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Abstract.

Partial difference operators for a large class of functors between presheaf categories are
introduced, extending our difference operator from [5] to the multivariable case. These
combine into the Jacobian profunctor which provides the setting for a lax chain rule.
We introduce a functorial version of multivariable Newton series whose aim is to recover
a functor from its iterated differences. Not all functors are recovered but we get a best
approximation in the form of a left adjoint, and the induced comonad is idempotent. Its
fixed points are what we call soft analytic functors, a generalization of the multivariable
analytic functors of Fiore et al. [3].
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Introduction

This is a sequel to [5]. Here we are interested in the structure of functors SetA // SetB

generalizing the difference calculus for endofunctors of Set. An important example is
given by the generalized analytic functors of [3]. As in that work, profunctors are central.
That is perhaps the main difference the present work has with [5]. This is somewhat of
a simplification like saying that multivariate calculus is just single variable calculus plus
linear algebra. The added dimensions open up a whole array of possibilities.

The work here is a categorified version of the classical partial difference operators for
real functions

Rn // Rm ,

a discrete version of partial derivatives. The analogy is quite fruitful.
As the paper is quite long, it may be helpful to point out the main results, namely the

lax chain rule (Theorem 4.4.2) and the Newton adjunction (Theorem 5.3.2) together with
the convergence theorem (Theorem 5.4.1). These results are proper to the categorical
setting and have no counterpart for real-valued functions. They could not be formulated
without the pivotal definitions of the (discrete) Jacobian as a profunctor (Definition 4.1.2)
and soft analytic functor (Definition 5.2.5). A detailed description of the paper is in the
contents section.

Thanks to Nathanael Arkor, Andreas Blass, John Bourke, Aaron Fairbanks, Marcelo
Fiore, Richard Garner, Theo Johnson-Freyd, Tom Leinster, Mat́ıas Menni, Deni Salja,
and Peter Selinger for their insightful comments and interest.

1. Profunctors

Profunctors (a.k.a. bimodules, modules, distributors) will be at the heart of this work.
Widely viewed as categorified relations, for our purposes they are better viewed as cate-
gorified matrices. They correspond to cocontinuous functors between functor categories.
Such functors are considered to be linear. This section contains nothing new (except,
perhaps 1.4). It is included for completeness and to set notation.

1.1. Definitions.We have opted, not without thought, for the following definition which
is the opposite of the majority view.
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1.1.1. Definition. (Lawvere, Bénabou) Let A and B be small categories. A profunctor
P : A • // B is a functor P : Aop×B //Set. A morphism of profunctors t : P //Q is
a natural transformation.

This gives the basic data for a bicategory, Prof , of profunctors. Composition is given
by “matrix multiplication” which takes the form of a coend. For P : A • // B and
Q : B • // C, the composite Q⊗ P is defined by

Q⊗ P (A,C) =
∫ B∈B

Q(B,C)× P (A,B) .

The identity IdA : A • // A is the hom functor

IdA(A,A
′) = A(A,A′) .

The reader is referred to the standard texts (see e.g. [2]) for a proof that we do get a
bicategory.

For explicit computations involving profunctors, the following notation is useful. An
element x ∈ P (A,B) is denoted by a pointed arrow, sometimes called a heteromorphism,
x : A • // B, or x : A •

P
//B if it’s necessary to keep track of the profunctor. The func-

toriality of P manifests itself as a composition

A B•x //A

A′

OO

f

B

A′

??

•
xf

A B•x //A

B′

•gx

��

B

B′

g

��

which is associative (left, right, and middle) and unitary.
It is in dealing with composition that this is most useful. An element of Q⊗ P (A,C)

is an equivalence class of pairs

[A •x
P
//B •

y

Q
//C]B

where the equivalence relation is generated by identifying [A •x //B •
y //C] and

[A •x
′
//B •

y′ //C] if we have

A B′•
x′

//

A

A

A B•x // B

B′

b

��
B′ C ,•

y′
//

B

B′

B C•
y // C

C ,
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so they are equivalent iff there exists a path of pairs

A B′ C .

...
...

...

A B2 C

A B1 C

A B C

bn

OO

b3
��

b2

OO

b1

��

•
x′

//
y′

//

•
x2 // y2 //

•
x1 // •

y1 //

•x // •
y //

(*)

We write the equivalence class [A •x //B •
y //C]B as

y ⊗B x or simply y ⊗ x .

The equivalence relation is generated by

yb⊗ x = y ⊗ bx .

Every functor F : A //B induces two profunctors

F∗ : A • // B F ∗ : B • // A

and

F∗(A,B) = B(FA,B) F ∗(B,A) = B(B,FA).

F ∗ is right adjoint to F∗ in Prof .

1.2. Biclosedness. The bicategory Prof is biclosed, that is ⊗ admits right adjoints in
each variable giving two hom profunctors ⊘ and ; characterized by natural bijections

P //Q;C R

Q⊗B P //R

Q //R⊘A P

for profunctors

A B•P //A

C .

•
R

##

B

C .

•Q
��
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We use Lambek’s notation for the internal homs. Inasmuch as ⊗ is a product, the
right adjoints are quotients of a sort.

An element of (Q;C R)(A,B) is a C-natural transformation

t : Q(B,−) //R(A,−)

and an element of (R⊘A P )(B,C) is an A-natural transformation

u : P (−, B) //R(−, C) .

1.3. Cocontinuous functors. Our interest is in functors between functor categories
and a profunctor will produce an adjoint pair of them. A profunctor : 1 • // A is a
functor

1op ×A // Set

which we identify with a functor Φ: A // Set. A profunctor P : A • // B will then
produce, by composition, a functor

P ⊗A ( ) : SetA // SetB

with a right adjoint
P ;B ( ) : SetB // SetA .

It follows that P ⊗A ( ) is cocontinuous and is considered to be the linear functor
corresponding to the matrix P .

As is well-known, we have:

1.3.1. Proposition. The following categories are equivalent:

(1) Profunctors A • // B

(2) Cocontinuous functors SetA // SetB

(3) Adjoint pairs SetA SetB
//

SetA SetBoo ⊥

Given a cocontinuous functor F : SetA // SetB, the corresponding profunctor
P : A • // B is given by

P (A,B) = F (A(A,−))(B) .

Note that this doesn’t use cocontinuity of F , which leads to the following.

1.3.2. Definition. The core of a functor F : SetA //SetB is the profunctor defined by

Cor(F )(A,B) = F (A(A,−))(B) .

The functor
Cor(F )⊗ ( ) : SetA // SetB

is the linear core of F .
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1.3.3. Proposition. Cor is right adjoint to the functor Prof (A,B) //Cat(SetA,SetB)
which takes a profunctor P to the (cocontinuous) functor P ⊗A ( ).

Proof. A profunctor P : A • // B can be viewed, by exponential adjointness, as a
functor Aop // SetB. Then Cor is just restriction along the Yoneda embedding

F : SetA // SetB 7−→ Aop Y // SetA F // SetB

and P ⊗A ( ) is left Kan extension

Aop

SetB

P

��

Aop SetAY // SetA

SetB

LanY P=P⊗( )

��

+3

.

Thus for F : SetA // SetB, Cor(F ) ⊗A ( ) is the best approximation to F by a
cocontinuous functor. As a matter of interest, the counit of the adjunction

ϵ(F ) : Cor(F )⊗ ( ) // F

is given as follows. An element of (Cor(F )⊗ Φ)(B) is an equivalence class

[x ∈ ΦA, y : A •
Cor(F )

// B]A

so
[A(A,−) x̄ // Φ, y ∈ F (A(A,−))(B)]

giving

F (A(A,−))(B)
F (x̄)(B) // F (Φ)(B)

y 7−→ F (x̄)(B)(y) .

1.3.4. Example. If A and B are discrete categories, i.e. sets A and B, then a profunctor
P : A • // B is just a A×B-matrix of sets [Pab] and a morphism of profunctors P //P ′

a A × B-matrix of functions. The identity IdA is the matrix with 1’s on the diagonal
and 0 elsewhere. If C is another discrete category and Q : B • // C a profunctor, then
Q⊗B P is the B × C-matrix [∑

b∈B

Qbc × Pab
]
.

If R : A • // C then

R⊘A P =
[∏
a∈A

RPab
ac

]
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and

Q;C R =
[∏
c∈C

RQbc
ac

]
.

A profunctor X : 1 • // A is a 1 × A matrix of sets, i.e. a vector [Xa] and P ⊗A X
is the vector [∑

a∈A

Pab ×Xa

]
b .

On the other hand for Y : 1 • // B a B-vector P ;B Y[∏
b

Y Pab
b

]
a .

So P ⊗A ( ) is a linear functor, and P ;B ( ) a monomial functor.

2. Tense functors

In [5] we developed a difference calculus for taut endofunctors of Set, functors preserving
inverse images. However, the important example of multivariable analytic functors of
[3] are not taut. In fact the linear functors P ⊗ ( ) are not taut. They don’t even
preserve monos. What we need are functors preserving complemented subobjects and
their inverse images. Of course, in Set, all subobjects are complemented so it would
make no difference, so maybe that’s what taut should be after all. But the word “taut”
is pretty well established, so we use “tense” instead.

2.1. Complemented subobjects. In this section we collect some useful facts about
complemented subobjects in functor categories SetA, most of which are well-known from
topos theory. We first list some general topos theory results which will be useful for
us. Proofs can be found in any of the standard topos theory books (see [1] for an easily
accessible account).

2.1.1. Definition. A subobject Ψ // // Φ is complemented if there exists another sub-
object Ψ′ // // Φ for which the induced morphishm Ψ +Ψ′ // Φ is invertible.

