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Abstract. Extending double and triple categories, we introduce here infinite dimen-
sional weak multiple categories. We also consider a partially lax, ‘chiral’ form with
directed interchanges and a laxer form already studied in two previous papers for the
3-dimensional case, under the name of intercategory. In these settings we also begin a
study of tabulators, the basic higher limits, that will be concluded in a sequel.

Introduction

Higher category theory takes various forms, based on different ‘geometries’.
The best known is the globular form of 2-categories, n-categories and ω-categories

(with their weak variations), based on a (possibly truncated) globular set; this is a system
X of sets and mappings (faces and degeneracies)

X0
e
// X1

e
//oo

∂αoo
X2 ... Xn−1

e
//oo

∂αoo
Xn ...oo

∂αoo
(n > 0; α = ±), (1)

that satisfies the globular relations. Without entering in problems of size, a 2-category
can be formally defined as a category enriched over the cartesian closed category Cat of
categories and functors; and so on for higher n-categories.

Here we are interested in a different, more general setting, that was introduced by
C. Ehresmann prior to the previous one: the multiple form of double categories, n-tuple
categories and multiple categories, based on a (possibly truncated) multiple set; this is a
system X of sets Xi1i2...in and mappings

∂αij : Xi1i2...in → Xi1...̂ij ...in
,

eij : Xi1...̂ij ...in
→ Xi1i2...in (n > 0; 0 6 i1 < ... < ij < ... < in, α = ±),

(2)

that satisfies the multiple relations (see Subsection 2.2). Formally, a double category is a
category object in Cat, and a weak double category is a pseudo category object in Cat,
as a 2-category; this structure, with its limits, adjoints and Kan extensions, has been
introduced and studied in our series [GP1] - [GP4]. Weak and lax triple categories have
been introduced in [GP6, GP7].
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c© Marco Grandis and Robert Paré, . Permission to copy for private use granted.

1



2

(Cubical categories can be viewed as a particular case of multiple categories, based
on the geometry of cubical sets well known from Algebraic Topology; see 2.3 and 2.8.
References are cited below.)

This series is devoted to the study of multiple categories. In the present introductory
paper we give an explicit definition of the strict and weak cases (Sections 2 and 3),
including the partially lax case of a chiral, or χ-lax, multiple category (see 3.7), where
the weak composition laws in directions i < j have a lax interchange χij; an interesting
3- (or infinite-) dimensional example based on spans and cospans is presented in Section
4. Marginally, in Sections 5 and 6, we also consider the laxer notion of intercategory
already studied in dimension three in [GP6, GP7], where we showed that it includes,
besides weak and chiral triple categories, various 3-dimensional structures that have been
previously established, like duoidal categories, Gray categories, Verity double bicategories
and monoidal double categories.

Let us note that all these lax notions come in two forms, transversally dual to each
other, according to the direction of interchangers; these forms are named ‘left’ and ‘right’,
respectively, as explained in 3.7. We mainly work in the right-hand case, as in [GP6, GP7].

We also introduce here in an informal way the tabulators - the basic form of higher
multiple limits, already studied in the 2-dimensional case of weak double categories [GP1]
(where they extend the cotensors by 2 of 2-categories).

Part II, the next paper in this series, will study multiple limits for chiral multiple
categories, proving that all of them can be constructed from (multiple) products, equalisers
and tabulators. It should be noted that multiple limits are - by definition - preserved by
faces and degeneracies, in a suitable form. While some particular limits can be extended
to intercategories, an extension of the general theory seems to be problematic, as we shall
discuss there.

We end by remarking that the weak and lax forms of multiple categories are much
simpler than the globular ones, because here all the weak composition laws are associative,
unitary and interchangeable up to cells in the strict 0-indexed direction; the latter are
strictly coherent. This aspect has already been discussed in dimension three in [GP6],
and for the cubical case in [GP5], where we showed how the ‘simple’ comparisons of a
weak 3-cubical category produce - via some associated cells - the ‘complicated’ ones of a
tricategory.

Literature. Higher category theory in the globular form has been studied in many papers
and books; we only cite: Bénabou [Be] for bicategories; Gordon, Power and Street [GPS]
for tricategories; Leinster [Le] for weak ω-categories.

Infinite dimensional weak and lax multiple categories are introduced here; but strict
multiple categories and some of their weak or lax variations (possibly of a cubical type)
have already been treated in the following papers (among others):

- strict double and multiple categories: [Eh, BE, EE],
- Gray categories: [Gr],
- weak double categories: [GP1] - [GP4],
- Verity double bicategories: [Ve],
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- monoidal double categories: [Sh],
- strict cubical categories: [ABS],
- weak and lax cubical categories: [G1] - [G5],
- duoidal (or 2-monoidal) categories: [AM, BS, St],
- weak triple categories and 3-dimensional intercategories: [GP6, GP7],
- links between the cubical and the globular setting, in the strict case [ABS] or the weak
one [GP5].

Conventions. The two-valued index α (or β) takes values in the cardinal 2 = {0, 1},
generally written as {−,+} in superscripts. We generally ignore set-theoretical problems,
that can be fixed with a suitable hierarchy of universes. The symbol ⊂ denotes weak
inclusion.

1. A triple category of weak double categories

Formally, a (strict) double category is a category object in Cat, and a triple category is a
category object in the category of double categories and double functors; an explicit defi-
nition of multiple categories of any dimension will be given in Section 2. This introductory
section gives a first motivation for studying them.

We start from the (strict) double category Dbl of weak double categories, lax and
colax double functors (with suitable double cells), introduced in [GP2]. This structure
plays a central role in the definition of adjunctions for weak double categories, where the
left adjoint is generally colax while the right adjoint is lax: because of this, a general
adjunction cannot live in a 2-category (or in a bicategory) but must be viewed in this
double category. Dbl is also crucial for the study of Kan extensions in the same context
[GP3, GP4]. It is also extensively used in [GP6, GP7].

We now embed Dbl in a triple category SDbl, adding new arrows - the strict double
functors - in an additional transversal direction i = 0. Then we briefly sketch some
advantages of this embedding with respect to limits, in preparation for Part II.

1.1. Notation. For weak double categories we follow the notation of our series [GP1] -
[GP4].

In particular, a vertical arrow u : A •−→ B is often marked with a dot and the vertical
composite of u and v : B •−→ C is written as v•u, or more often as u ⊗ v; the vertical
identity of an object A is written as 1•A. The boundary of a double cell is presented as
a : (u f

g v)

•
f //

•u

��

•

•v

��
a

• g
// •

(3)

or also as a : u → v (which is particularly convenient when we view a vertical arrow as
a higher, 1-dimensional object). The horizontal composition of double cells is written as
(a | b); the vertical composition (or pasting, concatenation) as (a

c
) = a ⊗ c. Horizontal
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composition of arrows and double cells is unitary and associative. The interchange law
holds strictly: (

a | b
c | d

)
=

(
a

c

∣∣∣ b
d

)
,

so that the pasting of a consistent matrix (ac
b
d) of double cells is well defined - ‘consistent’

meaning that faces agree, so that the previous compositions make sense (as in diagram
(6), below).

A cell a : (u f
g v) is said to be special if its horizontal arrows f, g are identities, and

a special isocell if - moreover - it is horizontally invertible. The composition of vertical
arrows is unitary and associative up to special isocells (for u : A •−→ B, v : B •−→ C,
w : C •−→ D)

(a) λ(u) : 1•A ⊗ u→ u (left unitor),
(b) ρ(u) : u⊗ 1•B → u (right unitor),
(c) κ(u, v, w) : u⊗ (v ⊗ w)→ (u⊗ v)⊗ w (associator).

In a (strict) double category these comparison cells are trivial, i.e. horizontal identities.
A (strict) double functor between weak double categories preserves the whole structure;

for the sake of brevity it will often be called a ‘functor’. Lax and colax (double) functors
are also used below; the definition can be found in [GP2], Section 2.1 (or deduced from
their infinite-dimensional extension here, in 3.9).

1.2. The double category Dbl. Let us recall the strict double category Dbl, from
[GP2], Section 2.2.

The objects of Dbl are the weak (or pseudo) double categories A,B, ...; its horizontal
arrows are the lax (double) functors F,G...; its vertical arrows are the colax functors U, V...
A cell π

A F //

•U

��

B
•V

��
π

C
G
// D

(4)

is - roughly speaking - a ‘horizontal transformation’ π : V F 99K GU . But this is an abuse
of notation, since the composites V F and GU are neither lax nor colax (just morphisms
of double graphs, respecting the horizontal structure): the coherence conditions of π are
based on the four ‘functors’ F,G, U, V and all their comparison cells.

Precisely, the cell π consists of the following data:
(a) a lax functor F with comparison special cells F (indexed by the objects A and pairs
(u, v) of consecutive vertical arrows of A) and a lax functor G with comparison special
cells G (similarly indexed by C)

F : A→ B, F (A) : 1•FA → F (1•A), F (u, v) : Fu⊗ Fv → F (u⊗ v),

G : C→ D, G(C) : 1•GC → G(1•C), G(u, v) : Gu⊗Gv → G(u⊗ v),
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(b) two colax functors U, V with comparison special cells U , V (indexed by A and B)

U : A→ C, U(A) : U(1•A)→ 1•UA, U(u, v) : U(u⊗ v)→ Uu⊗ Uv,

V : B→ D, V (B) : V (1•B)→ 1•V B, V (u, v) : V (u⊗ v)→ V u⊗ V v,

(c) horizontal maps πA : V F (A) → GU(A) and cells πu in D (for A and u : A •−→ A′ in
A)

V FA πA //

•V Fu
��

GUA
•GUu
��πu

V FA′
πA′

// GUA′
(5)

These data must satisfy the naturality conditions (c0), (c1) (the former is redundant,
being implied by the latter) and the coherence conditions (c2), (c3)

(c0) GUf.πA = πA′.V Ff (for f : A→ A′ in A),

(c1) (πu | GUa) = (V Fa | πv) (for a : (u f
g v) in A),

(c2) (V F (A) | π1•A | GU(A)) = (V (FA) | 1•πA | G(UA)) (for A in A),

(c3) (V F (u, v) | πw | GU(u, v))

= (V (Fu, Fv) | (πu⊗ πv) | G(Uu, Uv)) (for w = u⊗ v in A),

V FA
•V (Fu⊗Fv)

��

V FA //

•V Fw

��

GUA
•GUw

��

GUA
•G(Uu⊗Uv)

��
V F (u, v) πw GU(u, v)

V FA′′ V FA′′ // GUA′′ GUA′′

V FA

•V (Fu⊗Fv)

��

V FA //
•V Fu
��

GUA
•GUu
��

GUA

•G(Uu⊗Uv)

��

πu

V (Fu, Fv) V FA′ //
•V Fv
��

GUA′
•GUv
��

G(Uu, Uv)

πv
V FA′′ V FA′′ // GUA′′ GUA′′

The horizontal and vertical composition of double cells are both defined using the
horizontal composition of the weak double category D. Namely, for a consistent matrix of
double cells

•
F //

•U

��

•
F ′ //

•V

��

•

•W

��
π ρ

•
G //

•U ′

��

•
F ′ //

•V ′

��

•

•W ′

��
σ τ

•
H
// •

H′
// •

(6)
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we have:

(π | ρ)(u) = (ρFu | G′πu),
(π
σ

)
(u) = (V ′πu | σUu). (7)

This ‘explains’ why these composition laws are strictly associative and unitary (like
the horizontal composition in D). One can find in [GP2] the proof of the coherence of the
double cells defined in (7) and the middle-four interchange law on the matrix (6).

It will be relevant for our 3-dimensional extension to note that: if the horizontal (resp.
vertical) arrows of π are strict (or just pseudo) functors, then our cell simply amounts
to a horizontal transformation π : V F → GU of colax (resp. lax) functors (as defined in
[GP2]).

(One can also note that a double cell π : (U F
1 1) gives a notion of horizontal transfor-

mation π : F → U : A → B from a lax to a colax functor, while a double cell π : (1 1
G V )

gives a notion of horizontal transformation π : V → G : A → B from a colax to a lax
functor. Moreover, for a fixed pair A,B of weak double categories, all the four kinds of
transformations compose, forming a category {A,B} whose objects are the lax and the
colax functors A→ B.)

