y \• z

��
α̃

.
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This gives the full double category universal property of \• : For every boundary

B Bg
//

A

B

•v
��

A A
f // A

B

•y \• z

��

and α as below, there exists a unique fill-in β such that

C C

A

C

A A
f // A

C

•z

��

α

A

B

•v
��

B

B

•g∗

��
B

C

•y

��

=

C C

B

C

•y

��

B BB

C

•y

��

B B

B

B

•g∗

��

B BB

B

B Bg
//

A

B

•v
��

A A
f // A

B

•y \• z

��

=

⌟

β

C C .

A

C

A AA

C .

•z

��

ϵ

For (β, γ) in TC(A) we get a natural transformation

ϕβγ:Ly,z // Ly′,z′

C C

A

C

A A
f // A

C

•z

��

α

A

B

•v
��

B

B

•g∗

��
B

C

•y

��

7−→

C ′ C ′

B′

C ′

•y′

��

B′ B′B′

C ′

B′ B′

B

B′

•(bg)∗

��

B BB

B′

B B

A

B

•v
��

A AA

B

=

∼=

=

C ′ C ′

B′

C ′

•y′

��

B′ CC

C ′

B′ C

B

B′

•b∗

��

B BB

C

B B

B

B

•g∗

��

B BB

B

B B

A

B

•v
��

A AA

B

β

=

=

C ′ C ′

C

C ′

•c∗

��

C CC

C ′

C C

A

C

A A
f // A

C

•z

��

A

B

•v
��

B

B

•g∗

��
B

C

•y

��

=

α

C ′ C ′ .

C

C ′

•c∗

��

C C ′C ′

C ′ .

C C ′
c
//

A

C

A A′a // A′

C ′

•z′

��

⌟

γ

Some calculation is needed to show naturality, which we leave to the reader. This
natural transformation is what gives β \• γ.

We are now ready for the main theorem of the section.
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7.9. Theorem. For A a left closed double category with companions, the internal hom
is a functor

\• :TC(A) //A1 .

Proof. Let (β, γ) and (β′, γ′) be composable morphisms in TC(A)

B B′
b
//

C

B

OO

•y

C C ′c // C ′

B′

OO

•y′

C C ′

A

C

•z

��

A A′a // A′

C ′

•z′

��

B′ B′′ .
b′
//

C ′

B′

C ′ C ′′c′ // C ′′

B′′ .

OO

•y′′

C ′ C ′′

A′

C ′

A′ A′′a′ // A′′

C ′′

•z′′

��

βks

γ

β′
ks

γ′

Then

Ly,z
ϕβ,γ // Ly′,z′

ϕβ′,γ′ // Ly′′,z′′

takes v to the composite of 23 cells (most of which are bookkeeping – identities, canonical
isos, ...) arranged in a 5× 7 array, with 38 objects, and best represented schematically as

∼=

β′

∼=

β

α γ

⌟

γ′

⌟

(*)

whereas

Lyz
ϕβ′β,γ′γ // Ly′′z′′

takes v to

∼=

β′

β

∼=

α γ γ′

⌟

(**)
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The three bottom right cells of (**) compose to the 2 × 2 block on the bottom right of
(*), so the 5 × 3 part on the right of (*) is equal to the 5 × 4 part on the right of (**).
And the rest are equal too by coherence. It follows that

(β′ \• γ′)(β \• γ) = (β′β) \•(γ′γ).

For identities 1y \• z = 1y \• 1z.

Right closure is dual but the duality is op, switching the direction of vertical arrows
which switches companions with conjoints and retrocells with coretrocells. We outline the
changes.

7.10. Definition. (Shulman) A has globular right homs if for every x, ( ) •x has a right
adjoint ( ) /• x in VertA,

y •x // z

y // z /• x
in VertA.

This bijection is mediated by an evaluation cell

C C .

A

C

A AA

C .

•

��

A

B

•x

��
B

C

•z /• x

��

ϵ′

The right homs are strong if z /• x has the universal property for cells of the form

C ′ C .g
//

A

C ′

A AA

C .

•z

��

A

B

•x

��
B

C ′

•y

��

α

7.11. Proposition. If A has conjoints and globular right homs, then the strong universal
property is equivalent to the canonical morphism

g∗ •(z /• x) // (g∗ • z) /• x

being an isomorphism. If instead A has companions, then strong is equivalent to globular.
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Finally, if A has conjoints, z /• x is functorial in z and x, for standard cells in z and for
coretrocells in x. More precisely, /• is defined on the category TS(A) whose objects are
spans of vertical arrows, (x, z), as below, and whose morphisms are pairs of cells

C C ′
c
//

A

C

•z

��

A A′a // A′

C ′

•z′

��
γ

A A′

B

A

OO

•x

B B′b // B′

A′

OO

•x′α ��

where α is a coretrocell and γ a standard one.

7.12. Theorem. If A has conjoints and is right closed, then /• is a functor

/• :TS(A) //A1.

For completeness sake, we end this section with a definition.

7.13. Definition. A double category A is closed if it is right closed and left closed.

8. A triple category

As mentioned in the introduction, one of the inspirations for retrocells was the commuter
cells of [11].

8.1. Definition. Let A be a double category with companions. A cell

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α

is a commuter cell if the associated globular cell α̂

D D

C

D

g∗

��

C DD

D

C Dg
//

B

C

•v

��

B B
f // B

D

•w

��

B B

A

B

A AA

B

f∗

��

⌟

α

⌜
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is a horizontal isomorphism.

The intent is that the cell α itself is an isomorphism making the square commute (up
to isomorphism).

The inverse of α̂ is a retrocell, so the question is, how do we express that a cell and a
retrocell are inverse to each other?