We will use the hooked arrow Ψ ↪→ Φ as a reminder that Ψ is complemented,
Recall that every subobject Ψ // //Φ has a pseudo-complement ¬Ψ // //Φ, the largest

subobject of Φ whose intersection with Ψ is 0. It can be calculated as the pullback of the
element false : 1 // // Ω along the characteristic morphism of Ψ.
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2.1.2. Proposition. 1. A subobject Ψ // // Φ is complemented iff its characteristic
morphism factors through 1 + 1

Φ

1 + 1
��

Φ Ω
χΨ // Ω

1 + 1

AA

⟨true, false⟩AA

2. Complemented subobjects are closed under composition.

3. Complemented objects are stable under pullback: if Ψ ↪→ Φ is complemented and
f : Θ // Φ, then ¬f−1(Ψ) = f−1(¬Ψ) and we have isomorphisms

Ψ+ (¬Ψ) Ψ .//
∼= //

f−1(Ψ) + f−1(¬Ψ)

Ψ + (¬Ψ)

g+g′

��

f−1(Ψ) + f−1(¬Ψ) Θ//
∼= // Θ

Ψ .

f

��

4. If Ψ ↪→ Φ is complemented, its complement is ¬Ψ, so complements are unique
when they exist.

5. Given an inverse image diagram (pullback)

Ψ Φ ,// //

Γ

Ψ

g

��

Γ Θ// // Θ

Φ ,

f

��

Pb

f restricts to

¬Ψ Φ// //

¬Γ

¬Ψ

¬g

��

¬Γ Θ// // Θ

Φ

f

��

and the resulting square is also a pullback.

Complemented subobjects in functor categories SetA are better behaved than in gen-
eral toposes. For example ¬Ψ // //Φ is always complemented for any subobject Ψ // //Φ.

2.1.3. Proposition. For SetA we have
(1) Ψ // // Φ is complemented iff for all f : A // A′ and x ∈ ΦA we have

x ∈ ΨA ⇐⇒ Φ(f)(x) ∈ Ψ(A) .
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This is equivalent to saying that for all f : A // A′

ΨA′ ΦA′// //

ΨA

ΨA′

Ψf

��

ΨA ΦA// // ΦA

ΦA′

Φf

��

is a pullback diagram. This in turn is equivalent to saying that for all f : A //A′, every
commutative square

Ψ Φ// //

A(A′,−)

Ψ
��

A(A′,−) A(A,−)A(f,−) //A(A,−)

Φ
��

A(A,−)

Ψ
zz

has a unique fill-in making the bottom triangle commute, i.e. Ψ // Φ is orthogonal to
every representable transformation.

(2) For Ψ // // Φ,

¬Ψ(A) = {a ∈ ΦA | (∀f : A // A′)(Φ(f)(a) /∈ Ψ(A′)}

and ¬¬Ψ(A) consists of all elements, x of Φ(A) connected to an element x′ of Ψ by a
zigzag of elements of Φ

A oo A1
// A2
oo · · · // An A′

ΦA oo ΦA1
// ΦA2

oo · · ·ΦAn oo oo ΨA′

x oo � x1
� // x2 oo

� · · · � // xn x′

(3) For any Ψ // // Φ, ¬Ψ is complemented and its complement is ¬¬Ψ which is the
smallest complemented subobject of Φ containing Ψ.

Thus the class of complemented subobjects consists of all transformations right or-
thogonal to the representable transformations A(f,−), suggesting that it may be theM
part of a factorization system on SetA, which is indeed the case.

For Φ in SetA, let∼ be the equivalence relation on the set of all elements of Φ generated
by identifying x ∈ ΦA with Φf(x) ∈ ΦA′ for all f : A // A′. Thus x ∈ ΦA ∼ x′ ∈ ΦA′

if there exists a zigzag path as in (2) above. The set of equivalence classes is the set of
components of Φ, π0Φ = lim−→A

ΦA, and two elements are equivalent if and only if they are
in the same component.

2.1.4. Definition. A transformation t : Ψ // Φ is π0-surjective if π0t : π0Ψ // π0Φ is
surjective.

Thus t is π0-surjective iff every element of Φ is connected by a zigzag path to an
element in the image of t.
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2.1.5. Proposition.

(1) t, u π0-surjective⇒ tu π0-surjective.

(2) tu π0-surjective⇒ t π0-surjective.

(3) Every t factors uniquely up to a unique isomorphism as a π0-surjective followed by
a complemented monomorphism.

(4) The π0-surjective transformations are left orthogonal to the complemented monos.

Proof. (1) and (2) are obvious from the definition. For (3), let t : Ψ // Φ be any
transformation. Let Φ0A ⊆ ΦA be the set of all x ∈ ΦA connected to an element in the
image of t. Φ0 is easily seen to be a complemented subfunctor of Φ, and is in fact the
union of all of the components of Φ that contain an element in the image of t. Then t
factors as

Ψ
t0 // Φ0

� � // Φ

and t0 is π0-surjective by construction. This is our factorization. The uniqueness part
will follow from (4).

Consider a commutative square in SetA

Γ ∆� �

m
//

Ψ

Γ

r

��

Ψ Φt // Φ

∆

s

��

where t is π0-surjective and m is a complemented mono. Any x ∈ ΦA is connected to
some t(A′)(y) for y ∈ ΨA′, so s(A)(x) is connected to s(A′)t(A′)(y) = m(A′)r(A′)(y). As
m is complemented, this implies that s(A)(x) is in Γ(A). This gives the diagonal fill-in
δ : Φ // Γ such that m δ = s and δ t = r. δ is unique as m is monic.

These results tell us that we have a factorization system on SetA with E the class of π0-
surjections andM the class of complemented monos. We call it the Boolean factorization.
Note that the class of π0-surjections is not stable under pullback however. Consider
morphisms fi : A0

// Ai, i = 1, 2 in A and consider the pullback

A(A2,−) A(A0,−) .
A(f2,−)

//

Σ

A(A2,−)
��

Σ A(A1,−)//A(A1,−)

A(A0,−) .

A(f1,−)

��

Pb
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Σ(A) consists of pairs of morphisms (g1, g2) such that

A2 Ag2
//

A0

A2

f2

��

A0 A1
f1 // A1

A

g1

��

commutes, which well may be empty for all A. In that case, taking π0 of the above
pullback gives

1 1//

0

1
��

0 1// 1

1
��

showing that A(g1,−) is π0-surjective but its pullback is not.
Nevertheless, it will be useful for us in Section 5 where we will be particularly interested

in transformations defined on sums of representables. We record here the following facts
for use later.

A natural transformation

t :
∑
j∈J

A(Cj,−) //
∑
i∈I

A(Ai,−)

is determined by a function on the indices α : J // I and a J-family of functions ⟨fj⟩,

fj : Aα(j) // Cj .

Write t =
∑
α

A(fj,−).

2.1.6. Proposition. With t, α, fi as above we have

(1) t is a complemented mono if and only if α is one-to-one and the fj are isomorphims.

(2) t is π0-surjective if and only if α is onto.

(3) For a general t given by (α, ⟨fj⟩) we get its Boolean factorization by factoring α

J

K

σ
��

J Iα // I

K

DD

µ
2�

and then taking∑
j∈J

A(Cj,−)
∑

σ A(fk,−)
//
∑
k∈K

A(Ak,−)
∑

µ A(1Ai
,−)

//
∑
i∈I

A, (Ai,−) .
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It’s implicit in (1), but may be worth mentioning explicitly, that the complemented
subobjects of

∑
i∈I A(Ai,−) are the subsums, i.e. of the form

∑
k∈K A(Ak,−) for K ⊆ I.

It is also clear from the fact that each hom functor A(Ai,−) is connected and comple-
mented, so is one of the components of

∑
i∈I A(Ai,−), and any complemented subfunctor

is a union of components.
The following is well-known.

2.1.7. Proposition. Every subobject in SetA is complemented (SetA is boolean) if and
only if A is a groupoid.

We end this subsection with the following, which says that limits and confluent colimits
of complemented subobjects are again complemented.

2.1.8. Proposition. Let Γ: I //SetA be a diagram in SetA and Γ0
// //Γ a subdiagram

such that for every I, Γ0(I) ↪→ Γ(I) is complemented, then

(1) lim←−Γ0
// lim←−Γ is a complemented subobject.

If I is confluent we also have that

(2) lim−→Γ0
// lim−→Γ is a complemented subobject.

Proof. (1) Γ0(I) ↪→ Γ(I) is complemented iff for every f : A // A′,

Γ0(I)(A
′) Γ(I)(A′)// //

Γ0(I)(A)

Γ0(I)(A
′)

Γ0(I)(f)

��

Γ0(I)(A) Γ(I)(A)// // Γ(I)(A)

Γ(I)(A′)

Γ(I)(f)

��

is a pullback (2.1.3 (1)). Limits of pullback diagrams are pullbacks, and the result follows.
(2) Recall from [5] that a category I is confluent if any span can be completed to a

commutative square, and that confluent colimits commute with inverse image diagrams
in Set. This gives (2) immediately.

2.1.9. Corollary. The intersection of an arbitrary family of complemented subobjects
is again complemented. The same for union.

Proof. Let Ψi ↪→ Φ be a family of complemented subobjects. Without loss of generality
we can assume that the total subobject Φ ↪→ Φ is contained in it so that the indexing
poset I is connected. Then by the previous proposition

lim←−Ψi
// lim←−Φ

is a complemented mono. Because I is connected the limit of the constant diagram
lim←−Φ ∼= Φ, and the lim←−Ψi is ∩Ψi ↪→ Φ. The lattice of complemented subobjects of Φ is
self-dual which implies the result for unions.
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Note that this result does not hold in an arbitrary Grothendieck topos.