1.3. The new triple category. The definition of a triple category will be made
explicit in Section 2.

The triple category S = SDbl that we introduce here (adding ‘transversal arrows’ and
new cells to those considered above, in 1.2) is a clear instance of this structure and a good
example for our study of limits.

(a) The set S∗ of objects of S consists of all (conveniently small) weak double categories.

(b) The sets S0, S1, S2 of arrows of S consist of the following items, respectively:

- (strict) functors between weak double categories (0-arrows, or transversal arrows),
- lax functors between weak double categories (1-arrows),
- colax functors between weak double categories (2-arrows).

Each set Si (for i = 0, 1, 2) has a degeneracy and two faces

ei : S∗ → Si, ei(A) = idA,
∂αi : Si → S∗, ∂−i = Dom, ∂+i = Codom.

(8)

(c) The sets S12, S01, S02 of double cells of S consist of the following items:

- a 12-cell is an arbitrary double cell of Dbl, with lax (resp. colax) functors in direction 1
(resp. 2) and components πA : V F (A)→ GU(A), πu : V F (u)→ GU(u) (cf. 1.2)

•
F //

U

��

•

V

��

• //

2��
1

π

•
G

// •

(9)
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- a 01-cell, as shown in the left diagram below, is a double cell of Dbl with strict functors
in direction 0, lax functors in direction 1 and a horizontal transformation ϕ : QF → GP
(of lax functors)

•

P

��
U

��

•
F //

P
��

•

Q

��

• //
0
��2 ��

1

•

V

��

•
G

//

ϕ

• •

Q   

ω

•

(10)

- a 02-cell, as shown in the right diagram above, is a double cell of Dbl with strict functors
in direction 0, colax functors in direction 2 and a horizontal transformation ω : V P → QU
(of colax functors).

Each Sij (for 0 6 i < j 6 2) has two degeneracies and four faces, that are obvious

ei : Sj → Sij, ej : Si → Sij,

∂αi : Sij → Sj, ∂αj : Sij → Si.
(11)

Thus e1 : S2 → S12 assigns to a 2-arrow U the identity cell e1(U) of the original double
category for the 1-directed (i.e. horizontal) composition, while the 1-faces of the 12-cell π
are the domain and codomain of the 1-directed composition (note that they are 2-arrows)

∂α1 (π) = U or V, ∂α2 (π) = F or G. (12)

(d) Finally S012 is the set of triple cells of SDbl: such an item Π is a ‘commutative cube’
determined by its six faces; the latter are double cells of the previous three types

A F //

U

��

P
  

•
Q

��

A F //

U

��

•

X

��

Q

��

• //

0
��2 ��

1

•
G //

V

��

ϕ

•

Y

��

•

Y

��

•

R   

ω

•
H //

R   

π

ψ

•

S   

ζ

•
K

//

ρ

B •
K

// B

(13)

The commutativity condition means the following equality of pasted double cells in
Dbl (the non-labelled ones being inhabited by natural transformations that are identities):
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A 1 //

1

��

A F //

P

��

•

Q

��

A F //

1

��

•
1 //

1

��

•

Q

��

ϕ

A P //

U

��

•
G //

V

��

•

Y

��

A F //

U

��

•
Q //

X

��

•

Y

��
ω ρ π ζ

•
R

//

R

��

•
K

//

1

��

B

1

��

•
H

//

R

��

•
S
//

S

��

B

1

��
ψ

•
1

// •
K

// B •
K

// B
1
// B

(14)

More explicitly, the commutativity condition amounts to the following equality of
components (horizontal composites of double cells in the weak double category B):

(Y QFu
Y ϕu // Y GPu

ρPu // KV Pu
Kωu // KRUu)

= ( Y QFu
ζFu // SXFu

Sπu // SHUu
ψUu // KRUu),

(15)

where u is any vertical arrow in the weak double category A.

(e) The fact that all composition laws are strictly associative and unitary, and satisfy the
strict interchange laws, can be easily deduced from the analogous properties of the double
category Dbl (proved in [GP2]), because the additional 0-directed structure is a particular
case of the 1- and 2-directed ones.

The fact that any triple cell of SDbl is determined by its boundary (i.e. its six faces)
can be expressed saying that the triple category SDbl is box-like.

1.4. Comments. Inserting the double category Dbl into the triple category SDbl can be
motivated by the fact that:

(a) the horizontal and vertical limits in Dbl remain as transversal limits in SDbl, where
their projections are duly recognised as strict double functors,

(b) (more interestingly) new transversal limits appear in SDbl, for which there is ‘no
sufficient room’ in the original double category.

These aspects will be studied in Part II, but we anticipate now a sketch of tabulators,
showing point (a) in 1.5, 1.6 and point (b) in 1.7, 1.8.

1.5. Horizontal tabulators in Dbl. In the double category Dbl every vertical arrow
U : A •−→ B has a horizontal tabulator (T, P,Q, τ), providing a horizontally universal cell
τ as in the left diagram below (see [GP1])

T P //

•1

��

A
•U

��

S F //

•1

��

T P //

•1

��

A
•U

��
τ 1•F τ

T
Q
// B S

F
// T

Q
// B

(16)
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The universal property says that every similar double cell τ ′ : (1•S
P ′

Q′ U) factorises as
τ ′ = (1•F | τ), by a unique horizontal arrow F : S→ T, as in the right diagram above: the
lax functor F is defined on the objects as

F (S) = (P ′(S), Q′(S), τ ′S : UP ′(S) = Q′(S))

and is strict whenever P ′ and Q′ are. (In [GP1] we also considered a two-dimensional
universal property for the tabulator, which is not used here and will be discussed in Part
II.)

The weak double category T has objects

(A,B, b : UA→ B),

with A in A and b horizontal in B. A horizontal arrow of T

(a, b) : (A1, B1, b1)→ (A2, B2, b2),

‘is’ a commutative square in B, as in the upper square of diagram (17), below. A vertical
arrow of T

(u, v, ω) : (A1, B1, b1)→ (A3, B3, b3),

‘is’ a double cell in B, as in the left square of diagram (17). A double cell (β, β′) of T

(β, β′) :

(
(u, v, ω)

(a, b)
(a′, b′)

(u′, v′, ω′)

)
, (ω | β′) = (β | ω),

forms a commutative diagram of double cells of B, as below (where the slanting direction
must be viewed as horizontal)

•
Ua //

Uu

��

b1
��

=

ω

•
b2

��

•
Ua //

Uu

��

β

•

Uu′

��

b2

  

ω′

• //

0
��2 ��

1

•
b //

v

��

β′

•

v′

��

•

v′

��

•

b3 ��

•
Ua′ //

b3 ��
=

•

b4   
•

b′
// • •

b′
// B

(17)

The composition laws of T are obvious, as well as the (strict) double functors P,Q.
The double cell τ has components

τ(A,B, b) = b : UA→ B, τ(u, v, ω) = ω : Uu→ v. (18)

Since P and Q are strict double functors, this construction also gives the tabulator, or
e2-tabulator, of the 2-arrow U of SDbl: it will be defined in Part II as an object >2U with
a universal 02-cell τ : e2(>2U) →0 U ; now the universal property says that every 02-cell
τ ′ : e2(S) →0 U factorises as τ ′ = τ.e2(F ), by a unique 0-arrow F : S →0 T. (Note that
now τ ′ : (1•S

P ′

Q′ U) is a double cell whose horizontal arrows P ′, Q′ are strict functors, so
that F is strict as well.)
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1.6. Vertical tabulators in Dbl. Similarly, in the double category Dbl every horizon-
tal arrow F : A → B has a vertical tabulator (T, P,Q, τ), providing a vertically universal
cell τ as below

T 1 //

•P

��

T
•Q

��
τ

A
F
// B

(19)

Now, the weak double category T has objects (A,B, b : B → FA), with A in A and
b a horizontal arrow of B. The horizontal duality of weak double categories interchanges
the horizontal and vertical tabulator, sparing us describing the whole structure.

Again, P and Q are strict double functors, and this construction also gives the tabu-
lator, or e1-tabulator, of the 1-arrow F of SDbl: it will be defined in Part II as an object
>1F with a universal 01-cell τ : e1(>1F )→0 F .

1.7. Higher tabulators, I. A double cell π of Dbl

A F //

•U

��

B
•V

��
π

C
G
// D

(20)

is a 12-cell of the triple category SDbl. In the latter we can define and construct the total
tabulator, or e12-tabulator, of π as an object T = >π = >12π with a universal 012-cell
Π: e12(T)→0 π, where e12 = e1e2 = e2e1

T 1 //

1

��

P
!! ϕ

T
Q
!!

T 1 //

1

��

e12(T)

T

1

��

Q
!!

• //

0
��2 ��

1

A F //

U

��

π

B

V

��

B

V

��
T
R
!!

ω

T 1 //

R
!! ψ

T
S
!!

ζ

C
G

// D C
G

// D

(21)

Now, an object X of the weak double category T consists of four objects, one in each
of A,B,C,D, and four horizontal morphisms of B,C,D (two of them in D)

X = (A,B,C,D; b : B → FA, c : UA→ C, d′ : D → GC, d : V B → D), (22)

so that the following pentagon of horizontal arrows commutes in D

V B
d //

V b   

D
d′ // GC

=

V FA
πA

// GUA
Ge

>>

(23)
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The arrows and double cells of T are essentially as in 1.5, if more complicated. The
strict double functors P,Q,R, S are obvious projections and the double cells ϕ, ψ, ω, ζ
have the following components on the object X of (22) (and similar components on the
vertical arrows of T, which we have not described)

ϕX = b : B → FA, ωX = c : UA→ C,

ψX = d : D → GC, ζX = d′ : V B → D.
(24)

1.8. Higher tabulators, II. Finally, the 12-cell π also has two other higher tabulators
>iπ (i = 1, 2), whose results are 1-dimensional cells (i.e. a lax or colax double functor),
instead of an object as above:

- the e1-tabulator is a 2-arrow >1π with a universal 012-cell e1(>1π)→0 π,
- the e2-tabulator is a 1-arrow >2π with a universal 012-cell e2(>2π)→0 π.

(Note that the e1-tabulator of π, like its 1-faces, is 2-directed.)
For instance, >2π is a lax double functor >U →1 >V , between the tabulators (com-

puted in 1.5) of the two vertical arrows ∂α1 π, namely U and V

>U >2π //

1

��

P
## ϕ

ω

>V
Q
##

>U >2π //

1

��

e2(>2π)

>V

1

��

Q
##

ζ

• //

0
��2 ��

1

A F //

U

��

π

B

V

��

B

V

��
>U

R
##

>U >2π //

R
## ψ

>V
S
##

C
G

// D C
G

// D

(25)

Thus >U has objects (A,C, c : UA→ C), >V has objects (B,D, d : V B → D) and

(>2π)(A,C, c : UA→ C) = (FA,GC, Gc.πA : V FA→ GUA→ GC),

ϕ(A,C, c : UA→ C) = 1FA, ψ(A,C, c : UA→ C) = 1GC ,

ω(A,C, c : UA→ C) = c, ζ(B,D, d : V B → D) = d.

It will be important to note that these limits are preserved by faces and degeneracies,
in a way that will be analysed in Part II

∂αi (>jπ) = >j(∂αi π), >j(eiX) = ei(>jX) (i 6= j). (26)

Moreover, by a composition of universal arrows, the total e12-tabulator of π can be
obtained as

>12π = >2>1π = >1>2π. (27)

In fact, computing for instance >1>2π, we find that an object is a family

((A,C, c : UA→ C), (B,D, d : V B → D), b : B → FA, d′ : D → GC),
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(with A in A, etc.) such that the following square of horizontal arrows commutes in D,
as in the pentagon (23)

V B d //

V b
��

D

d′
��

V FA
Ge.πA

// GC

2. Strict multiple categories

We give now an explicit definition of a (strict) multiple category. It is similar to that
of [G1], Section 5 (where it was given as an extension of a strict cubical category) but is
rewritten in a simplified, equivalent form.