Cells and retrocells form a double category (and ultimately a triple category). For
a double category with companions A, we define a new (vertical arrow) double category
Var(A) as follows. Its objects are the vertical arrows of A, its horizontal arrows are
standard cells of A, and its vertical arrows are retrocells. It is a thin double category with
a unique cell

v′ w′
α′
//

v

v′

•β

��

v w
α // w

w′

•γ

��
!

C ′ D′

A′

C D

A B

g′
//

•
v′ ""

c

��

d

��

g
//a

��

•v ��
•
w

��

f //

α

β
KS

A B

A′ B′

C ′ D′

D

f //

a

��

b

��

•w

��

f ′ //

•
v′ ��

g′
//

•
w′

��
d

��α′

γ
KS

if we have
f ′a = bf

g′c = dg ,

and

C ′ C ′

A′

C ′

•v′

��

A′ CC

C ′

•c∗

��

A′ C

A

A′

•a∗

��

A AA

C

•v

��
β

C ′ D′
g′
//

C

C ′

C D// D

D′

•d∗
��

C Dg
//

A

C

A B
f // B

D

•w

��

∗

α

=

C ′ D′
g′
//

A′

C ′

•v′

��

A′ B′f ′ // B′

D′

•w′

��

A′ B′

A

A′

•a∗

��

A B
f // B

B′

•b∗
��

α′

∗

D′ D′

B′

D′

B′ DD

D′

•d∗
��

B′ D

B

B′

B BB

D

•w

��
γ

where the starred cells are the canonical ones gotten from the equations g′c = dg and
f ′a = bf by “sliding”.

8.2. Proposition. Var(A) is a strict double category.
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Proof. We just have to check that cells compose horizontally and vertically. We simply
give a sketch of the proof.

Suppose we have two cells,

v′ w′
α′
//

v

v′

•β

��

v wα // w

w′

•γ

��
!

w′ x′
δ′
//

w

w′

w xδ // x

x′

•ξ

��
!

i.e. we have

= and =β

∗

αα

α′

∗
γ γ

∗

δ

δ′

∗
ξ

.

Thus

= = = =β

∗

δα

β

∗

α

∗

δ

α′

∗
γ

∗

δ

α′

∗

δ′

∗
ξ

α′δ′

∗
ξ

.

Consider cells

v′′ w′′ .
α′′
//

v′

v′′

•β′

��

v′ w′α′
// w′

w′′ .

•γ′

��
!

v′ w′

v

v′

•β

��

v wα // w

w′

•γ

��
!

We did not say, but vertical composition of arrows in Var(A) is given by horizontal
composition of retrocells. It could not be otherwise given their boundaries. Then we have
the following

= = = =β′ •β

∗

α

β′

=

=

β

∗

α

β′

=

∗

α′

∗

=

γ

α′′

∗

∗

γ′

=

=

γ

α′′

∗
γ′ • γ

.

So horizontal and vertical composition of cells are again cells.
Identities pose no problem.
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8.3. Proposition. A cell

C Dg
//

A

C

•v

��

A B
f // B

D

•w

��
α

in A is a commuter cell iff α: v // w has a companion in VarA.

Proof. A companion β: v • // w for α will have cells

w w

v

w

•β

��

v w
α // w

w

• idw

��

! and

v wα
//

v

v

•idv

��

v vv

w

•β

��

!

i.e. it is a retrocell

C D
g′
//

A

C

•v

��

A B
f ′ // B

D

•w

��

βks

making the following cubes “commute”

D D

B

C D

A B

•
w ""

g′

��

g
//f ′

��

•v ��
•
w

��

f //

α

β
KS

A B

B B

D D

D

f //

f ′

��

•w

��

•w ��
•
w

��1w

KS

1w

“=”

and

C D

A

C C

A A

g
//

•
v ""

g′

��

•v ��
•
v

��1v

1v

KS

A A

A B

C D

C

f ′

��

•v

��

f //

•v ��

g
//

•
w

��
g′

��α

β
KS“=”
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So, first of all f = f ′ and g = g′. The first “equation” says

D D

B

D

•w

��

B CC

D

•g∗

��

B C

A

B

•f∗

��

A AA

C

•v

��
β

D D

C

D

C D
g // D

D

⌟

C D

A

C

A B
f // B

D

•w

��
α

=

D D

B

D

•w

��

B BB

D

•w

��
1w

B B

A

B

•f∗

��

A B
f // B

B

⌟

D D

B

D

B BB

D

B

D

•w

��
D

D

∼=

which by sliding is equivalent to α̂β = 1w • f∗ . Similarly the second equation says βα̂ =
1g∗ • v.

We end by acknowledging the “triple category in the room”. The cubes we have been
discussing are clearly the triple cells of a triple category RetA. We orient the cubes to
be in line with our intercategories conventions of [12] where the faces of the cubes are
horizontal, vertical (left and right), and basic (front and back) in decreasing order of
strictness (or fancyness). The order here will be commutative, cell, and retrocell.

1. Objects are the objects of A, (A,A′, B, ..)

2. Transversal arrows are the horizontal arrows of A, (f, f ′, g, g′)

3. Horizontal arrows are the horizontal arrows of A, (a, b, c, d)

4. Vertical arrows are the vertical arrows of A, (v, v′, w, w′)

5. Horizontal cells are commutative squares of horizontal arrows

6. Vertical cells are double cells in A, (α, α′)

7. Basic cells are retrocells in A, (β, γ)

8. Triple cells are “commutative” cubes as discussed above

D D′

C

B B′

A A′

d
//

g ""

•w

��

•w′

��

b
//•v

��

f ��

f ′

��

a //

α
γks

A A′

C C ′

D D′ .

B′

a //

•v

��

•v′

��

f ′

��

c //

g ��

d
//

g′

��
•w′

��

βks

α′

We leave the details to the interested reader.
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