2.2. Tense functors. As mentioned above, the functors P⊗( ) : SetA //SetB arising
from profunctors are not generally taut. In fact they don’t even preserve monos in general.
This may not be surprising if we consider the tensor product of modules but one might
have hoped that things would be better in the simpler Set case.

2.2.1. Example. For any epimorphism e : A // A′ in A, the natural transformation
A(e,−) : A(A′,−) //A(A,−) is a monomorphism. If, for a profunctor P : A • // B,
P ⊗ ( ) : SetA // SetB were to preserve monos, we would need that P ⊗A(e,−) be a
mono, but P ⊗A(e,−) is

P (e,−) : P (A′,−) // P (A,−) .

So P (e, B) : P (A′, B) //P (A,B) would have to be one-to-one for all B, but that’s hardly
always the case. The simplest example is when A = 2 and B = 1. Then P (e, 0) is an
arbitrary function in Set (e is the unique morphism 0 // 1, which is of course epi).

Now, the functors P⊗( ) are “linear functors” and any theory of functorial differences
that doesn’t apply to them is seriously flawed. This leads to the main definition of the
section.

2.2.2. Definition. A functor F : SetA // SetB is tense if it preserves

(1) complemented subobjects, and

(2) inverse images (pullbacks) of complemented subobjects.

A natural transformation is tense if the naturality squares corresponding to comple-
mented subobjects are pullbacks.

Tense functors are closely related to, though incomparable with, taut functors. For
this reason we chose the word “tense” as an approximate synonym and homonym of
“taut”.

Any functor preserving binary coproducts is tense, in particular P ⊗ ( ), which pre-
serves all colimits, is tense. So Example 2.2.1 shows that tense does not imply taut. On
the other hand the functor

Set // Set2

A 7−→ (A // 1)

is taut (a right adjoint, so preserves all limits) but not tense: any proper subset A ⊊ B
gives a non-complemented subobject

1 1 .

A

1
��

A B// // B

1 .
��

The following is obvious but worth stating explicitly.
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2.2.3. Proposition. Identities are tense and compositions of tense functors are tense.
Horizontal and vertical composition of tense natural transformations are again tense, giv-
ing a sub-2-category Tense of the 2-category Cat of categories.

2.2.4. Proposition. For any functor F : SetA // SetB we have

(1) If SetA is Boolean then tense implies taut

(2) If SetB is Boolean then taut implies tense

(3) If F is taut then it is tense if and only if F of the first injection j : 1 // 1 + 1 is
complemented.

Proof. (1) and (2) are obvious as is the “only if” part of (3), so assume F is taut and
F (j) complemented. If Ψ ↪→ Φ is complemented, its characteristic morphism factors
through 1 + 1 // // Ω giving a pullback

1 1 + 1 ,� �

j
//

Ψ

1
��

Ψ Φ� � // Φ

1 + 1 ,
��

Pb

F of which is also a pullback, so F (Ψ) �
� // F (Φ) is complemented.

Evaluation functors preserve tenseness but, contrary to tautness, they don’t jointly
create it. However if we consider “evaluating at a morphism” they do.

2.2.5. Proposition. A functor F : SetA // SetB is tense if and only if

(1) for every B in B, evBF : SetA // Set is tense, and

(2) for every g : B //B′, evgF : evBF // evB′F is a tense transformation.

Furthermore, a natural transformation t : F //G is tense if and only if evBt is tense
for every B.

Proof. evB : Set
B // Set preserves coproducts so is tense and thus evBF will be tense

if F is. To say that evg : evB // evB′ is tense is to say that for every complemented
subobject Ψ �

� // Φ we have a pullback

ΨB′ ΦB′� � //

ΨB

ΨB′

Ψg

��

ΨB ΦB� � // ΦB

ΦB′

Φg

��

Pb

which Proposition 2.1.3 (1) says is indeed the case. So evgF will be tense when F is.
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In fact, this says that being complemented is equivalent to every g giving a pullback
as above. So our condition (2) implies that F preserves complemented subobjects. And
the evaluation functors evB jointly create pullbacks. So (1) and (2) together imply that
F is tense.

The second part is clear as the functors evB jointly create pullbacks and tenseness of
natural transformations is a purely pullback condition.

2.2.6. Corollary. The following are equivalent.

(1) F : SetA // SetB is tense.

(2)(a) For every complemented subobject Ψ ↪→ Φ and every morphism g : B //B′,

F (Ψ)(B′) F (Φ)(B′)//

F (Ψ)(B)

F (Ψ)(B′)
��

F (Ψ)(B) F (Φ)(B)// F (Φ)(B)

F (Φ)(B′)
��

is a pullback diagram, and

(b) For every pullback diagram of complemented subobjects

Ψ Φ� � //

Ψ′

Ψ
��

Ψ′ Φ′� � // Φ′

Φ
��

Pb

and every B in B,

F (Ψ)(B) F (Φ)(B)//

F (Ψ′)(B)

F (Ψ)(B)
��

F (Ψ′)(B) F (Φ′)(B)// F (Φ′)(B)

F (Φ)(B)
��

is a pullback.

(3) For the same givens as in 2,

F (Ψ)(B′) F (Φ)(B′)//

F (Ψ′)(B)

F (Ψ)(B′)
��

F (Ψ′)(B) F (Φ′)(B)// F (Φ′)(B)

F (Φ)(B′)
��

is a pullback.
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Furthermore, t : F // G is tense if and only if for every complemented subobject
Ψ ↪→ Φ and every object B in B,

G(Ψ)(B′) G(Φ)(B)//

F (Ψ)(B)

G(Ψ)(B′)

t(Ψ)(B)

��

F (Ψ)(B) F (Φ)(B)// F (Φ)(B)

G(Φ)(B)

t(Φ)(B)

��

is a pullback.

Proof. That (1) is equivalent to (2) follows immediately from the previous proposition,
the definition of tense, and Proposition 2.1.3, as does the statement about tense transfor-
mations.

(2) (a) and (b) are special cases of (3) and the pullback in (3) can be factored into
two pullbacks of type (a) and (b).

2.3. Limits and colimits of tense functors.

2.3.1. Proposition. Let Γ: I //Cat(SetA,SetB) be a diagram such that for every I in
I, Γ(I) is tense. Then

(1) lim←−Γ is tense.

If t : Γ // Θ is a natural transformation such that for every I in I, tI : ΓI // ΘI is
tense, then

(2) the induced transformation

lim←− t : lim←−Γ // lim←−Θ

is tense.
If I is confluent, then under the same conditions as above we have

(3) lim−→Γ is tense, and

(4) lim−→ t is tense.

Proof. (1) and (3). The preservation of complemented subobjects follows immediately
from Proposition 2.1.8. The preservation of pullbacks of complemented subobjects follows
from the fact that limits commute with limits for (1) and that confluent colimits commute
with inverse images for (3).

Tenseness of natural transformations is also a pullback condition, so (2) and (4) follow
for the same reasons.
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This is a result about limits and colimits of tense functors taken in Cat(SetA,SetB).
It is not assumed that the transition transformations Γ(I) // Γ(J) are tense, and unsur-
prisingly we don’t get a universal property for tense cones or cocones. Given a tense cone
or cocone, the uniquely induced natural transformation is tense but this doesn’t establish
the required bijection because neither the projections in the limit case nor the injections
in the colimit case are tense.

It’s more natural to consider diagrams where the transitions are tense,
i.e. Γ : I // Tense(SetA,SetB). For such diagrams, things are better. We lose prod-
ucts as the projections are not tense but that’s the only obstruction. Limits of connected
tense diagrams are created by the inclusion

Tense(SetA,SetB) // // Cat(SetA,SetB)

as are all colimits, not just confluent ones.
First we analyze diagrams Γ: I // Tense(SetA,SetB).

2.3.2. Proposition. The bicategory Tense is Cat-cotensored. The cotensor of SetB by
I is SetB×I, i.e.

(1) diagrams Γ: I // Tense(SetA,SetB) are in bijection with tense functors
Γ: SetA // SetB×I, and

(2) natural transformations t : Γ // Θ are in bijection with tense natural transforma-
tions t : Γ //Θ.

Proof. Functors Γ: I // Cat(SetA,SetB) correspond bijectively to functors
Γ: SetA // SetB×I by exponential adjointness:

Γ(Φ)(B, I) = Γ(I)(Φ)(B) .

If Γ factors through Tense(SetA,SetB) then we want to show that Γ is tense.
First of all Γ(Ψ) // Γ(Φ) must be a complemented subobject for Ψ � � // Φ comple-

mented, i.e.

Γ(Ψ)(B′, I ′) Γ(Φ)(B′, I ′)//

Γ(Ψ)(B, I)

Γ(Ψ)(B′, I ′)

Γ(Ψ)(g,α)

��

Γ(Ψ)(B, I) Γ(Φ)(B, I)// Γ(Φ)(B, I)

Γ(Φ)(B′, I ′)

Γ(Φ)(g,α)

��

for g : B //B′ and α : I // I ′, should be a pullback of monos. If we rewrite this in terms
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of Γ and use functoriality on the vertical arrows we see that it is

Γ(I ′)(Ψ)(B′) Γ(I ′)(Φ)(B′)// //

Γ(I)(Ψ)(B′)

Γ(I ′)(Ψ)(B′)

Γ(α)(Ψ)(B′)

��

Γ(I)(Ψ)(B′) Γ(I)(Φ)(B′)// // Γ(I)(Φ)(B′)

Γ(I ′)(Φ)(B′)

Γ(α)(Φ)(B′)

��

(1)

Γ(I)(Ψ)(B′) Γ(I)(Φ)(B′)// //

Γ(I)(Ψ)(B)

Γ(I)(Ψ)(B′)

Γ(I)(Ψ)(g)

��

Γ(I)(Ψ)(B) Γ(I)(Φ)(B)// // Γ(I)(Φ)(B)

Γ(I)(Φ)(B′)

Γ(I)(Φ)(g)

��

(2)

(1) is a pullback of monos because Γ(I) is tense, and (2) is a pullback of monos because
Γ(α) is a tense transformation (the mono part because Γ(I ′) is tense).