2.1. The geometry. Loosely speaking, a (strict) multiple category A is a generalised
(strict) cubical category where all the directions are of different sorts. An index i ∈ N
will represent such a sort or direction, including the transversal one i = 0 (that will be
treated differently, from 2.5 on).

We have thus

- a set A∗ of objects,

- a set Ai of i-arrows, or i-directed arrows, for every index i > 0 (with faces in A∗),

- a set Aij of 2-dimensional ij-cells, for indices i < j (with faces in Ai and Aj),

- and generally, for every multi-index i of n indices

0 6 i1 < i2 < ... < in (n > 0), (28)

a set Ai = Ai1...in of n-dimensional i-cells (with faces in the various Ai1...̂ij ...in).

2.2. Multiple sets. A multi-index i is a finite subset of N, possibly empty. Writing
i ⊂ N it will be understood that i is finite; writing i = {i1, ..., in} it will be understood
that i has n distinct elements, written in the natural order i1 < i2 < ... < in; the integer
n > 0 is called the dimension of i.

We shall use the following symbols

ij = ji = i ∪ {j} (for j ∈ N \ i), i|j = i \{j} (for j ∈ i). (29)

A multiple set is a system of sets and mappings X = ((Xi), (∂
α
i ), (ei)) satisfying the

following two axioms.

(mls.1) For every multi-index i = {i1, ..., in}, Xi is a set whose elements are called i-cells
of X and said to be of dimension n. For the sake of simplicity, we write X∗, Xi, Xij...
instead of X∅, X{i}, X{i,j}, ... (To assume that the sets Xi are disjoint would often be
inconvenient; when useful one can redefine X ′i = Xi×{i}.)
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(mls.2) For j ∈ i and α = 0, 1 we have mappings, called faces and degeneracies of Xi

∂αj : Xi → Xi|j, ej : Xi|j → Xi, (30)

that satisfy the multiple relations

∂αi .∂
β
j = ∂βj .∂

α
i (i 6= j), ei.ej = ej.ei (i 6= j),

∂αi .ej = ej.∂
α
i (i 6= j), ∂αi .ei = id.

(31)

Faces commute and degeneracies commute, but ∂αi and ei do not. These relations look
much simpler than the cubical ones because here an index i stands for a particular sort,
instead of a mere position, and is never ‘renamed’. Notice also that ∂αi acts on Xi if i
belongs to the multi-index i (and cancels it), while ei acts on Xi if i does not belong to i
(and inserts it); therefore ∂αi .∂

α
i and ei.ei make no sense, here: one cannot cancel or insert

twice the same index.
If i = j ∪ k is a disjoint union and α is a mapping

α : k = {k1, ..., kr} → {−,+}, α = (α1, ..., αr),

we have an iterated face and an iterated degeneracy (independent of the order of compo-
sition)

∂αk = ∂α1
k1
... ∂αrkr : Xi → Xj, ek = ek1 ... ekr : Xj → Xi. (32)

In particular, the total i-degeneracy is the mapping

ei = ei1 ... ein : X∗ → Xi. (33)

2.3. Multiple sets and cubical sets. Let us recall that the cubical sets form the
presheaf category SetI

op

, where the ‘cubical site’ I [GM, G1] has for objects the powers
2n of the cardinal 2 = {0, 1} (with n ∈ N) and a morphism 2m → 2n takes out some
coordinates and inserts some 0’s or 1’s (without modifying the order of the remaining
coordinates). Such morphisms are generated by the following cofaces and codegeneracies
(under the well-known cocubical relations):

∂αj : 2n−1 → 2n, ∂αj (t1, ..., tn−1) = (t1, ..., tj−1, α, ..., tn−1),

ej : 2n → 2n−1, ej(t1, ..., tn) = (t1, ..., t̂j, ..., tn) (α = 0, 1; 1 6 j 6 n).
(34)

Modifying all this, the multiple site M has an object 2i = Set(i, 2) for every multi-
index i ⊂ N. The category M ⊂ Set is generated by the following mappings (with j ∈ i
and α = 0, 1)

∂αj : 2i|j → 2i, (∂αj ϕ)(i) = ϕ(i), (∂αj ϕ)(j) = α (i 6= j),

ej : 2i → 2i|j, (ejϕ)(i) = ϕ(i) (i 6= j),
(35)
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under the comultiple relations, dual to the multiple relations of (31). (Since commutativ-
ity relations are invariant under duality, the only comultiple relation different from the
previous ones is ei.∂

α
i = id.)

There is a canonical (covariant) functor

F : M→ I, F (2i) = 2n,

F (∂αij : 2i|ij → 2i) = ∂αj : 2n−1 → 2n, F (eij : 2i → 2i|ij) = ej : 2n → 2n−1,
(36)

assuming that i = {i1, ..., ij, ..., in}.
F transforms every cubical set K : Iop → Set into KF op : Mop → Set, a multiple set

of cubical type. Thus, the multiple set X is of cubical type if and only if it is ‘invariant
under renaming indices, in the same order’; precisely, X has to satisfy the following
relations, where i = {i1, ..., ij, ..., in} ⊂ N is replaced with the ‘normalised’ multi-index
[n] = {1, ..., j, ..., n} (for n > 0)

Xi = X1...n,

(∂αij : Xi → Xi|ij) = (∂αj : X1...n → X1...ĵ...n),

(eij : Xi|ij → Xi) = (ej : X1...ĵ...n → X1...n).

(37)

This notion is equivalent to the classical notion of a cubical set, by a rewriting of multi-
indices: in fact, the multi-index {1, ..., ĵ, ..., n} has to be normalised with consecutive
integers. This rewriting transforms the multiple relations that hold in a multiple set of
cubical type into the cubical relations of the associated cubical set.

Here we prefer to avoid such rewritings and stay within multiple sets.
More generally, we have a multiple site M(N) based on any ordered pointed set N =

(N, 0); a multi-index is now a finite subset i ⊂ N . We shall mostly use this extension for
subsets n = {0, 1, ..., n− 1} of the natural integers, but also for N = Z. (The base point
and the order will be used later.)

2.4. Multiple categories. We are now ready for a formal definition of our main strict
structure.

(mlc.1) A multiple category A is, first of all, a multiple set of components Ai, whose
elements will be called i-cells. As above, i is any multi-index, i.e. any finite subset of N,
and we write A∗, Ai, Aij... for A∅, A{i}, A{i,j},...

(mlc.2) Given two i-cells x, y which are i-consecutive (i.e. ∂+i (x) = ∂−i (y), with i ∈ i),
the i-composition x +i y is defined and satisfies the following interactions with faces and
degeneracies

∂−i (x+i y) = ∂−i (x), ∂+i (x+i y) = ∂+i (y),

∂αj (x+i y) = ∂αj (x) +i ∂
α
j (y), ej(x+i y) = ej(x) +i ej(y) (j 6= i).

(38)

It will be important to remark that the last condition is a strict interchange between
i-composition and j-identities, while the strict interchange between i- and j-identities (or



15

zeroary compositions) is already written in the axioms of multiple sets: ejei = eiej for
j 6= i.

(mlc.3) For j /∈ i we have a category cati,j(A) with objects in Ai, arrows in Aij, faces ∂αj ,
identities ej and composition +j.

(mlc.4) For i < j we have

(x+i y) +j (z +i u) = (x+j z) +i (y +j u) (binary ij-interchange), (39)

whenever these composites make sense.
Again, we can more generally consider N -indexed multiple categories, where N =

(N, 0) is an ordered pointed set.

2.5. Transversal categories. The transversal direction, corresponding to the index
i = 0, will play a special role. It will be used for the transformations of multiple functors
and for the structural arrows of limits and colimits; its composition will stay strict, in all
the weak or lax versions we shall consider. We think of it as the ‘dynamic’ direction, along
which ‘transformation occurs’, while the positive directions are viewed as the ‘static’ or
‘geometric’ ones.

For a positive multi-index i = {i1, ..., in} ⊂ N \{0} of dimension n, both i and the
augmented multi-index 0i = {0, i1, ..., in} will be said to be of degree n, counting the
number of positive indices that they contain.

We are interested in the i-transversal category tvi(A) = cati,0(A) of A, where

- an object, usually called an i-cube of A, is an n-dimensional cell belonging to Ai,

- a morphism f : x− →0 x
+, usually called an i-map of A, is an (n + 1)-dimensional cell

f ∈ A0i with ∂α0 f = xα,

- their composition gf = f +0 g is the transversal one (in direction 0), with identities
1x = id(x) = e0(x).

All these terms are said to be of type i and degree n in A; but let us recall that their
dimension is either n or n+ 1.

In all of our examples, 0-composition is realised by the usual composition of mappings.
On the other hand, in the non-strict structures considered below, the ‘positive’ compo-
sitions are generally obtained by operations (products, sums, tensor products, pullbacks,
pushouts...) where reversing the order of the operands would only be confusing.

2.6. Multiple functors and transversal transformations. A multiple functor
F : A → B between multiple categories is a morphism of multiple sets F = (Fi) that
preserves all the composition laws. For an i-map f : x→0 y, we write F (f) : F (x)→0 F (y)
or F0i(f) : Fi(x)→0 Fi(y), as it may be convenient.

A transversal transformation h : F → G : A → B between multiple functors consists
of a family of i-maps in B (its components), for every positive multi-index i and every
i-cube x in A

hx : F (x)→0 G(x) (hix : Fi(x)→0 Gi(x)), (40)
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under the following axioms of naturality and coherence:

(trt.1) Gf.hx = hy.Ff (for f : x→0 y in A),

(trt.2) h commutes with positive faces, degeneracies and compositions:

h(∂αj x) = ∂αj (hx), h(ejz) = ej(hz), h(x+j y) = hx+j hy,

where i is a positive multi-index, j ∈ i, x and y are j-consecutive i-cubes, z is an i|j-cube.

We have thus the category Mlc(A,B) of the multiple functors A → B and their
transversal transformations. All these form the 2-category Mlc, in an obvious way. More
generally for any ordered pointed set N = (N, 0), we have the 2-category MlcN of N -
indexed multiple categories, formed of ordinary categories MlcN(A,B).

Multiple categories have dualities, generated by reversing each direction i and per-
muting directions; they form an infinite-dimensional hyperoctahedral group. But we are
mainly interested in the transversal dual Atr that reverses all transversal faces ∂α0 and all
transversal compositions, so that tvi(A

tr) = (tvi(A))op; for two consecutive i-maps f, g in
A with f : x− →0 x

+, we have corresponding maps f ∗, g∗ in Atr with

f ∗ : x+ →0 x
−, f ∗.g∗ = (g.f)∗. (41)

2.7. Truncation and triple categories. Restricting all indices to the subsets of the
ordinal set n = {0, ..., n− 1} we obtain the n-dimensional version of a multiple category,
called an n-tuple category, where the highest cells have dimension n. The 0-, 1- and
2-dimensional versions amount - respectively - to a set, a category or a double category.

There is thus a truncation 2-functor with values in the 2-category Mlcn of n-tuples
categories

trcn : Mlc→Mlcn, skn a trcn a coskn, (42)

which has both adjoints. The left adjoint (skeleton) adds degenerate items of all missing
types i 6⊂ n. The right adjoint (coskeleton) is more compex: for instance, if C is a
category and i a positive multi-index, an i-cube of cosk1(C) is a functor x : 2i → C where
2 = {0, 1} is discrete (so that x is a family of objects of C indexed by the set 2i); an
i-map is a natural transformation of such functors.

We are particularly interested in the 3-dimensional notion, called a triple category. Its
cells, corresponding to multi-indices i ⊂ {0, 1, 2}, are:

- objects, of one sort (for i = ∅),

- arrows of three sorts, in direction 0 (transversal), 1 (horizontal) and 2 (vertical),

- 2-dimensional cells of three sorts, in direction 01 (horizontal), 02 (lateral), 12 (basic),

- 3-dimensional cells of one sort, in direction 012.

The terminology in parenthesis comes from [GP6], and is based on diagrams as drawn
above (e.g. in 1.3): the page is viewed in a vertical plane and the transversal direction as
orthogonal to the latter. We have already studied in Section 1 the triple category SDbl
of weak double categories, with arrows given by: strict functors, lax functors and colax
functors.
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2.8. Symmetric cubical categories. Let us first remark that the notion of a cubical
category which we use here was defined in [G1, G3]: it includes transversal maps, that are
crucial for the weak and lax extensions (as in the present case of multiple categories). It
differs on this point from the notion of [ABS], that was called a ‘reduced cubical category’
in [G1, G3], even though in the strict case the difference is just a formal reindexing.

In the present setting, we say that the multiple category A is of cubical type if its
components, faces and degeneracies are invariant under renaming positive indices, in the
same order.

With respect to multiple sets (in 2.3), we use now a different notion of normalised
multi-index, that only operates on positive indices and preserves both dimension and
degree. Precisely, a (general) multi-index i ⊂ N has a normalised multi-index h defined
as follows, according to the positivity of i

i = {i1, ..., in} 7→ h = [n] = {1, ..., n} for 0 < i1 < ... < in,

i = {0, i1, ..., in} 7→ h = 0[n] = {0, 1, ..., n} for 0 = i0 < i1 < ... < in.
(43)

With this notation, the multiple category A is of cubical type if:

Ai = Ah,

(∂αij : Ai → Ai|ij) = (∂αj : Ah → Ah|j), (eij : Ai|ij → Ai) = (ej : Ah|j → Ah).
(44)

This notion is equivalent to that of a cubical category, as defined in [G1, G3]. In the
truncated case this invariance condition is trivially satisfied up to dimension 2 (corre-
sponding to sets, categories and double categories), since a subset i ⊂ {0, 1} is automati-
cally normalised; on the other hand, a triple category can be of cubical type or not: the
example SDbl of Section 1 is not, as its 1- and 2-arrows are different.

In a multiple category of cubical type an i-cube x ∈ Ai = A[n] is called an n-cube, and
an i-map f : x → y (belonging to A0i = A0[n]) is called an n-map. On the other hand,
the positive compositions x +i y need not be related. Yet, all of our important examples
of cubical categories (also in the weak case, see 3.6) are ‘symmetric’, with positive faces,
degeneracies and compositions related by symmetries - so that composition in direction
1, for instance, determines all the positive ones. Again, symmetric cubical categories are
studied in [G1, G3]; here they can be viewed as follows.

A multiple category of symmetric cubical type is a multiple category of cubical type
A (as defined above) with an assigned action of the symmetric group Sn (non trivial for
n > 2) on each set Ai = Ah (where the multi-indices i,h have degree n), generated by
mappings called transpositions

si : Ah → Ah, i = 1, ..., n− 1 (n > 2). (45)

These transpositions satisfy the well-known Moore relations of the symmetric group
(listed for instance in [G1], 2.1.3). Moreover si exchanges the i-indexed structure with
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the (i+ 1)-indexed one, leaving the rest unchanged. More precisely, the following axioms
must be satisfied (for i > 0, j > 0 and j 6= i, i+ 1):

∂αi si = ∂αi+1 (∂αi+1.si = ∂αi ), ∂αj .si = si.∂
α
j ,

si.ei = ei+1 (si.ei+1 = ei), si.ej = ej.si,

si(x+i y) = si(x) +i+1 si(y) (si(x+i+1 y) = si(x) +i si(y)),

si(x+j y) = si(x) +j si(y).

(46)

(Note that j need not be positive.) The relations in parentheses are redundant because
of the involutive property of transpositions si.si = id, which is part of the Moore relations.

The symmetric cubical category ωCub(C) of commutative cubes over a category C is
recalled below, in 3.5.

In the truncated case the symmetric structure, that only works on positive indices,
is trivial up to dimension 2 (for sets, categories and double categories as well); on the
other hand, a triple category of cubical type A is made symmetric (if this is possible)
by assigning two involutions s1 : A12 → A12 and s1 : A012 → A012 that satisfy the axioms
above.

Infinite-dimensional globular categories, usually called ω-categories, can be analysed
as cubical categories of a globular type: see [ABS] and [GP5], Section 2.

3. Weak and chiral multiple categories

We now extend multiple categories to the weak case. The basic structure of a weak multiple
category A is a multiple set with compositions in all directions. The composition laws
in direction 0 are categorical and have a strict interchange with the other compositions.
On the other hand, the ‘positive’ compositions have invertible comparisons for unitarity,
associativity and interchange (see 3.2), satisfying various coherence conditions (listed in
3.3 and 3.4).

After some examples of a cubical type, we end with a more general notion, partially
lax: a chiral, or χ-lax, multiple category (see 3.7); it has the same structure of a weak
multiple category, except for the fact that the ‘positive’ interchange comparisons χij (for
0 < i < j) are not supposed to be invertible.

3.1. The basic structure. A weak multiple category A has a basic structure of multiple
set (cf. 2.1) with compositions.

(wmc.1) A is, first of all, a multiple set of components Ai, whose elements will be called
i-cells; as above, i is any multi-index, i.e. a finite subset of N. As in Section 2, the index
0 denotes the transversal direction and plays a special role, different from that of the
positive indices.

(wmc.2) Given two i-cells x, y which are i-consecutive (i.e. ∂+i (x) = ∂−i (y), with i ∈ i),
the i-composition x+i y is defined and satisfies the following ‘geometric’ interactions with
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faces and degeneracies

∂−i (x+i y) = ∂−i (x), ∂+i (x+i y) = ∂+i (y),

∂αj (x+i y) = ∂αj (x) +i ∂
α
j (y), ej(x+i y) = ej(x) +i ej(y) (j 6= i).

(47)

(Again, as in 2.4, the last condition is a strict interchange between i-composition and
j-identities.)

(wmc.3) Transversal composition is categorical: for every positive multi-index i we have
a transversal category tvi(A) = cati,0(A); its arrows are the 0i-cells f : x→0 y, also called
i-maps between i-cubes (see 2.5); their composition is written as gf = f +0 g.

(wmc.4) Transversal composition has a strict interchange with any positive i-composition

gf +i kh = (g +i k)(f +i h) (0i-interchange), (48)

for i ∈ i and four i-maps f, g, h, k such that these composites make sense. (We already
remarked that the lower 0i-interchanges are expressed above.)

For a positive multi-index i, an i-map f : x →0 y is said to be i-special, or special in
direction i ∈ i, if its two i-faces are transversal identities

∂αi f = e0∂
α
i x = e0∂

α
i y (α = ±). (49)

This, of course, implies that the i-cubes x, y have the same i-faces: ∂αi x = ∂αi y (in Ai|j).
We say that f is ij-special if it is special in two different directions i, j.

3.2. Comparisons. Now we require that the positive compositions are unitary, associa-
tive and interchangeable up to invertible transversal maps: left unitors, right unitors,
associators and interchangers. The letter i denotes a positive multi-index with i ∈ i.
(In the diagrams below a line in a positive direction represents a cell and a double line
represents a cell degenerate in that direction.)

(wmc.5) For every i-cube x we have an invertible i-special i-map λix, which is natural on
i-maps and has the following faces (for j 6= i in i)

λix : (ei∂
−
i x) +i x→0 x (left i-unitor),

∂αj λix = λi∂
α
j x (∂αi λix = e0∂

α
i x),

(50)

•
∂−i x

ei∂
−
i x

•
1

%%

•
∂−i x

1
%%

e0∂
−
i x

•
1

%%

• //

0
$$i ��

j

•

∂+j x

•
∂−i x

∂−j x
x

•

∂+j x

•
∂−i x

∂−j x
x

•
λi∂

+
j x

•

∂−j x

λi∂
−
j x

•
∂+i x

1 && e0∂
+
i x

•
1
&&

•

1 &&
•

∂+i x
• •

∂+i x
•
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The condition in parentheses says again that these maps are i-special, and will not
be repeated below. The naturality condition means that for every i-map f : x →0 x

′ the
following square of i-maps commutes (in the category tvi(A))

(ei∂
−
i x) +i x

λix //

(ei∂
−
i f)+if ��

x

f

��
(ei∂

−
i x
′) +i x

′ λix
′
// x′

(51)

(wmc.6) For every i-cube x we have an invertible i-special i-map ρix, which is natural on
i-maps and has the following faces (for j 6= i in i)

ρix : x+i (ei∂
+
i x)→0 x (right i-unitor),

∂αj ρix = ρi∂
α
j x.

(52)

(wmc.7) For three i-consecutive i-cubes x, y, z we have an invertible i-special i-map
κi(x, y, z) which is natural on i-maps and has the following faces (for j 6= i in i)

κi(x, y, z) : x+i (y +i z)→0 (x+i y) +i z (i-associator),

∂αj κi(x, y, z) = κi(∂
α
j x, ∂

α
j y, ∂

α
j z)

(53)

•
∂−i x

∂−j x x

•
1

!!
∂+j x

•
∂−i x

∂−j x
1
!!
e0∂
−
i x

•
1

!!

• //

0
��i ��

j

•

∂+j x

•
∂−i x

∂−j x

x+iy

•

∂+j x

•
∂−i x

∂−j y

y+iz

•

∂+j y
κi∂

+
j

•

∂+j y

•

∂−j y
κi∂
−
j

•

∂−j y

•

∂+j y

•

∂−j z

•

∂+j z

•

∂+j z

•

∂−j z

•
∂−i x

∂−j z
z

•

∂+j z•

1 ""
e0∂

+
i x

•
1

""

•

1 ""
•

∂+i x
• •

∂+i x
•

(wmc.8) Given four i-cubes x, y, z, u which satisfy the boundary conditions displayed be-
low, for i < j in i, we have an invertible ij-special i-map χij(x, y, z, u), the ij-interchanger,
which is natural on i-maps and has the following k-faces (for k 6= i, j in i)

χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u),

∂αkχij(x, y, z, u) = χij(∂
α
k x, ∂

α
k y, ∂

α
k z, ∂

α
k u),

(54)
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•
∂−j x

∂−i x
x+i y

•
∂−j y

•

1

  

e0

•
∂−j x

∂−i x
1

  

e0

e0

•
∂−j y

•

1

  

• //

0
��j ��

i

•

∂−i z
z+i u

• • •

∂+i y

•

∂−i z

• • •

∂+i y

•

1 !!
e0

• •

1

!!

•

∂+i u

•

1 !!

• x+jz • y+ju •

∂+i u

•
∂+j z

•
∂+j u

• •
∂+j z

•
∂+j u

•

(wmc.9) Finally, these comparisons must satisfy some conditions of coherence, listed below
in 3.3, 3.4.

We say that A is unitary if the comparisons λ, ρ are identities, and pre-unitary if every
unitor of type λ(eiz) = ρ(eiz) : eiz +i eiz →0 eiz is an identity (see (59)).

The transversal dual Atr of a weak multiple category reverses the transversal faces and
compositions (as in (41)), and has inverted comparisons λ∗i (x) = ((λix)−1)∗, etc.

3.3. Coherence conditions, I. As an extension of the coherence conditions for weak
symmetric cubical categories [G1], the coherence axiom (wmc.9) means that various con-
ditions on the comparisons are satisfied; for future reference it will be convenient to split
them in two parts, deferring to the next point 3.4 all the conditions involving the inter-
changer χij.

The following diagrams of transversal maps must commute (assuming that all the
compositions in direction i > 0 make sense).

(wmc.9.i) Coherence pentagon of the i-associator κ = κi

(x+i y) +i (z +i u)
κ

**
x+i (y +i (z +i u))

κ
44

1+iκ ��

((x+i y) +i z) +i u

x+i ((y +i z) +i u) κ // (x+i (y +i z)) +i u

κ+i1
OO

(55)

(wmc.9.ii) Coherence conditions for κ = κi, λ = λi and ρ = ρi

x+i (ei∂
−
i y +i y) κ //

1+iλ ))

(x+i ei∂
+
i x) +i y

ρ+i1uu
x+i y

(56)

ei∂
−
i x+i (x+i y) κ //

λ ))

(ei∂
−
i x+i x) +i y

λ+i1uu
x+i y

(57)
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x+i (y +i ei∂
+
i y) κ //

1+iρ ))

(x+i y) +i ei∂
+
i y

ρuu
x+i y

(58)

λ(eiz) = ρ(eiz) : eiz +i eiz →0 eiz, (59)

(These conditions amount to asking that, for every positive multi-index i and i /∈ i, the
i-cubes of A form a weak double category with horizontal arrows in A0i, vertical arrows
in Aii and double cells in A0ii. We write (wmc.9.ii) in the form used by Mac Lane in his
classical paper on coherence of monoidal categories [Ma]. As proved by Kelly [Ke], these
axioms are redundant: properties (55) and (56) imply the other three; but we prefer to
keep the latter, as they are useful in computation.)