This shows that if Γ(I) preserves complemented subobjects and Γ(α) is tense, then Γ
preserves complemented subobjects. The converse is also true as can be seen by taking
α = idI for Γ(I) and g = 1B for Γ(α).

Preservation of inverse images by Γ is equivalent to that of Γ(I) as can be seen imme-
diately upon writing it down. Likewise for the tenseness of t.

2.3.3. Theorem. The inclusion Tense(SetA,SetB) // // Cat(SetA,SetB) creates colim-
its and connected limits.

Proof. Given a diagram Γ: I //Tense(SetA,SetB), its colimit is given by the composite

SetA Γ // SetB×I
lim−→I // SetB

lim−→I
is left adjoint to the diagonal functor D : SetB //SetB×I, so it preserves coproducts

and a fortiori is tense. And Γ is tense by the previous proposition, so lim−→I
Γ(I) is tense.

D itself preserves coproducts being left adjoint to lim←−, the limit functor. So D is tense.
Natural transformations between coproduct preserving functors are automatically tense,
so the adjunction lim−→I

⊣ D is an adjunction in the bicategory Tense, and this gives the
universal property of lim−→I

Γ(I):

Tense(SetA,SetB)I
∼= // Tense(SetA,SetB×I)

Tense(SetA, lim−→)
// Tense(SetA,SetB)

is left adjoint to

Tense(SetA,SetB) Tense(SetA, D) // Tense(SetA,SetB×I)
∼= // Tense(SetA,SetB)I

which is itself the diagonal functor.
If I is non-empty and connected, then lim←−I

: SetB×I //SetB preserves coproducts, so
the same argument as above shows that I-limits are created in this case.
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2.4. Internal homs. Part of the motivation for tense instead of taut was that the linear
functors P ⊗ ( ) were not in general taut but preserved coproducts, so were tense. The
other side of the story is that the right adjoint to P ⊗ ( ), namely P ; ( ), is taut but not
always tense. As Example 1.3.4 suggests P ; ( ) is a functorial version of a monomial
with the P acting as the powers, and perhaps we shouldn’t expect them to be nice for all
P . After all, even for real valued functions, fractional powers can be problematic, and for
rings the powers are taken to be integers, not elements of the ring.

2.4.1. Proposition. For a profunctor P : A • // B the internal hom functor P ;
( ) : SetB // SetA is tense if and only if for every f : A // A′, the function

π0P (A
′,−) // π0P (A,−)

is onto.

Proof. P ; ( ) preserves limits and so is taut. Thus by Proposition 2.2.4 (3) it is only
necessary to check that

1 ∼= P ; 1 // P ; (1 + 1)

is complemented, and it’s also sufficient. This is equivalent to the condition, that for
every f : A // A′

1 SetB(P (A′,−), 1 + 1)//

1

1
��

1 SetB(P (A,−), 1 + 1)// SetB(P (A,−), 1 + 1)

SetB(P (A′,−), 1 + 1)
��

be a pullback. This says that every natural transformation t for which (the outside of)

P (A′,−) 1//

P (A,−)

P (A′,−)

OO

P (f,−)

P (A,−) 1 + 1t // 1 + 1

1

OO

j

P (A,−)

1

∃

""

commutes, factors through the injection j. This is in SetB. Using the adjunction π0 ⊣
Const : Set // SetB, we have, equivalently, that every function t for which

π0P (A
′,−) 1//

π0P (A,−)

π0P (A
′,−)

OO
π0P (A,−) 1 + 1t // 1 + 1

1

OO

j

π0P (A,−)

1
""

commutes, factors through j (in Set). This is equivalent to

π0P (A
′,−) // π0P (A,−)

being onto.
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The condition on P making P ; ( ) tense is a kind of lifting condition. For every
element of P , p : A • // B and morphism f : A // A′ there exist a B′ and a P -element
p′ : A′ • // B′ for which p′f is connected to P by a path of P -elements

B′ B1 B2 B3 · · · B

A′ A A A · · · A

oo // oo // //

oo f

•p′

��
•p1

��
•p2

��
•p3

��
•p

��
.

Or more fancifully and more memorably, it’s a kind of homotopy pushout condition:
for every f and p as below there exist a lifting to a p′ with a fill in “fan”

B

Bn
...
B2

B1

B′

A

A′

��

��

@@

f

??

•
p

!!

•
p′

!!

•

''

•
++

• ..

2.5. Multivariable analytic functors. Following Fiore et al. ([3]) we define ana-
lytic functors of several variables F : SetA //SetB as follows. First, for a category A, its
exponential !A (from linear logic) is the free symmetric strict monoidal category generated
by A. In concrete terms, !A is the category with objects finite sequences ⟨A1 . . . An⟩ of
objects of A and morphisms finite sequences of morphisms of A controlled by a permu-
tation. There are no morphisms between sequences unless they have the same length and
then

⟨A1 . . . An⟩ // ⟨A′
1 . . . , A

′
n⟩

is a permutation of the indices, σ ∈ Sn and a sequence of morphisms

fi : Aσi // A′
i .

Composition is as expected

(τ, ⟨gi⟩)(σ, ⟨fi⟩) = (στ, ⟨gifτi⟩).

An A-B symmetric sequence is a profunctor P : !A • // B, which for us is a functor
(!A)op ×B // Set. (Warning: Our definition of profunctor is the opposite of theirs.) P
encodes what are to be the coefficients of a B-family of multivariable power series.
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The analytic functor determined by P

P̃ : SetA // SetB

is given by

P̃ (Φ)(B) =

∫ ⟨A1...An⟩∈ !A

P (A1 . . . An;B)× ΦA1 × ΦA2 × · · · × ΦAn .

We’ll show that P̃ is tense. Define a profunctor Q : !A • // A by

Q(A1, . . . , An;A) = A(A1, A) +A(A2, A) + · · ·+A(An, A)

with the obvious definition on morphisms. We may consider Q as a functor (!A)op //SetA

and P̃ is the left Kan extension of P , considered as a functor (!A)op // SetB, along Q

(!A)op

SetB .

P

��

(!A)op SetA
Q // SetA

SetB .

P̃=LanQP

��

+3

For our purposes a different description of P̃ will be useful.

2.5.1. Proposition. 1. P̃ is the composite P ⊗ (Q; ( ))

SetA
Q;( ) // Set!A

P⊗( ) // SetB .

2. Q satisfies the condition of Proposition 2.4.1.

Proof. (1) Let Φ ∈ SetA. An element of (Q;Φ)(A1, . . . , An) is a natural transformation

A(A1,−) + · · ·+A(An,−) // Φ

which by the universal property of coproduct and the Yoneda lemma corresponds to an
element of

ΦA1 × ΦA2 × · · · × ΦAn .

Now the result follows by the definition of P ⊗ ( ) and P̃ .
(2) Q(A1, . . . , An;−) = A(A1,−) + · · ·+A(An,−) a sum of representables each of which
is connected. So

π0Q(A1, . . . , An;−) ∼= n

and, as !A has only morphisms between sequences of the same length, we get

π0Q(A1, . . . , An;−) ∼= π0Q(A
′
1, . . . , A

′
n;−) .
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2.5.2. Corollary. P̃ is tense.

2.5.3. Corollary. For P : !A • // B an A-B symmetric sequence and R : B • // C
a profunctor, we have

R̃⊗ P ∼= R⊗ P̃ .

Proof.
R̃⊗ P ∼= (R⊗ P )⊗ (Q; ( ))

∼= R⊗ (P ⊗ (Q; ( ))
∼= R⊗ P̃ .

3. Partial difference operators

We want to think of a functor F : SetA // SetB as a B-family of Set-valued functors in
A-variables and study its change under small perturbations of the variables. The context
is that of tense functors and for these we get a theory that parallels the usual calculus
of differences for real-valued functions of several variables, much as our theory for taut
functors did for single variables [5].

3.1. Partial difference. A functor Φ ∈ SetA is a multisorted algebra, the sorts being
the objects of A, with unary operations corresponding to the morphisms of A. Freely
adding a single element of sort A gives

Φ⇝ Φ +A(A,−) .

3.1.1. Definition. The A-shift functor, for an object A in A is

SA : Set
A // SetA

SA(Φ) = Φ +A(A,−) .
SA is clearly tense, in fact a tense monad. Although we won’t use it here, it may be

of interest to note that an Eilenberg-Moore algebra for SA consists of a functor Φ ∈ SetA

together with an element x ∈ ΦA. A Kleisli morphism Φ • // Ψ is a partial natural
transformation

Φ Ψ

Φ0

Φ

}}

}}

Φ0

Ψ
!!

defined on a complemented subobject Φ0 together with a transformation on the comple-
ment Φ′

0
//A(A,−), perhaps quantifying the degree of undefinedness.

These monads commute with each other

SA1 ◦ SA2
∼= SA2 ◦ SA1

and for every f : A // A′ there is a monad morphism SA // SA′ which is tense.
The main definition of the paper is the following.
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3.1.2. Definition. The partial difference with respect to A, or the A-partial difference,
∆A[F ], of a tense functor F : SetA // SetB is given by

∆A[F ] : Set
A // SetB

∆A[F ](Φ) = F (Φ +A(A,−)) \ F (Φ) ,
the complement of F (Φ) ↪→ F (Φ +A(A,−)).