3.4. Coherence conditions, II. Finally we list the conditions involving the inter-
changers χij (for 0 < i < j). Again, the following diagrams of transversal maps must
commute (assuming that all the positive compositions make sense).

(wmc.9.iii) Coherence hexagon of χ = χij and κi (0 < i < j)

(x+i (y +i z)) +j (x′ +i (y′ +i z
′))

κi+jκi //

χ
��

((x+i y) +i z) +j ((x′ +i y
′) +i z

′)
χ
��

(x+j x
′) +i ((y +i z) +j (y′ +i z

′))

1+iχ ��

((x+i y) +j (x′ +i y
′)) +i (z +j z

′)

χ+i1��
(x+j x

′) +i ((y +j y
′) +i (z +j z

′))
κi // ((x+j x

′) +i (y +j y
′)) +i (z +j z

′)

(60)

(wmc.9.iv) Coherence hexagon of χ = χij and κj (0 < i < j)

(x+i x
′) +j ((y +i y

′) +j (z +i z
′))

κj //

1+jχ ��

((x+i x
′) +j (y +i y

′)) +j (z +i z
′)

χ+j1��
(x+j x

′) +j ((y +j z) +i (y′ +j z
′))

χ
��

((x+j y) +i (x′ +j y
′)) +j (z +i z

′)
χ
��

(x+j (y +j z)) +i (x′ +j (y′ +j z
′))

κj+iκj // ((x+j y) +j z) +i ((x′ +j y
′) +j z

′)

(61)

(wmc.9.v) Coherence conditions for χ = χij, λi and ρi (0 < i < j)

(ei∂
−
i x+i x) +j (ei∂

−
i y +i y)

λi+jλi//

χ
��

x+j y (x+i ei∂
+
i x) +j (y +i ei∂

+
i y)

ρi+jρioo

χ
��

(ei∂
−
i x+j ei∂

−
i y) +i (x+j y) (x+j y) +i (ei∂

+
i x+j ei∂

+
i y)

ei∂
−
i (x+j y) +i (x+j y)

λi
// x+j y (x+j y) +i ei∂

+
i (x+j y)ρi

oo

(62)
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(wmc.9.vi) Coherence conditions for χ = χij, λj and ρj (0 < i < j)

ej∂
−
j (x+i y) +j (x+i y)

λj // x+j y (x+i y) +j ej∂
+
j (x+i y)

ρjoo

(ej∂
−
j x+i ej∂

−
j y) +j (x+i y)

χ
��

(x+i y) +j (ej∂
+
j x+i ej∂

+
j y)

χ
��

(ej∂
−
j x+j x) +i (ej∂

−
j y +j y)

λj+iλj
// x+j y (x+j ej∂

+
j x) +i (y +j ej∂

+
j y)

ρj+iρj
oo

(63)

(wmc.9.vii) Coherence hexagon of the interchangers χij, χjk and χik (0 < i < j < k)

χjk
��

((x+i y) +j (z +i u)) +k ((x′ +i y
′) +j (z′ +i u

′))

χij+kχij

��

((x+i y) +k (x′ +i y
′)) +j ((z +i u) +k (z′ +i u

′))

χik+jχik

��

((x+j z) +i (y +j u)) +k ((x′ +j z
′) +i (y′ +j u

′))

χik

��

((x+k x
′) +i (y +k y

′)) +j ((z +k z
′) +i (u+k u

′))

χij

��

((x+j z) +k (x′ +j z
′)) +i ((y +j u) +k (y′ +j u

′))

χjk+iχjk
��

((x+k x
′) +j (z +k z

′)) +i ((y +k y
′) +j (u+k u

′))

(64)

3.5. Weak symmetric cubical categories. We have seen in 2.8 that multiple cat-
egories generalise cubical categories and symmetric cubical categories. In the same way,
weak multiple categories generalise weak cubical categories and weak symmetric cubical
categories; the latter were introduced in [G1] for higher cobordisms, and give here our
main examples of weak multiple categories of infinite dimension.

Here we only recall the following examples, that give useful frameworks for studying
multiple limits.

(a) The strict symmetric cubical category ωCub(C) of commutative cubes over a category
C. An n-cube (see 2.8) is a functor x : 2n → C (n > 0), where 2 is the ordinal category
•→ • ; a transversal map of n-cubes is a natural transformation of such functors.

(b) The weak symmetric cubical category ωCosp(C) of cubical cospans has been con-
structed in [G1] over a category C with (a fixed choice) of pushouts, in order to deal
with higher-dimensional cobordism. An n-cube is a functor x : ∧n → C, where ∧ is the
formal-cospan category • → • ← • ; again, a transversal map of n-cubes is a natural
transformation of such functors.
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(c) The weak symmetric cubical category ωSpan(C) of cubical spans, over a category C
with pullbacks, is similarly constructed over the formal-span category ∨ = ∧op, namely
• ← •→ • . It is transversally dual to ωCosp(Cop).

(d) The weak symmetric cubical category of cubical bispans, or cubical diamonds ωBisp(C),
over a category C with pullbacks and pushouts, is similarly constructed over a ‘formal
bispan category’ (which is just a ‘formal commutative square’, but becomes a formal
bispan when equipped with the obvious structure of a formal interval; see [G1], Section
4.7).

The truncated case is considered below.
On the other hand, some examples treated in [G3] and dealing with cubical relations

and cubical profunctors, should be either corrected or suppressed: in fact, for these struc-
tures there is no invertible or directed interchanger between positive (binary) composition
laws, but an unbiased pair of directed interchangers linking the two results with a quater-
nary operation working on a 2×2 consistent matrix of cells. We will not formalise here
such a complicated structure, for which we do not have a sufficient motivation.

3.6. Weak n-tuple categories. As in 2.7, the n-dimensional structure of a weak n-
multiple category, or weak n-tuple category, is obtained by restricting all multi-indices to
the subsets of the ordinal n = {0, 1, ..., n− 1}.

As in 2.7, the 0- and 1-dimensional versions just amount to a set or a category, but
the 2-dimensional notion is now a weak double category, or pseudo double category (as
defined in [GP1]). Again we are particularly interested in the 3-dimensional case, a weak
triple category.

Starting from an (unbounded) weak multiple category A, its (n-dimensional) trunca-
tion with multi-indices i ⊂ n gives a weak n-tuple category trcnA = nA.

Thus 3Cosp(C) is the weak triple category of 2-cubical cospans (over a category with
pushouts), where the highest-dimensional ‘objects’ are 2-cubes x : ∧2 → C, that is cospans
of cospans, but the whole structure - including transversal maps - is 3-dimensional.

Similarly we have the weak n-tuple categories nCosp(C), nSpan(C) and nBisp(C) of
(n− 1)-dimensional cubical cospans, spans and bispans.

3.7. Chiral multiple categories. A chiral multiple category, or χ-lax multiple cate-
gory, is a partially lax extension of a weak multiple category. (‘Chiral’ refers to something
that cannot be superposed to its mirror image.)

This notion is no longer transversally selfdual and has two instances. A right chiral
multiple category has the same structure and satisfies the same axioms considered above
in the weak multiple case, except for the fact that the ij-interchanger

χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u) (0 < i < j), (65)

is no longer supposed to be invertible.
By transversal duality, a left chiral multiple category has an ij-interchanger directed

the other way round

χij(x, y, z, u) : (x+j z) +i (y +j u)→0 (x+i y) +j (z +i u) (0 < i < j), (66)
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with the obvious modification of the coherence axioms.

Both structures still have the three kinds of strict degenerate interchanges mentioned
in 2.4 and 3.1, for 0 < i < j:

eiej(x) = ejei(x), ejx+i ejy = ej(x+i y), ei(x+j y) = eix+j eiy. (67)

As in [GP6, GP7] we generally work in the right chiral case, that is just called ‘chiral’.

Note that in the truncated n-dimensional case every left chiral n-tuple category can be
turned into a right chiral one just by reversing the positive indices, i 7→ n− i; in this way
we avoid resorting to transversal duality, which would turn transversal limits into colimits.
In the infinite dimensional case this only works if we are willing to replace the natural
indices with the integral ones, or with any self-dual ordered pointed setN = (N, 0).

A chiral triple category is the 3-dimensional truncated notion, with multi-indices i ⊂
{0, 1, 2}. Our main example of this kind is the (right) chiral triple category SC(C) =
S1C1(C) of spans and cospans over a category C (with pushouts and pullbacks), that will
be recalled in the next section, together with other structures of higher dimension. These
examples motivate our terminology for the alternative right/left: in the right-hand case
limits (i.e. right adjoints) are used in the lower composition laws, before colimits, that are
used in the upper ones; for instance, pullbacks before pushouts in SC(C).

In Section 5 we shall briefly sketch interchange categories, a further generalisation of
chiral multiple categories introduced in [GP6, GP7] (in dimension three), where not only
χ but also the three strict interchanges listed above are laxified.

3.8. Extending multiple functors. Extending the definitions of the strict case (cf.
2.6), a multiple functor F : A→ B between (say right) chiral multiple categories is a mor-
phism of multiple sets which preserves all the composition laws and also all comparisons
(listed in 3.2):

F (λix) = λi(Fx), F (ρix) = ρi(Fx),

F (κi(x, y, z)) = κi(Fx, Fy, Fz), F (χij(x, y, z, u)) = χij(Fx, Fy, Fz, Fu).
(68)

A transversal transformation h : F → G : A → B between multiple functors of chiral
multiple categories consists of a family of i-maps in B (its components), for every positive
multi-index i and every i-cube x in A

hx : F (x)→0 G(x) (hix : Fi(x)→0 Gi(x)), (69)

subject to the same axioms of naturality and coherence (trt.1, 2) of the strict case (cf.
2.6).

Given two chiral multiple categories A and B we have thus the category Cmc(A,B)
of their (strict) multiple functors and transversal transformations. All these form the
2-category Cmc.



26

3.9. Lax multiple functors and transversal transformations. More generally,
a lax multiple functor F : A→ B between (right) chiral multiple categories has components
Fi : Ai → Bi (for all multi-indices i) that agree with all faces, 0-degeneracies and 0-
composition. Moreover F is equipped with comparison i-maps, for every positive multi-
index i and j ∈ i, that will be denoted as F j

F j(x) : ejF (x)→0 F (ejx) (for x ∈ Ai|j)

F j(x, y) : F (x) +j F (y)→0 F (x+j y) (for j-consecutive cubes x, y in Ai).
(70)

The latter must satisfy the following axioms of naturality and coherence, again for
every positive multi-index i and j ∈ i.

(lmf.1) (Naturality of unit comparisons) For every i|j-map f : x→0 y in A, we have:

Fej(f).F j(x) = F j(y).ej(Ff) : ejF (x)→0 F (ejy). (71)

(lmf.2) (Naturality of composition comparisons) For two j-consecutive i-maps f : x→0 x
′

and g : y →0 y
′ in A, we have:

F (f +j g).F j(x, y) = F j(x
′, y′).(F (f) +j F (g)) : F (x) +j F (y)→0 F (x′ +j y

′). (72)

(lmf.3) (Coherence with unitors) For an i-cube x with j-faces ∂−j x = z and ∂+j x = w
(preserved by F ), we have two commutative diagrams of i-maps:

(ejFz) +j Fx
λj(Fx) //

F j(z)+j1
��

Fx Fx+j (ejFw)
ρj(Fx) //

1+jF j(w)
��

Fx

F (ejz) +j F (x)
F j

// F (ejz +j x)

F (λjx)

OO

F (x) +j F (ejw)
F j

// F (x+j ejw)

F (ρjx)

OO

(73)

(lmf.4) (Coherence with associators) For three j-consecutive i-cubes x, y, z in A, we have
a commutative diagram of i-maps:

(Fx+j Fy) +j Fz
κjF //

F j+j1
��

Fx+j (Fy +j Fz)

1+jF j
��

F (x+j y) +j Fz

F j
��

Fx+j F (y +j z)

F j
��

F ((x+j y) +j z)
Fκj

// F (x+j (y +j z))

(74)

(lmf.5) (Coherence with interchangers) For i < j in i and a consistent matrix of i-cubes
(xz

y
u) (with i-consecutive rows and j-consecutive columns) we have a commutative diagram
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of i-maps:

(Fx+i Fy) +j (Fz +i Fu)
χijF //

F i+jF i
��

(Fx+j Fz) +i (Fy +j Fu)

F j+iF j
��

F (x+i y) +j F (z +i u)

F j
��

F (x+j y) +i F (z +j u)

F j
��

F ((x+i y) +j (z +i u))
Fχij

// F ((x+j z) +i (y +j u))

(75)

The lax multiple functor F is said to be unitary if all its unit comparisons F j(a) are 0-
directed identities; only in this case F commutes with all degeneracies and is a morphism
of multiple sets. The importance of unitarity for lax or colax double functors is discussed
in [GP3, GP4].

Lax multiple functors compose, in a categorical way.
A transversal transformation h : F → G : A → B between lax multiple functors of

chiral multiple categories consists of a family of i-maps in B (its components), one for
every positive multi-index i and every i-cube x in A

hx : F (x)→0 G(x) (hix : Fi(x)→0 Gi(x)), (76)

subject to the same naturality axiom (trt.1) of the strict case (cf. 2.6) and an extended
coherence axiom (trt.2L) that involves the comparison maps of F and G

(trt.1) Gf.hx = hy.Ff (for f : x→0 y in A),

(trt.2L) for every positive multi-index i and j ∈ i:

h(∂αj x) = ∂αj (hx) (for x in Ai),

h(ejx)F j(x) = Gj(x).ej(hx) : ejF (x)→0 G(ejx) (for x in Ai|j),

h(z).F j(x, y) = Gj(x, y).(hx+j hy) : F (x) +j F (y)→0 G(z) (for z = x+j y in Ai).

We have now the 2-category LxCmc of chiral multiple categories, lax multiple functors
and their transversal transformations. Similarly one defines the 2-category CxCmc, for
the colax case (where the comparisons of ‘functors’ have the opposite direction). A pseudo
(multiple) functor is a lax functor whose comparisons are invertible (and is made colax
by the inverse comparisons); they are the arrows of the 2-category PsCmc.

In [GP6], Section 5, one can find a complete analysis of the ‘functors’ that can occur
in the 3-dimensional case (in the more general setting of intercategories). Namely:

- a lax triple functor, called a lax-lax morphism (because it is lax in directions 1 and 2),
- a colax triple functor, called a colax-colax morphism,
- a colax-lax morphism, which is colax in direction 1 and lax in direction 2,

while the lax-colax case makes no sense.
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4. A chiral triple category of spans and cospans

In this section C is a category equipped with a choice of pullbacks and pushouts.
The weak double category Span(C), of arrows and spans of C, can be ‘amalga-

mated’ with the weak double category Cosp(C), of arrows and cospans of C, to form
a 3-dimensional structure: the chiral triple category SC(C) whose 0-, 1- and 2-arrows are
the arrows, spans and cospans of C, in this order. It has been studied in [GP7], Subsection
6.4, with notation SpanCosp(C).

Interchanging the positive directions one gets the left chiral triple category CS(C) of
cospans and span of C. Higher dimensional examples are considered in 4.4.

For the sake of simplicity we assume that, in our choices, the pullback or pushout of
an identity along any map is an identity. Omitting this convention would simply give
non-trivial invertible unitors λ and ρ for 1- and 2-composition.

4.1. A triple set with compositions. We begin by constructing a triple set A =
SC(C) enriched with composition laws.

(a) The objects of A are those of C; they form the set A∗.

(b) The set A0 is formed of maps of C, written as p : X →0 Y or p : X → Y ; they compose
as in C, forming a category. This composition will be written as qp or q.p.

(b′) The set A1 consists of the spans of C, written as f : X →1 Y or

(f ′, f ′′) : (X ← •→ Y );

their composition, by our fixed choice of pullbacks, will be written as f +1 g. Formally, f
is functor ∨→ C defined on the formal-span category ∨ (as in 3.5)

(b′′) The set A2 consists of the cospans of C, written as u : X →2 Y or

(u′, u′′) : (X → • ← Y );

their composition, by our fixed choice of pushouts, will be written as u+2 v. Formally, u
is functor ∧→ C defined on the formal-cospan category ∧ = ∨op.

Each set Ai (for i = 0, 1, 2) has thus two faces ∂αi : Ai → A∗ (implicitly used in the
previous composition laws) and a degeneracy ei : A∗ → Ai.

(c) A 01-cell ϕ ∈ A01, as in the left diagram below, is a commutative diagram of C as in
the right diagram below; formally, it is a natural transformation ϕ : f → g : ∨→ C

•
f //

p
!!

•

q

!!

• //

0
  

1
•

p

��

•
f ′oo f ′′ //

mϕ

��

•

q

��
• g

//

ϕ

• • •
g′
oo

g′′
// •

(77)
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Their 0-composition, written as ψϕ, is obvious (that of natural transformations) and
gives a category. Their 1-composition, written as ϕ +1 ψ, is computed by two pullbacks
in C.

(c′) A 02-cell ω ∈ A01, as in the left diagram below, is a commutative diagram of C as in
the right diagram below; formally, it is a natural transformation ω : u→ v : ∧→ C

•

u

��

p

$$

•

0
""

2

��

•
p //

u′

��

•

v′

��
•

v

��

•
mω // •

•

q
$$

ω

• q
//

u′′

OO

•

v′′

OO

•

(78)

Their 0-composition, written as ζω, is obvious again, and gives a category. Their
2-composition, written as ω +2 ζ, is computed by two pushouts in C.

(c′′) A 12-cell π ∈ A12 is a commutative diagram of C, as at the right hand below,
with three spans in direction 1 and three cospans in direction 2; formally, it is a functor
π : ∨×∧→ C

•
f //

u

��

•

v

��

• //

2

��

1
•

u′

��

•
f ′oo f ′′ //

c′π

��

•

v′

��
• g

//

π

• • •
s′πoo s′′π // •

•

u′′

OO

•
g′
oo

g′′
//

c′′π

OO

•

v′′

OO (79)

Their 1-composition, written as π +1 ρ, is computed by three pullbacks in C; their
2-composition, written as π +2 ρ, by three pushouts in C.

Each set Aij (for 0 6 i < j 6 2) has two obvious degeneracies and four obvious faces
(implicitly used in the composition laws described above)

ei : Aj → Aij, ej : Ai → Aij,

∂αi : Aij → Aj, ∂αj : Aij → Ai.
(80)

(d) Finally A012 is the set of triple cells of A = SC(C). Such an item Π is a commutative
diagram of C forming a natural transformation Π: π → ρ : ∨×∧ → C; its boundary
consists of two 12-cells π, ρ (its 0-faces), two 01-cells ϕ, ψ and two 02-cells ω, ζ with
consistent boundaries (but Π also has an additional transversal arrow mΠ between the
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central objects of π and ρ)

•
f //

u

��

p

��

•
q

��

•
f //

u

��

•

x

��

q

��

• //

0
��2 ��

1

•
g //

v

��

ϕ

•

y

��

•

y

��

•

r   

ω

•
r //

r   

π

ψ

•

s   

ζ

•
k

//

ρ

• •
k

// •

(81)

The set A012 has three obvious degeneracies and the six faces described above

e0 : A12 → A012, e1 : A02 → A012, e2 : A01 → A012,

∂α0 : A012 → A12, ∂α1 : A012 → A02, ∂α2 : A012 → A01.
(82)

The 0-composition of such cells, written as Π′Π, is obvious (that of natural transfor-
mations) and gives a category. Their 1-composition, written as Π +1 Π′, is computed by
six pullbacks in C; their 2-composition, written as Π +2 Π′, by six pushouts in C.

(e) The sets A∗, A0, ..., A01, ..., A012, with the faces and degeneracies considered above,
form a triple set (a 3-dimensional truncated multiple set) with composition laws; the
multiple relations satisfied by faces and degeneracies are written down in 2.2.

4.2. Comparisons. We have already remarked that 0-directed composition is categorical
(on each type). It is also easy to see that it has a strict interchange with the other
compositions. Because of our assumption on the choice of pushouts and pullbacks, all 1-
or 2-directed composition laws are strictly unitary.

On the other hand, there are invertible comparisons for the associativity of 1- and
2-directed composition, and a directed comparison for their interchange. The latter is
defined for a consistent matrix (πρ

π′

ρ′ ) of four 12-cells, and is a 12-special map natural
under 0-composition

χ(π, π′, ρ, ρ′) : (π +1 π
′) +2 (ρ+1 ρ

′)→0 (π +2 ρ) +1 (π′ +2 ρ
′). (83)

All these comparisons are constructed in [GP7], where their coherence is proved.

4.3. Tabulators. As in Section 1, the chiral triple category SC(C) has all five kinds of
tabulators (and cotabulators as well, of course).

The first two, namely the tabulators of 1-arrows and 2-arrows, are already known from
the theory of weak double categories.

(a) The tabulator of a 1-arrow f (i.e. a span) is an object >1f with a universal 1-map
e1(>1f)→0 f ; the solution is the (trivial) limit of the span f , i.e. its middle object.

(b) The tabulator of a 2-arrow u (i.e. a cospan) is an object >2u with a universal 2-map
e2(>2u)→0 u; the solution is the pullback of u.
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Then we have three tabulators of a 12-cell π.

(c) The total tabulator >12π is an object with a universal 12-map e12(>12π) →0 π; the
solution is the limit of the diagram, i.e. the pullback of its middle cospan.

(d) The e1-tabulator of π is a 2-arrow >1π (a cospan) with a universal 12-map e1(>1π)→0

π; the solution is the middle cospan of π.

(e) The e2-tabulator of π is a 1-arrow >2π with a universal 12-map e2(>2π) →0 π; the
solution is the obvious span whose objects are the pullbacks of the three cospans of π.

Again, these limits are preserved by faces and degeneracies, in a way that will be made
precise in Part II; here we just remark that:

- ∂−1 (>2π) = >2(∂
−
1 π), which means that the domain of the span >2π (described above)

is the pullback of the cospan ∂−1 π,

- >2(e1u) = e1(>2u), i.e. the e2-tabulator of the 1-degenerate cell e1u (on the cospan u)
is the degenerate span on the pullback of u.

4.4. Higher dimensional examples. More generally, one can form a chiral n-tuple
category SpCq(C) for p, q > 0 and n = p + q + 1: its non-transversal i-directed arrows
are spans of C for 0 < i 6 p and cospans of C for p < i 6 p + q. Then we have the
infinite-dimensional structure SpC∞(C).

Similarly we have a left chiral n-tuple category CpSq(C) whose non-transversal i-arrows
are cospans of C for 0 < i 6 p and spans of C for p < i 6 p + q. We also have the left
chiral multiple category CpS∞(C).

In all these cases the ij-interchanger χij is not invertible for i 6 p < j.
Here CpSq(C) is transversally dual to SqCp(C

op), but there can be no relationship
of this kind between CpS∞(C) and SqC∞(C). To restore symmetry, we can consider an
‘unbounded’ chiral multiple category S−∞C∞(C) indexed by the ordered set of integers,
where i-arrows are spans for i < 0, ordinary arrows for i = 0 and cospans for i > 0. This
is transversally dual to the unbounded left chiral multiple category C−∞S∞(Cop).