3.1.3. Proposition. For a tense functor F : SetA //SetB, ∆A[F ] is also a tense func-
tor. A tense natural transformation t : F //G restricts to one, ∆A[t] : ∆A[F ] //∆A[G],
making ∆A a functor

∆A : Tense(SetA,SetB) // Tense(SetA,SetB) .

Proof. Let ϕ : Ψ // Φ be a natural transformation. We have the following pullbacks

Φ Φ +A(A,−)� � //

Ψ

Φ

ϕ

��

Ψ Ψ+A(A,−)� � // Ψ+A(A,−)

Φ +A(A,−)

ϕ+A(A,−)

��

Pb

FΦ F (Φ +A(A,−)) .� � //

FΨ

FΦ

Fϕ

��

FΨ F (Ψ +A(A,−))� � // F (Ψ +A(A,−))

F (Φ +A(A,−)) .

F (ϕ+A(A,−))

��

Pb

From the second one we get that F (ϕ+A(A,−)) restricts to the complements and gives
another pullback

∆A[F ](Φ) F (Φ +A(A,−))� � //

∆A[F ](Ψ)

∆A[F ](Φ)

∆A[F ](ϕ)

��

∆A[F ](Ψ) F (Ψ +A(A,−))� � // F (Ψ +A(A,−))

F (Φ +A(A,−))

F (ϕ+A(A,−))

��

Pb

which gives functoriality and tenseness.
Suppose t : F //G is a tense transformation. Then we get a pullback for any Φ

G(Φ) G(Φ +A(A,−))� � //

F (Φ)

G(Φ)

t(Φ)

��

F (Φ) F (Φ +A(A,−))� � // F (Φ +A(A,−))

G(Φ +A(A,−))

t(Φ+A(A,−))

��

Pb

so t(Φ +A(A,−)) restricts to the complements, giving another pullback

∆A[G](Φ) G(Φ +A(A,−)) .� � //

∆A[F ](Φ)

∆A[G](Φ)

∆A[t](Φ)

��

∆A[F ](Φ) F (Φ +A(A,−))� � // F (Φ +A(A,−))

G(Φ +A(A,−)) .

t(Φ+A(A,−))

��

Pb
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It follows immediately that ∆A[t] is natural. Tenseness follows by comparing the following
diagrams that we get for any complemented subobject Ψ �

� // Φ.

∆A[G](Ψ) ∆A[G](Φ)
� � //

∆A[F ](Ψ)

∆A[G](Ψ)

∆A[t](Ψ)

��

∆A[F ](Ψ) ∆A[F ](Φ)
� � // ∆A[F ](Φ)

∆A[G](Φ)

∆A[t](Φ)

��

(1)

∆A[G](Φ) G(Φ +A(A,−))� � //

∆A[F ](Φ)

∆A[G](Φ)

∆A[F ](Φ) F (Φ +A(A,−))� � // F (Φ +A(A,−))

G(Φ +A(A,−))

t(Φ+A(A,−))

��

(2)

∆A[G](Ψ) G(Ψ +A(A,−))� � //

∆A[F ](Ψ)

∆A[G](Ψ)

∆A[t](Ψ)

��

∆A[F ](Ψ) F (Ψ +A(A,−))� � // F (Ψ +A(A,−))

G(Ψ +A(A,−))

t(Ψ+A(A,−))

��

(3)

G(Ψ +A(A,−)) G(Φ +A(A,−)) .� � //

F (Ψ +A(A,−))

G(Ψ +A(A,−))

F (Ψ +A(A,−)) F (Φ +A(A,−))� � // F (Φ +A(A,−))

G(Φ +A(A,−)) .

t(Φ+A(A,−))

��

(4)

The pasted rectangles are equal, and (2), (3) and (4) are pullbacks, so (1) is too.

3.1.4. Corollary. ∆A[F ] is a complemented subobject of the shifted F

∆A[F ]
� � // F ◦ SA

F +∆A[F ]
∼= // F ◦ SA

where the first component is F of the unit ηA : id // SA.

3.2. Limit and colimit rules. ∆A satisfies all the same commutation properties with
respect to limits and colimits as the ∆ of [5]. This may be proved directly with virtually
the same proofs as in loc. cit. However, just as the usual properties of partial derivatives
follow from their single variable versions by fixing all the variables but one, those of ∆A

follow from their ∆ counterparts.

3.2.1. Proposition. Objects A in A and Φ in SetA give an affine functor Set //SetA

AffA,Φ(X) = A(A,−) ·X + Φ .

For any tense functor F : SetA // SetB and object B in B, the translated functor

FB
A,Φ = (Set

AffA,Φ // SetA F // SetB
evB // Set)

is taut and
∆A[F ](Φ)(B) ∼= ∆[FB

A,Φ](0) .

Proof. The evaluation functors are tense as is AffA,Φ so the composite evB ◦ F ◦ AffA,Φ
is too, so taut.

∆[FB
A,Φ](0) = FB

A,Φ(1) \ FB
A,Φ(0)

= F (A(A,−) · 1 + Φ)(B) \ F (A(A,−) · 0 + Φ)(B)
∼= F (Φ +A(A,−))(B) \ F (Φ)(B)
= ∆A[F ](B) .
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Precomposing by any functor, in particular AffA,Φ, preserves all limits and colimits
(of the F ’s), and precomposing by a functor that preserves complemented subobjects
preserves tense transformations. The same holds for postcomposing by evB. Furthermore,
the evB jointly create limits and colimits. These considerations give the following results.

3.2.2. Theorem.

(1) If I is confluent and Γ: I // Tense(SetA,SetB) a diagram of tense functors (and
tense transformations), then

∆A[lim−→
I

Γ(I)] ∼= lim−→
I

∆A[Γ(I)] .

(2) If I is non-empty and connected and Γ: I // Tense(SetA,SetB), then

∆A[lim←−
I

Γ(I)] ∼= lim←−
I

∆A[Γ(I)] .

(3) For any set I and tense functors Fi (i ∈ I) we have

∆A

[∏
i∈I

Fi

]
∼=

∑
J⫋I

(∏
j∈J

Fj

)
×
(∏
k/∈J

∆A[Fk]
)
.

3.2.3. Corollary.

(1) ∆A[F +G] ∼= ∆A[F ] + ∆A[G]

(2) ∆A[C · F ] ∼= C∆A[F ] (C a constant set)

(3) ∆A[F ×G] ∼= (∆A[F ]×G) + (F ×∆A[G]) + (∆A[F ]×∆A[G]) .

We now look at a few special cases.

3.2.4. Proposition. A profunctor P : A • // B gives a tense P ⊗ ( ) : SetA //SetB

and ∆A[P ⊗ ( )] ∼= P (A,−).

Proof. P ⊗ ( ) is cocontinuous so preserve binary coproducts

P ⊗ (Φ +A(A,−)) ∼= P ⊗ Φ + P ⊗A(A,−)
∼= P ⊗ Φ + P (A,−) .
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3.2.5. Corollary. ∆A[idSetA ] = A(A,−).
All that was used in 3.2.4 was that P ⊗ ( ) preserved binary coproducts, so we can

improve it.

3.2.6. Proposition. If F : SetA // SetB preserves binary coproducts, then

∆A[F ](Φ) = F (A(A,−)) .

Note that ∆A[F ] is independent of Φ, so ∆A[F ] is the constant functor Set
A //SetB

with value F (A(A,−)).
We can do better than (2) in the corollary 3.2.3.

3.2.7. Proposition. Let F : SetA // SetB be tense and P : B • // C a profunctor.
Then

∆A[P ⊗ F ] ∼= P ⊗∆A[F ] .

Proof. We have a coproduct diagram preserved by P ⊗ ( )

F (Φ +A(A,−1)

∆A[F ](Φ)

::

, �

F (Φ)

F (Φ +A(A,−1)

� r

$$

F (Φ)

∆A[F ](Φ)

7−→ P ⊗ F (Φ +A(A,−1)

P ⊗ (∆A[F ](Φ)

::

, �

P ⊗ F (Φ)

P ⊗ F (Φ +A(A,−1)

� r

$$

P ⊗ F (Φ)

P ⊗ (∆A[F ](Φ)

from which the result follows.

The notation P ⊗ F may need some explanation as it doesn’t type check. It is com-
ponentwise tensor, (P ⊗ F )(Φ) = P ⊗B F (Φ). We can interpret 3.2.7 as saying that
multiplying F by a matrix of constants is preserved by differences. But we can generalize
this result to the following, although the interpretation of “pulling constants out” may be
lost.

3.2.8. Proposition. If F : SetA // SetB is tense and G : SetB // SetC preserves
binary coproducts, then

∆A[GF ] = G∆A[F ] .

3.3. Analytic functors. In this section we prove that the generalized analytic functors
of [3] are closed under taking differences and, in fact, derive an explicit formula for the
symmetric sequences so obtained.

We start with an addition formula for analytic functors which may look obvious but
is frustratingly hard to make precise. The integral notation for coends conveniently hides
the functoriality of the arguments, which in the case at hand is not trivial, involving
permutations as it does.

We introduce some notation, without which we run the risk of drowning in a sea of
subscripts, subsubscripts, ellipses, and so on.
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In what follows A⃗ represents an arbitrary object of !A, ⟨A1, . . . , An⟩ of length n. Recall
that a morphism (σ, ⟨f1, . . . , fn⟩) : ⟨A1, . . . , An⟩ // ⟨A′

1, . . . , A
′
n⟩ is a permutation σ ∈ Sn

and a sequence of morphisms
fi : Aσi // A′

i .

We will denote that by (σ, f⃗ ) : A⃗ // A⃗′. We also use objects X⃗ = ⟨X1, . . . , Xk⟩ and
Y⃗ = ⟨Y1, . . . , Yl⟩ whose lengths are k and l respectively. By construction, !A is a monoidal
category whose tensor is concatenation

X⃗ ⊗ Y⃗ = ⟨X1, . . . , Xk , Y1, . . . , Yl⟩

a notation which we use extensively. Of course, it also applies to morphisms

(τ, g⃗ )⊗ (g, h⃗ ) = (τ + ρ, g⃗ ⊗ h⃗ )

where τ + ρ : k + l // k + l is the ordinal sum, and g⃗ ⊗ h⃗ is concatenation.
We also use the notation, and obvious variants,∏

ΦA⃗ : = ΦA1 × · · · × ΦAn

for Φ in SetA. An element ⟨a1, . . . , an⟩ of
∏

ΦA⃗ is denoted a⃗ ∈
∏

ΦA⃗.
The addition formula alluded to above is given in the following statement.

3.3.1. Theorem. Let P : A • // B be an A-B symmetric sequence and

P̃ : SetA // SetB the analytic functor it defines. Then for Φ1 and Φ2 in SetA

and B in B we have a natural isomorphism

P̃ (Φ1 + Φ2)(B) ∼=
∫ X⃗ ∫ Y⃗

P (X⃗ ⊗ Y⃗ ;B)×
∏

Φ1X⃗ ×
∏

Φ2Y⃗ .

The idea of the proof is simple:

P̃ (Φ1 + Φ2)(B) =

∫ A⃗

P (A⃗;B)×
∏

(Φ1A⃗+ Φ2A⃗ )

∼=
∫ A⃗

P (A⃗;B)×
∑

α : n // 2

∏
ΦαA⃗

∼=
∫ X⃗,Y⃗

P (X⃗ ⊗ Y⃗ ;B)×
∏

Φ1X⃗ ×
∏

Φ2Y⃗

∼=
∫ X⃗ ∫ Y⃗

P (X⃗ ⊗ Y⃗ ;B)×
∏

Φ1X⃗ ×
∏

Φ2Y⃗ .

The first line is just the definition of P̃ , the second line is distributivity of
∏

over +,
and the last line is Fubini for coends. It’s in going from the second to the third line that
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everything happens. The “reason” for the isomorphism is that for each summand with
Φ1 and Φ2 interspersed “at random” in the product, there is an isomorphism in !A which
permutes them so that all the Φ1 come first followed by the Φ2. And, indeed that’s the
reason. The devil is in the details, as they say.

We step back and consider how we might show that two coends are isomorphic. Let
Γ: Iop× I //Set be a functor which we might think of as a profunctor Γ: I • // I. The

coend
∫ I

Γ(I, I) consists of equivalence classes of elements of Γ, [I •x // I], the equiva-
lence relation generated by identifying x : I • // I with x′ : I ′ • // I ′ when there are
f : I // I ′ and x̄ : I ′ • // I such that x = x̄f and x′ = fx̄:

I I ′ .
f

//

I

I

•x

��

I I ′
f // I ′

I ′ .

•x′

��

I ′

I

•x̄

��

So x is equivalent to x′ if there’s a zigzag of such diagrams joining them.
But in the case at hand the equivalence relation is simpler because both of the diagrams

whose coends we’re considering are separable into a product of a contravariant functor
times a covariant one.

3.3.2. Definition. A diagram Γ: Iop × I // Set is separable if for every f : I // I ′,

Γ(I ′, I ′) Γ(I, I ′)
Γ(f,I′)

//

Γ(I ′, I)

Γ(I ′, I ′)

Γ(I′,f)

��

Γ(I ′, I) Γ(I, I)
Γ(f,I) // Γ(I, I)

Γ(I, I ′)

Γ(I,f)

��

is a pullback.

For example, if Γ(I, I ′) = Γ0I × Γ1I
′ for Γ0 : I

op // Set and Γ1 : I // Set, then Γ is
separable. Or, if I is a groupoid, every Γ is separable.

The point of this definition is that the equivalence relation is generated by identifying
x with x′ when there is an f : I // I ′ such that x′f = fx:

I I ′ .
f

//

I

I

•x

��

I I ′
f // I ′

I ′ .

•x′

��

The x̄ is automatic. This is important because we can compose such squares.
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Let us call an x ∈ Γ(I, I) a Γ-algebra and an f as above a homomorphism. Then we

get a category Alg(Γ) and
∫ I

Γ(I, I) = π0Alg(Γ), the set of connected components of
Alg(Γ).

Let Θ: Jop × J // Set be another bivariant diagram. A morphism (Ξ, ξ) : Γ //Θ is
a functor Ξ: I // J and a natural transformation ξ : Γ //Θ(Ξ(−),Ξ(−))

Iop × I

Set

Γ

��

Iop × I Jop × J
Ξop×Ξ // Jop × J

Set

Φ

��

ξ +3

I JΞ //

I J .
Ξ

//

I

I

•Γ

��

I JΞ // J

J .

•Θ

��

ξ +3

Such a morphism induces a functor

Alg(Ξ, ξ) : Alg(Γ) //Alg(Θ)

I

I

•x

��

Ξ(I)

Ξ(I) .

•ξ(I,I)(x)

��

7−→

We are now ready to apply this to our addition formula. Let Γ: !A×!A • // !A×!A be
given by

Γ(X⃗, Y⃗ ; X⃗ ′, Y⃗ ′ ) = P (X⃗ ⊗ Y⃗ ;B)×
∏

Φ1X⃗
′ ×

∏
Φ2Y⃗

′

and Θ: !A • // !A by

Θ(A⃗; A⃗′ ) = P (A⃗;B)×
∑

α : n // 2

∏
ΦαA⃗

′

with the obvious action on morphisms. Note that Γ and Θ are both products of a covari-
ant part (with the primes) and a contravariant part (without primes) so that they are
separable. Thus we will be able to compute the coends by taking connected components
of their categories of elements.

3.3.3. Theorem. With the above notation, there is a morphism

!A×!A !A⊗
//

!A×!A

!A×!A

•Γ

��

!A×!A !A
⊗ // !A

!A

•Θ

��

ξ +3
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such that the induced functor

Alg(⊗, ξ) : Alg(Γ) //Alg(Θ)

is an equivalence of categories.

Proof. Throughout, B is a fixed object of B.
An element of Γ(X⃗, Y⃗ ; X⃗ ′, Y⃗ ′ ) is a triple

(p ∈ P (X⃗ ⊗ Y⃗ ;B), x⃗ ∈
∏

Φ1X⃗
′, y⃗ ∈

∏
Φ2Y⃗

′) ,

and an element of Θ(A⃗, A⃗′ ) is a triple

(p ∈ P (A⃗;B), α : n // 2, a⃗ ∈
∏

ΦαA⃗
′) ,

where
∏

ΦαA⃗
′ is

∏n′

i=1ΦαiA
′
i, as expected.

ξ : Γ(X⃗, Y⃗ ; X⃗ ′, Y⃗ ′) //Θ(X⃗ ⊗ Y⃗ , X⃗ ′ ⊗ Y⃗ ′)

is given by

ξ(p, x⃗, y⃗) = (p ∈ P (X⃗ ⊗ Y⃗ ;B), αk′,l′ : k
′ + l′ // 2, ⟨x⃗, y⃗⟩ ∈

∏
Φαk′,l′

(X⃗ ′ ⊗ Y⃗ ′)) .

Here αk′,l′ is the indexing that consists of 1’s followed by 2’s,

αk′,l′(i) =

{
1 if l ≤ i ≤ k′

2 if k′ < i ≤ k′ + l′ ,

and ⟨x⃗, y⃗⟩ is concatenation

⟨x⃗, y⃗⟩ = ⟨x1, . . . , xk′ , y1, . . . , yl′⟩ ∈ Φ1X
′
1 × · · · × Φ1X

′
k′ × Φ2Y

′
1 × · · · × Φ2Y

′
l′ .

Naturality of ξ is a straightforward calculation.
The morphism (⊗, ξ) induces a functor

Ξ: Alg(Γ) //Alg(Θ) .

Explicitly, a Γ-algebra is a 5-tuple

(X⃗, Y⃗ , p ∈ P (X⃗ ⊗ Y⃗ ;B), x⃗ ∈
∏

Φ1X⃗, y⃗ ∈
∏

Φ2Y⃗ )

and a Θ-algebra is a quadruple

(A⃗, p ∈ P (A⃗;B), α : n // 2, a⃗ ∈
∏

ΦαA⃗ ) .

Ξ assigns to (X⃗, Y⃗ , p, x⃗, y⃗ ) the algebra (X⃗ ⊗ Y⃗ , p, αk,l, ⟨x⃗, y⃗⟩).
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A homomorphism (X⃗, Y⃗ , p, x⃗, y⃗ ) // (X⃗ ′, Y⃗ ′, p′, x⃗′, y⃗ ′) is a pair of morphisms in !A,

(τ, g⃗) : X⃗ // X⃗ ′ and (ρ, h⃗ ) : Y⃗ // Y⃗ ′

preserving everything. It is sent to (τ, g⃗)⊗ (ρ, h⃗ ) by Ξ.
⊗ is faithful as it is just concatenation, so Ξ is also faithful.
If (σ, f⃗ ) is a homomorphism

(X⃗ ⊗ Y⃗ , p, αk,l, ⟨x⃗, y⃗ ⟩) // (X⃗ ′ ⊗ Y⃗ ′, p′, αk′,l′ , ⟨x⃗′, y⃗ ′⟩)

we have

2

k′ + l′

::

αk′,l′

k + l

2

αk,l

$$

k + l

k′ + l′

OO

σ

which implies that σ restricts to bijections τ : k′ // k and ρ : l′ // l (by taking inverse

images of {1} and {2}) so k′ = k and l′ = l and σ = τ + ρ. It follows that f⃗ consists of

morphisms (τ, g⃗) : X⃗ // X⃗ ′ and (ρ, h⃗) : Y⃗ // Y⃗ ′ and the preservation of ⟨x⃗, y⃗ ⟩ becomes

preservation of x⃗ and y⃗ separately. I.e. (σ, f⃗ ) is Ξ((τ, g⃗), (ρ, h⃗)) and so Ξ is full.