5. A sketch of infinite-dimensional intercategories

Three-dimensional intercategories, introduced and studied in [GP6, GP7], generalise the
notion of chiral triple category by replacing all strict or weak interchangers with lax in-
terchangers of four types (τ, µ, δ, χ), which deal with the four possible cases of zero-ary or
binary composition in the positive directions 1, 2.

The difference can be better appreciated noting that a 3-dimensional intercategory
is a pseudo category in the 2-category of weak double categories, lax double functors
and horizontal transformations (see [GP6], Section 2), while a chiral triple category is a
unitary pseudo category in the 2-category of weak double categories, unitary lax double
functors and horizontal transformations.

Here we extend the definition of intercategories to the infinite dimensional case.
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5.1. Intercategories. An (infinite-dimensional, right) intercategory A is a kind of lax
multiple category where, with respect to the notion of a chiral multiple category, we
replace the three strict interchanges listed in (67) with lax interchangers.

Now, for any two positive directions i < j, we have the following families of ij-special
maps (including χij, already present in the chiral case):

(a) τij(x) : ejei(x)→0 eiej(x) (ij-interchanger for identities),

(b) µij(x, y) : ei(x) +j ei(y)→0 ei(x+j y)
(ij-interchanger for i-identities and j-composition, on j-consecutive cubes),

(c) δij(x, y) : ej(x+i y)→0 ej(x) +i ej(y)
(ij-interchanger for i-composition and j-identities, on i-consecutive cubes),

(d) χij(x, y, z, u) : (x+i y) +j (z +i u)→0 (x+j z) +i (y +j u)
(ij-interchanger for binary compositions, on a consistent matrix of cubes).

All these maps must be natural for transversal maps. The coherence axioms stated in
3.3 are required. Furthermore there are coherence conditions for the interchangers, stated
below in 5.2 and 5.3 (that extend those of [GP6] for dimension three).

The transversally dual notion of a left intercategory has interchangers in the opposite
direction.

Various ‘anomalies’ appear, with respect to the chiral case, that make problems for
a theory of multiple limits in this setting. First, A is no longer a multiple set (unless
each τij is the identity). Second, a degeneracy ei (i > 0) is now lax with respect to every
higher j-composition (for j > i, via τij and µij) but colax with respect to every lower
j-composition (for 0 < j < i, via τji and δji). Therefore, in the truncated n-dimensional
case e1 is lax with respect to all other compositions and en is colax, but the other positive
degeneracies (if any, i.e. for n > 3) are neither lax nor colax.

5.2. Lower coherence axioms for the interchangers. We now list, here and in
5.3, the conditions involving the interchangers.

The following diagrams of transversal maps must commute (under 0-composition),
assuming that 0 < i < j (and that the cubes x, y... are consistent with the operations
acting on them). For brevity, we write τ = τij, µ = µij, δ = δij, χ = χij.

(i) Coherence hexagon of χ = χij and κi: see (wmc.9.iii) in 3.4.

(ii) Coherence hexagon of χ = χij and κj: see (wmc.9.iv).

(iii) Coherence hexagon of δ = δij and κi

ej(x+i (y +i z))
ejκi //

δ
��

ej((x+i y) +i z)

δ
��

ej(x) +i ej(y +i z)

1+iδ
��

ej(x+i y) +i ej(z)

δ+i1
��

ej(x) +i (ej(y) +i ej(z))
κiej // (ej(x) +i ej(y)) +i ej(z))

(84)
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(iv) Coherence hexagon of µ = µij and κj

ei(x) +j (ei(y) +j ei(z))
κjei //

1+jµ
��

(ei(x) +j ei(y)) +j ei(z)

µ+j1
��

ei(x) +j ei(y +j z)

µ
��

ei(x+j y) +j ei(z)

µ
��

ei(x+j (y +j z))
eiκj // ei((x+j y) +j z)

(85)

(v) Coherence laws for χ, µ, λi and χ, µ, ρi

(ei∂
−
i x+i x) +j (ei∂

−
i y +i y)

λi+jλi//

χ
��

x+j y (x+i ei∂
+
i x) +j (y +i ei∂

+
i y)

ρi+jρioo

χ
��

(ei∂
−
i x+j ei∂

−
i y) +i (x+j y)

µ+i1
��

(x+j y) +i (ei∂
+
i x+j ei∂

+
i y)

1+iµ
��

ei∂
−
i (x+j y) +i (x+j y)

λi
// x+j y (x+j y) +i ei∂

+
i (x+j y)ρi

oo

(86)

(vi) Coherence laws for χ, δ, λj and χ, δ, ρj

ej∂
−
j (x+i y) +j (x+i y)

λj //

δ+j1
��

x+i y (x+i y) +j ej∂
+
j (x+i y)

ρjoo

1+jδ
��

(ej∂
−
j x+i ej∂

−
j y) +j (x+i y)

χ
��

(x+i y) +j (ej∂
+
j x+i ej∂

+
j y)

χ
��

(ej∂
−
j x+j x) +i (ej∂

−
j y +j y)

λj+iλj
// x+i y (x+j ej∂

+
j x) +i (y +j ej∂

+
j y)

ρj+iρj
oo

(87)

(vii) Coherence laws for δ, τ, λi and δ, τ, ρi

ej((ei∂
−
i x) +i x)

ejλi //

δ
��

ej(x) ej(x+i (ei∂
−
i x))

ejρioo

δ
��

ejei∂
−
i (x) +i ej(x)

τ+i1
��

ej(x) +i ejei∂
−
i (x)

1+iτ
��

ei∂
−
i ej(x) +i ej(x)

λiej
// ej(x) ej(x) +i ei∂

−
i ej(x)ρiej

oo

(88)
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(viii) Coherence laws for µ, τ, λj and µ, τ, ρj

ej∂
−
j ei(x) +j ei(x)

λjei //

τ+j1
��

ei(x) ei(x) +j ej∂
−
j ei(x)

ρjeioo

1+jτ
��

eiej∂
−
j (x) +j ei(x)

µ
��

ei(x) +j eiej∂
−
j (x)

µ
��

ei((ej∂
−
j x) +j x)

eiλj
// ei(x) ei(x+j (ej∂

−
j x))eiρj

oo

(89)

5.3. Higher coherence axioms. Finally we list the coherence conditions involving
three interchangers and three (positive) directions at a time. These axioms vanish in
the 3-dimensional case, where we only have two positive indices. The first condition has
already been considered as axiom (wmc.9.vii) of weak (and chiral) multiple categories, in
3.4, but we rewrite it here as a guideline for the others.

Again, the following diagrams of transversal maps must commute, for 0 < i < j < k
(assuming that all the positive compositions make sense).

(i) (Case 2×2×2) Coherence hexagon of the interchangers χij, χjk and χik for a consistent
2×2×2 matrix of i-cubes

χjk
��

((x+i y) +j (z +i u)) +k ((x′ +i y
′) +j (z′ +i u

′))

χij+kχij

��

((x+i y) +k (x′ +i y
′)) +j ((z +i u) +k (z′ +i u

′))

χik+jχik

��

((x+j z) +i (y +j u)) +k ((x′ +j z
′) +i (y′ +j u

′))

χik

��

((x+k x
′) +i (y +k y

′)) +j ((z +k z
′) +i (u+k u

′))

χij

��

((x+j z) +k (x′ +j z
′)) +i ((y +j u) +k (y′ +j u

′))

χjk+iχjk
��

((x+k x
′) +j (z +k z

′)) +i ((y +k y
′) +j (u+k u

′))

(90)

(ii) (Case 0×2×2) Coherence hexagon of the interchangers χjk, µij and µik for a 2×2
matrix of i|i-cubes

(eix+j eiy) +k (eiz +j eiu)
χjkei //

µij+kµij
��

(eix+k eiz) +j (eiy +k eiu)

µik+jµik
��

ei(x+j y) +k ei(z +j u)

µik
��

ei(x+k z) +j ei(y +k u)

µij
��

ei((x+j y) +k (z +j u)) eiχjk
// ei((x+k z) +j (y +k u))

(91)
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(iii) (Case 2×0×2) Coherence hexagon of the interchangers χik, µjk and δij for a 2×2
matrix of i|j-cubes

ej(x+i y) +k ej(z +i u)
δij+kδij //

µjk
��

(ejx+i ejy) +k (ejz +i eju)

χikej
��

ej((x+i y) +k (z +i u)

ejχik
��

(ejx+k ejz) +i (ejy +k eju)

µjk+iµjk
��

ej((x+k z) +i (y +j u))
δij

// ej(x+k z) +i ej(y +j u))

(92)

(iv) (Case 2×2×0) Coherence hexagon of the interchangers χij, δik and δjk for a 2×2
matrix of i|k-cubes

ek((x+i y) +j (z +i u))
ekχij //

δjk
��

ek((x+j z) +i (y +j u))

δik
��

ek(x+i y) +j ek(z +i u)

δik+jδik
��

ek(x+j z) +i ek(y +j u)

δjk+iδjk
��

(ekx+i eky) +j (ekz +i eku) χijek
// (ekx+j ekz) +i (eky +j eku)

(93)

(v) (Case 0×0×2) Coherence hexagon of the interchangers τij, µij and µik for a pair of
cubes indexed by i \{i, j}

ejeix+k ejeiy
τij+kτij //

µjkei
��

eiejx+k eiejy

µikej
��

ej(eix+k eiy)

ejµik
��

ei(ejx+k ejy)

eiµjk
��

ejei(x+k y) τij
// eiej(x+k y)

(94)

(vi) (Case 0×2×0) Coherence hexagon of the interchangers τik, δjk and µij

ek(eix+j eiy)
δjkei //

ekµij
��

ekeix+j ekeiy

τik+jτik
��

ekei(x+j y)

τik
��

eiekx+j eieky

µijek
��

eiek(x+j y)
eiδjk

// ei(ekx+j eky)

(95)
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(vii) (Case 2×0×0) Coherence hexagon of the interchangers τjk, δik and δjk

ekej(x+i y)
τjk //

ekδij
��

ejek(x+i y)

ejδik
��

ek(ejx+i ejy)

δikej
��

ej(ekx+i eky)

δijek
��

ekejx+i ekejy τjk+iτjk
// ejekx+i ejeky

(96)

(viii) (Case 0×0×0) Coherence hexagon of the interchangers τij, τik and τjk

ekejeix
τjkei //

ekτij
��

ejekeix
ejτik

��
ekeiejx
τikej

��

ejeiekx

τijek
��

eiekejx eiτjk
// eiejekx

(97)

(This is a Moore relation for transpositions, in the symmetric group S3.)

5.4. Duoidal categories. As proved in [GP7], Section 2.1, a triple intercategory on
a single object, with trivial arrows in all directions and trivial 01- and 02-cells is the
same as a duoidal category, with objects and morphisms given by 12-cubes and 12-maps,
respectively.

A duoidal category A is thus a category equipped with two monoidal structures
(+i, ei, κi, λi, ρi) that are linked by four 12-interchangers

(a) τ : e2 →0 e1 (interchanger for identities),

(b) µ : e1 +2 e1 →0 e1 (interchanger for 1-identities and 2-product),

(c) δ : e2 →0 e2 +1 e2 (interchanger for 1-product and 2-identities),

(d) χ(x, y, z, u) : (x+1 y) +2 (z +1 u)→0 (x+2 z) +1 (y +2 u) (interchanger for products),

As a basic example, we have seen in loc. cit. that any category C with finite products
and sums has a structure of duoidal category Fps(C) = (C,×,>,+,⊥) given by (a choice
of) these operations, in this order. The comparison are obvious.

In particular the canonical morphism τ : ⊥ → > is invertible if and only if C has a
zero object. In this case we can adopt the same choice > = 0 = ⊥ for the terminal and
initial object, so that Fps(C) becomes a substructure of the chiral triple category SC(C)
on the object 0 (Section 4). Therefore Fps(C) is chiral itself: also µ and δ are identities
(an obvious fact, actually).

Finally, if C is semiadditive, finite products and sums coincide and we simply have a
monoidal structure on C.
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It is interesting to note that in the (non-chiral) duoidal category Fps(Set) the inter-
changer δ : ∅→ ∅ + ∅ is trivial while the other interchangers are not invertible:

τ : ∅→ 1, µ : 1 + 1→ 1,

χ : (X×Y ) + (Z×U)→ (X + Z)×(Y + U).
(98)

In Fps(Set×Setop) all the four interchangers are not invertible.

5.5. Other examples of intercategories. Many examples are considered in [GP7].
Here we only recall, from Section 6 therein, that starting from a weak double category
D with a lax choice of 1-dimensional pullbacks (as defined in [GP1]), one can construct a
3-dimensional intercategory Span(D) with:

- objects and vertical arrows as in D,
- the horizontal maps of D as transversal arrows,
- spans of horizontal maps of D as horizontal arrows.

As analysed in loc. cit., this intercategory is chiral as soon as we have in D a lax
choice of double pullbacks (including the two-dimensional universal property). In fact, τ
and µ are always degenerate while δ is degenerate whenever the choice of pullbacks in D
is preserved by vertical identities, as in all the examples of [GP1] based on profunctors,
spans or cospans. (Note that if D has cotabulators, then its vertical degeneracy has a left
adjoint and must preserve the existing limits.)

If D = Span(C) is the weak double category of spans over a category C with (a
choice of) pullbacks, then the intercategory SpanSpan(C) is the weak symmetric 3-cubical
category of spans of spans of C, already recalled as 3Span(C) in 3.6.

On the other hand, if D = Cosp(C) is the weak double category of cospans over a
category C with pullbacks and pushouts, then SpanCosp(C) (= CospSpan(C)) is the
chiral triple category SC(C) of spans and cospans of C studied here in Section 4.

5.6. Comments on lax multiple categories. We end this section by remarking that
the term ‘lax multiple category’ can cover various ‘kinds’ of laxity, where - with respect to
a weak multiple category - some comparisons are still invertible while others (even some
strict ones!) acquire a particular direction depending on the kind we are considering.

Thus, an intercategory is a particular type of ‘interchange-lax’ triple category, which
is not even a triple set: the positive degeneracies need not commute.

Other examples have already appeared in the domain of symmetric ‘quasi’ cubical cat-
egories [G2], with the ‘symmetric quasi cubical category’ ωCOSP(Top) of higher cospans
of topological spaces, composed with homotopy pushouts (which is of interest for higher
cobordisms, because homotopy pushouts are homotopy invariant, while ordinary pushouts
are not).

For the sake of simplicity, let us replace Top with a more regular 2-dimensional struc-
ture: let C be a 2-category with (a fixed choice of) pseudo-pushouts. Then we can
modify the weak symmetric cubical category ωCosp(C) recalled in 3.5 by composing cu-
bical cospans with pseudo-pushouts. We obtain a kind of lax symmetric cubical category
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ωCOSP(C) where all comparisons are invertible except the unitors, directed as

λi(x) : ei(∂
−
i x) +i x→ x, ρi(x) : x+i ei(∂

+
i x)→ x. (99)

Dually, if the 2-category C has (a fixed choice of) pseudo-pullbacks, we can form a
structure ωSPAN(C) by composing cubical spans with pseudo-pullbacks; we get a different
kind of laxity, where unitors are directed the other way round with respect to (99).

6. Tabulators in a 3-dimensional intercategory

We end by constructing an example of a 3-dimensional intercategory with e1e2 6= e2e1,
where a 12-cube π can have two different total tabulators >12π and >21π. This example
is rather artificial, but non-degenerate intercategories seem to be difficult to build, while
there are important examples of degenerate intercategories, like duoidal categories; of
course the latter (having a single object) lack tabulators.

6.1. An intercategory. Let us start from the chiral triple category of spans and cospans
A = SC(C), studied in Section 4.

We recall that the category C is equipped with a choice of pullbacks and pushouts
that preserves identities. We also assume that C has a (chosen) initial object 0, and
therefore all finite colimits; furthermore, we assume that every morphism u : 0 → X is
mono (which fails in Setop, for instance) and the chosen pullback of (u, u) is precisely 0.

We now restrict the items of A, so that the only remaining 1-arrows are the null spans
X ← 0 → Y . We can thus form an intercategory B that is not a substructure of A and
is no longer chiral: it has a different e1 and its interchangers τ, µ are directed - while δ
stays degenerate.

(a) B∗, B0, B2 and B02 coincide, respectively, with A∗, A0, A2, A02, and have the same
composition laws in direction 0 and 2.

(b) The subset B1 ⊂ A1 of the new 1-cells consists of the null spans (X ← 0 → Y ) of
C, also written as 0XY : X →1 Y ; they compose as in A (by our assumptions on the zero
object) but have different identities (as the old ones do not belong to B1)

0XY +1 0Y Z = 0XZ , e1(X) = 0XX = (X ← 0→ X).

This forms a category, isomorphic to the codiscrete category on the objects of C.

(c) A 01-cell in A01 amounts to an arbitrary pair (p, q) of morphisms of C

X
0XY //

p ##

Y
q

""

• //

0
��

1

X ′
0X′Y ′

// Y ′
(100)
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Their 0-composition is obvious and gives a category isomorphic to C×C. Their 1-
composition is that of the codiscrete category on the morphisms of C, namely (p, q) +1

(q, r) = (p, r).

(c′) A 12-cell π of B12 ⊂ A12 is a cell of A12 whose 1-arrows are null spans and 2-arrows
are arbitrary cospans

X 0 //

u

��

Y

v

��

• //

2��

1

π

Z
0

// U

(101)

as in the left diagram below (automatically commutative in C)

X

u′
��

0oo //

��

Y

v′
��

X

u′
��

Y

v′
��

A P
f ′oo f ′′ // B A P

f ′oo f ′′ // B

Z

u′′

OO

0oo //

OO

U

v′′

OO

Z

u′′

OO

U

v′′

OO

It amounts to a triple (u, f, v) containing two cospans (u and v) and a span (f) as in
the right diagram above. The 1- and 2-composition of these 12-cells are as in A (computed
by pushouts and pullbacks, respectively), with the same associators. In particular

(u, f, v) +1 (v, g, w) = (u, f +1 g, w). (102)

The degeneracy e2 : B1 → B12 is the restriction of that of A, and sends a null span
0XY to the obvious 12-cell with three degenerate cospans (on X, 0 and Y ). The other
degeneracy is different from that of A

e2 : B1 → B12, e2(0XY ) = e2(X ← 0→ Y ) = ((1X , 1X), 0XY , (1Y , 1Y )),

e1 : B2 → B12, e1(u) = e1(X → A ← Y ) = (u, (1A, 1A), u),
(103)

X

1
��

Y

1
��

X

u′
��

Y

u′
��

X 0oo // Y A A
1oo 1 // A

X

1

OO

Y

1

OO

Y

u′′

OO

Y

u′′

OO

The interchangers are defined as follows. Firstly, δ is trivial

δ(0XY , 0Y Z) : e2(0XY +1 0Y Z)→ e2(0XY ) +1 e2(0Y Z), (104)

namely the identity of the 12-cell ((1X , 1X), 0XZ , (1X , 1X)).



40

Secondly, µ amounts to the canonical morphism h : A + B → C, where A,B and
C = A+Y B are the central objects of the 2-arrows u, v and u+2 v, respectively:

µ(u, v) : e1(u) +2 e1(v)→ e1(u+2 v),

(u+2 v, (h, h), u+2 v)→ (u+2 v, (1C , 1C), u+2 v).
(105)

Thirdly, χ is the (non-invertible) restriction of the binary interchanger of A; also τ is
not invertible (in general)

τ(X) : e2e1(X)→ e1e2(X),

((1X , 1X), 0XX , (1X , 1X))→ ((1X , 1X), (1X , 1X), (1X , 1X)),
(106)

X

1
��

X

1
��

X

1
��

X

1
��

X 0oo // X X X
1oo 1 // X

X

1

OO

X

1

OO

X

1

OO

X

1

OO

(d) Finally B012 is the set of triple cells of A whose 1-arrows are null spans. They compose
as in A.

6.2. Tabulators. Let us suppose now that the category C also has a terminal object
(and therefore all finite limits). Then our example has all kinds of tabulators; here there
are six forms instead of five, because e1 and e2 do not commute.

(a) The tabulator of a 1-arrow f = 0XY (i.e. a null span) is an object T = >1f with a
universal 1-map e1(T ) = 0TT →0 f ; the solution is the product X×Y in C.

(b) The tabulator of a 2-arrow u (a cospan) is an object >2u with a universal 2-map
e2(>2u)→0 u; the solution is the pullback of u in C.

After these, we have four tabulators for the 12-cube π = (u, f, v) of (101).

(c) The total e1e2-tabulator T = >12π is an object with a universal 12-map e1e2(T )→0 π,
where e1e2(T ) = ((1T , 1T ), (1T , 1T ), (1T , 1T )) (see (106)). The solution is the limit in C of
π, viewed as the left diagram below

X

u′
��

Y

v′
��

X

u′
��

Y

v′
��

A P
f ′oo f ′′ // B A B

Z

u′′

OO

U

v′′

OO

Z

u′′

OO

U

v′′

OO

(c′) The total e2e1-tabulator T = >21π is an object with a universal 12-map e2e1(T )→0 π,
where e2e1(T ) = ((1T , 1T ), 0TT , (1T , 1T )) (see (106)). The solution is the limit in C of the
right diagram above, namely the product >u×>v of two pullbacks.
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(d) The e1-tabulator is a 2-arrow (a cospan) >1π with a universal 12-map e1(>1π)→0 π;
the solution, as in the left diagram below, is the cospan z = (L′ → P ← L′′), where
L′ = lim(u′, f ′, f ′′, v′) is the limit of the upper part of π and L′′ = lim(u′′, f ′, f ′′, v′′) is the
limit of its lower part.

L′

z′
��

L′

z′
��

S

1
��

T

1
��

P P1oo 1 // P S 0oo // T

L′′
z′′

OO

L′′
z′′

OO

S

1

OO

T

1

OO (107)

(e) The e2-tabulator of π is a 1-arrow >2π = 0ST (a null span) with a universal 12-map
e2(>2π)→0 π; the solution, as in the right diagram above, is the null span (S ← 0→ T )
on the pullbacks of the two cospans ∂α1 π, namely S = >2u and T = >2v.

These limits are only partially preserved by faces and degeneracies, in the following
sense.

- ∂α2 (>1π) need not coincide with >1(∂
α
2 π). For instance, for α = 0, the domain L′ of the

cospan >1π (described above) need not be the product X×Z of the 1-faces of ∂−2 π = 0XZ .

- >1(e2f) = e2(>1f), i.e. the 2-degenerate cell e2f = ((1X , 1X), 0XY , (1Y , 1Y )) on the null
span f = 0XY has an e1-tabulator

(1X , 1X)×(1Y , 1Y ) = (X×Y ← X×Y → X×Y ),

that coincides with e2(X×Y ).

- ∂α1 (>2π) = >2(∂
α
1 π), which means, for α = 0, that the domain of the null span >2π

(described above) is the pullback of the cospan ∂−1 π.

- >2(e1u) = e1(>2u), i.e. the 1-degenerate cell e1u = (u, 0, u) on the cospan u has an
e2-tabulator that coincides with the degenerate span on the pullback of u.
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[Eh] C. Ehresmann, Catégories structurées, Ann. Sci. Ecole Norm. Sup. 80 (1963), 349-
425.

[GPS] R. Gordon - A.J. Power - R. Street, Coherence for tricategories, Mem. Amer. Math.
Soc. 117 (1995), n. 558.

[G1] M. Grandis, Higher cospans and weak cubical categories (Cospans in Algebraic
Topology, I), Theory Appl. Categ. 18 (2007), No. 12, 321-347.

[G2] M. Grandis, Cubical cospans and higher cobordisms (Cospans in Algebraic Topology,
III), J. Homotopy Relat. Struct. 3 (2008), 273-308.

[G3] M. Grandis, The role of symmetries in cubical sets and cubical categories (On weak
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III), Cah. Topol. Géom. Différ. Catég. 54 (2013), 91-126.

[GM] M. Grandis - L. Mauri, Cubical sets and their site, Theory Appl. Categ. 11 (2003),
No. 8, 185-211.
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