For any Θ-algebra (A⃗, p, α, a⃗), there is a permutation of σ ∈ Sn such that

n
σ // n

α // 2

is order-preserving, i.e. all the 1’s come first and then the 2’s, so that ασ = αk,l where k
is the cardinality of α−1{1} and l that of α−1{2}. Associated to σ is an isomorphism

(σ, 1⃗ ) : A⃗ // A⃗σ

where A⃗σ is ⟨Aσ1, . . . , Aσn⟩ and 1⃗ = ⟨1Aσ1 , . . . , 1Aσn⟩. We can transport the Θ-algebra

structure on A⃗ to one on A⃗σ giving an algebra isomorphism

(σ, 1⃗ ) : (A⃗, p, α, a⃗) // (A⃗σ, p · (σ−1, 1⃗ ), αk,l, a⃗σ)

where p · (σ−1, 1⃗ ) = P ((σ−1, 1⃗ );B)(p) and a⃗σ = ⟨aσ1, . . . , aσn⟩ in
∏

ΦασA⃗σ. The Θ-

algebras with indexing of the form αk,l are precisely those in the image of Ξ. Indeed, the X⃗

are the first k A’s, ⟨Aσ1, . . . , Aσk⟩ in this case and Y⃗ the last l of them ⟨Aσ(k+l), . . . , Aσ(n)⟩.
Similarly x⃗ = ⟨aσ1, . . . , aσk⟩ and y⃗ = ⟨aσ(k+1), . . . aσn⟩. Then Ξ(X⃗, Y⃗ , p · (σ−1, 1⃗ ), x⃗, y⃗ ) is

(A⃗σ, p · (σ−1, 1⃗ ), αk,l, a⃗), so Ξ is essentially surjective, which shows it’s an equivalence.
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If we take connected components we get

π0Alg(Γ) ∼= π0Alg(Θ)

so the coend of Γ is isomorphic to that of Θ.

3.3.4. Corollary.∫ X⃗,Y⃗

P (X⃗ ⊗ Y⃗ ;B)×
∏

Φ1X⃗ ×
∏

Φ2Y⃗ ∼=
∫ A⃗

P (A⃗;B)×
∑

α : n // 2

∏
ΦαA⃗ .

Our addition formula, Theorem 3.3.1, now follows by a simple application of the Fubini
theorem for coends, which is what we wanted, but Theorem 3.3.3 is a stronger result.

Our next step in the derivation of the formula for ∆A[P̃ ] is to specialize our addition
formula to the case Φ1 = Φ and Φ2 = A(A,−). This gives

P̃ (Φ +A(A,−))(B) =

∫ X⃗ ∫ Y⃗

P (X⃗ ⊗ Y⃗ ;B)×
∏

ΦX⃗ ×
∏

A(A, Y⃗ )

in which the expression ∏
A(A, Y⃗ ) = A(A, Y1)× · · · ×A(A, Yl)

appears, not surprisingly, as it already appears in the definition of P̃ . It defines a functor∏
A(A,−) : !A // Set

closely related to the representable functor !A(A⊗n,−) where A⊗n = ⟨A, . . . , A⟩, the
n-fold tensor of A.

3.3.5. Proposition. With the above notation we have∏
A(A,−) ∼=

∞∑
n=0

!A(A⊗n,−)/Sn .

Proof. If Y⃗ = ⟨Y1, . . . , Yl⟩, then !A(A⊗n, Y⃗ ) is 0 unless l = n in which case an element

of !A(A⊗n, Y⃗ ) is a morphism

(σ, f⃗ ) : A⊗n // Y⃗

so that !A(A⊗n, Y⃗ ) ∼= Sn ×A(A1Y1)× · · · ×A(A, Yn) and if we quotient by Sn we get

!A(A⊗n, Y⃗ )/Sn ∼=
∏

A(A, Y⃗ )

easily seen to be natural in Y⃗ . The result follows.
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3.3.6. Lemma. Let W : !Aop // Set. Then∫ Y⃗

W (Y⃗ )×
∏

A(A, Y⃗ ) ∼=
∞∑
n=0

W (A⊗n)/Sn .

Proof. ∫ Y⃗

W (Y⃗ )×
∏

A(A, Y⃗ ) ∼=
∫ Y⃗

W (Y⃗ )×
∞∑
n=0

!A(A⊗n, Y⃗ )/Sn

∼=
∞∑
n=0

∫ Y⃗

W (Y⃗ )× (!A(A⊗n, Y⃗ )/Sn

∼=
∞∑
n=0

(∫ Y⃗

W (Y⃗ )×!A(A⊗n, Y⃗ )
)
/Sn

∼=
∞∑
n=0

W (A⊗n)/Sn .

The second isomorphism is commutation of coends and coproducts, the third commutation
of coends with colimits (“modding out” by Sn is a colimit), the last isomorphism comes
from the fact that tensoring with a representable is substitution.

3.3.7. Corollary.

P̃ (Φ +A(A,−))(B) ∼=
∫ X⃗ ∞∑

n=0

P (X⃗ ⊗ A⊗n;B)/({idk} × Sn)×
∏

ΦX⃗

Proof.

P̃ (Φ +A(A,−))(B) ∼=
∫ X⃗ ∫ Y⃗

P (X⃗ ⊗ Y⃗ ;B)×
∏

ΦX⃗ ×
∏

A(A, Y⃗ ) .

If we fix X⃗ and consider the coend over Y⃗ , we can apply the previous lemma with

W (Y⃗ ) = P (X⃗ ⊗ Y⃗ ;B)×
∏

ΦX⃗

and the result follows immediately.

3.3.8. Corollary.

∆A[P̃ ](Φ)(B) ∼=
∫ X⃗ ∞∑

n=1

P (X⃗ ⊗ A⊗n;B)/({idk} × Sn)×
∏

ΦX⃗ .

Proof. The inclusion P̃ (Φ) ↪→ P̃ (Φ +A(A,−)) corresponds to the n = 0 summand.
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For any A-B symmetric sequence P : !A • // B and object A of A we define a new
symmetric sequence ∇AP : !A • // B by the formula

∇AP (X⃗;B) =
∞∑
n=1

P (X⃗ ⊗ A⊗n;B)/({idk} × Sn) .

Now Corollary 3.3.8 can be stated in its final form, giving the main theorem of the section.

3.3.9. Theorem. Analytic functors SetA // SetB are closed under taking differences.
If P : !A • // B is a symmetric sequence, then

∆A[P̃ ] ∼= ∇̃AP .

The definition of∇AP as a coproduct of quotients is clear but for formal manipulations
a more abstract definition is useful. Let S+ be the category whose objects are positive
finite cardinals, k > 0, and whose morphisms are bijections. So S+ is the coproduct

S+ =
∞∑
k=1

Sk

where Sk is the symmetric group Sk considered as a one-object category.
Given an A-B symmetric sequence P : !A • // B and an object A of A we get an

S+ family of A-B symmetric sequences

PA : S
op
+

// Prof (!A,B)

PA(k)(A1 . . . An;B) = P (A1 . . . An, A,A, . . . , A;B)

where there are k A’s. Functoriality and naturality are obvious. Now ∇AP = lim−→k
PA(k).

3.3.10. Proposition. For P : !A • // B an A-B symmetric sequence and
Q : B • // C a profunctor, we have

∇A(Q⊗ P ) ∼= Q⊗∇AP .

Proof.

∇A(Q⊗ P )(A1 . . . An;C) ∼= lim−→
k

∫ B

Q(B,C)× P (A1 . . . An, A . . . A;B)

∼=
∫ B

Q(B,C)× lim−→
k

P (A1 . . . An, A . . . A;B)

∼=
∫ B

Q(B,C)×∇AP (A1 . . . An;B)

∼= (Q⊗∇AP )(A1 . . . An;C) .
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3.3.11. Corollary. For any A-B symmetric sequence P we have

∇AP ∼= P ⊗∇AId!A .

Proof.
∇AP ∼= ∇A(P ⊗ Id!A) ∼= P ⊗∇AId!A .

∇AId!A is easy to describe:

∇AId!A : Set!A // Set!A

∇AId!A(A1 . . . An;A
′
1 . . . A

′
m)
∼=

∞∑
k=1

!A(A1 . . . An, A . . . A;A
′
1 . . . A

′
m)/({idn} × Sk)

which is 0 if m ≤ n and

!A(A1 . . . An, A, . . . , A;A
′
1 . . . A

′
m)/({idn} × Sm−n)

when m > n. There are m − n A’s and the action we’re modding out by is Sm−n acting
on those A’s.

There is also a generic difference formula.

3.3.12. Corollary.
∆A[P̃ ] ∼= P ⊗∆A[Id!A] .

Proof.
∆AP̃ ∼= ∇̃AP (Thm. 3.3.9)

∼= (P ⊗∇AId!A) ˜ (Cor. 3.3.11)
∼= P ⊗ ∇̃AId!A (Cor. 2.5.3)
∼= P ⊗∆A[Id!A] (Thm. 3.3.9)

3.4. Higher differences. As ∆A[F ] is also tense, its difference can also be taken
∆A′ [∆A[F ]] = ∆A′,A[F ] and so on, iteratively. For any sequence ⟨A1 . . . An⟩ of length n of
objects of A we define

∆⟨Ai⟩[F ] =

{
F if n = 0
∆A1 [∆⟨A2...An⟩[F ]] if n ≥ 1 .

3.4.1. Definition. We say that an element of F (Φ+A(A1,−) + · · ·+A(An,−))(B) is
new (for ⟨A1, · · · , An⟩)) if it is not in any F (Φ+A(Aα1,−)+ · · ·+A(Aαk,−))(B) for any
proper mono α : k // // n.

If an element is in F of a subsum, it’s in every bigger subsum, so it is sufficient to
consider only those subsums with one less term.Thus the new elements are those in the
set difference

F (Φ +
n∑
i=1

A(Ai,−))(B) \
n⋃
j=1

F (Φ +
∑
i ̸=j

A(Ai,−))(B) .
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3.4.2. Theorem. The higher difference ∆⟨Ai⟩[F ](Φ) consists of the new elements of
F (Φ +A(A1,−) + · · ·+A(An,−)).

Proof. We prove this by induction on n. For n = 0, 1 the result holds by definition.
Assume the result holds for sequences of length n− 1 and take ⟨Ai⟩ = ⟨A1, . . . , An⟩. Let
⟨Ai⟩+ = ⟨A2, . . . , An⟩.

An element of ∆⟨Ai⟩[F ](Φ)(B) is an element of ∆⟨Ai⟩+ [F ](Φ +A(A1,−))(B) which is
not in ∆⟨AI⟩+ [F ](Φ)(B). An element of ∆⟨Ai⟩+ [F ](Φ +A(A1,−))(B) is, by the induction
hypothesis, an element of

F (Φ +A(A1,−) +
n∑
i=2

A(Ai,−))(B) ∼= F (Φ +
n∑
i=1

A(Ai,−))(B) (1)

not in

F (Φ +A(A1,−) +
n∑

i=2,i ̸=j

A(Ai,−))(B) ∼= F (Φ +
n∑

i=1,i ̸=j

A(Ai,−))(B) (2)

for any 2 ≤ j ≤ n. From this we must exclude the elements of ∆⟨Ai⟩+ [F ](Φ)(B) and these,
again by the induction hypothesis, are elements of

F (Φ +
n∑
i=2

A(Ai,−))(Φ)(B) (3)

except for any in some

F (Φ +
n∑

i=2,i ̸=j

A(Ai,−))(Φ)(B) (4)

for 2 ≤ j ≤ n.
To summarize,

∆⟨Ai⟩[F ](Φ)(B) = ((1) \ (2)) \ ((3) \ (4)) ,

but (4) ⊆ (2) so
∆⟨Ai⟩[F ](Φ)(B) = (1) \ ((2) ∪ (3)) .

Now (2) ∪ (3) is the union of

F (Φ +
∑

i=1,i ̸=j

A(Ai,−))(B)

over all j, 1 ≤ j ≤ n, and the result follows.
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We see from this formula that ∆⟨Ai⟩[F ] is independent of the order of the differences,
a version of Clairaut’s theorem.

3.4.3. Corollary. Let ⟨Ai⟩ be a sequence of length n of objects of A and σ ∈ Sn a
permutation, then

∆⟨Aσi⟩[F ]
∼= ∆⟨Ai⟩[F ] .

4. The discrete Jacobian

4.1. Definitions and functoriality. Let F : SetA // SetB be a tense functor and
let f : A // A′ be a morphism of A. Then, as

Φ Φ +A(A,−)� � //

Φ

Φ

Φ Φ +A(A′,−)� � // Φ +A(A′,−)

Φ +A(A,−)

Φ+A(f,−)

��

is a pullback of complemented objects, so is

FΦ F (Φ +A(A,−))� � //

FΦ

FΦ

FΦ F (Φ +A(A′,−))� � // F (Φ +A(A′,−))

F (Φ +A(A,−))

F (Φ+A(f,−))

��

and it follows that F (Φ +A(f,−)) restricts to complements giving another pullback

∆A[F ](Φ) F (Φ +A(A,−)) .� � //

∆A′ [F ](Φ)

∆A[F ](Φ)

∆f [F ](Φ)

��

∆A′ [F ](Φ) F (Φ +A(A′,−))� � // F (Φ +A(A′,−))

F (Φ +A(A,−)) .

F (Φ+A(f,−))

��

This proves the following:

4.1.1. Proposition. For any Φ in SetA, ∆A[F ](Φ) is functorial in A, i.e. is the object
part of a functor

∆[F ](Φ) : Aop // SetB .

By exponential adjointness we get a functor Aop × B // Set, i.e. a profunctor
A • // B.
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4.1.2. Definition. The (discrete) Jacobian profunctor of F at Φ

∆[F ](Φ) : A • // B

is given by
∆[F ](Φ)(A,B) = ∆A[F ](Φ)(B) .

It’s more or less clear that ∆[F ](Φ) is functorial in Φ, which we express in the following
proposition.

4.1.3. Proposition. For any tense functor F : SetA // SetB, ∆[F ](Φ) is the object
part of a tense functor

∆[F ] : SetA // SetA
op×B = Prof (A,B) .

Proof. For a natural transformation t : Φ //Ψ and object A in A,

Ψ Ψ +A(A,−)� � //

Φ

Ψ

t

��

Φ Φ +A(A,−)� � // Φ +A(A,−)

Ψ +A(A,−)

t+A(A,−)

��

is a pullback of a complemented subobject, so

FΨ F (Ψ +A(A,−))� � //

FΦ

FΨ

Ft

��

FΦ F (Φ +A(A,−))� � // F (Φ +A(A,−))

F (Ψ +A(A,−))

F (t+A(A,−))

��

is too. So F (t+A(A,−)) restricts to the complements, giving another pullback

∆[F ]Ψ F (Ψ +A(A,−)) ,� � //

∆[F ]Φ

∆[F ]Ψ

∆[F ]t

��

∆[F ]Φ F (Φ +A(A,−))� � // F (Φ +A(A,−))

F (Ψ +A(A,−)) ,

F (t+A(A,−))

��

(*)

hence functoriality.
We still must prove that it is tense.
Proposition 3.1.3 says that for a fixed A, ∆A[F ] : Set

A // SetB is tense and ∆A[F ]
is the composite

SetA
∆[F ] // SetA

op×B evB // SetB .
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The evB are the evaluation functors which preserve pullbacks and collectively reflect them,
so that ∆[F ] will preserve pullbacks of complemented subobjects. However, the evB don’t
reflect complemented subobjects, so we still must show that ∆[F ] preserves those.

Let Φ0
� � // Φ be a complemented subobject. We want to show that

∆[F ](Φ0) // // ∆[F ](Φ) is complemented, or equivalently, for every f : A′ // A and
g : B //B′

∆[F ](Φ0)(A
′, B′) ∆[F ](Φ)(A′, B′)� � //

∆[F ](Φ0)(A,B)

∆[F ](Φ0)(A
′, B′)

∆[F ](Φ0)(f,g)

��

∆[F ](Φ0)(A,B) ∆[F ](Φ)(A,B)� � // ∆[F ](Φ)(A,B)

∆[F ](Φ)(A′, B′)

∆[F ](Φ)(f,g)

��

is a pullback. We can do this separately for f and g, fixing B and then A. We already
know for fixed A it’s a pullback. So let’s fix B.

Let f : A′ // A and consider

F (Φ +A(A,−))(B) F (Φ +A(A′,−))(B)

∆[F ](Φ)(A,B) ∆[F ](Φ)(A,′B)

∆[F ](Φ0)(A,B) ∆[F ](Φ0)(A
′, B)

F (Φ+A(f,−))(B)
//

∆[F ](Φ)(f,B)
//

∆[F ](Φ0)(f,B) //

��

��

��

��

��

��

��

��

Pb

and

F (Φ +A(A,−))(B) F (Φ +A(A′,−))(B) .

F (Φ0 +A(A,−))(B) F (Φ0 +A(A′,−))(B)

∆[F ](Φ0)(A,B) ∆[F ](Φ)(A′, B)

F (Φ+A(f,−))(B)
//

F (Φ0+A(f,−))(B)
//

∆[F ](Φ0)(f,B) //

��

��

��

��

��

��

��

��

Pb

Pb

The second and third squares are pullbacks by (∗) and the fourth because F is tense. As
the composite of the first and second squares is equal to the composite of the third and
fourth, we get that the first square is a pullback, which shows that ∆[F ](Φ0) // //∆[F ](Φ)
is complemented.



40 ROBERT PARÉ

To complete the discussion of functoriality of ∆ note that ∆A[F ](Φ) is a subfunctor of
F (Φ +A(A,−)) which is not only functorial in Φ and A but by Proposition 3.1.3 also in
F but only for tense transformations. Proposition 2.2.5 says that the evaluation functors
evB jointly reflect tenseness of transformations, so that ∆A[t] itself will be tense. Thus
we get a functor

∆: Tense(SetA,SetB) // Tense(SetA,SetAop×B)

the (discrete) Jacobian functor.
There are various ways of reformulating the Jacobian which are of independent interest.
Given a tense functor F : SetA // SetB, we get another tense functor analogous to

the differential operator
D[F ] : SetA × SetA // SetB

D[F ](Φ,Ψ) = ∆[F ](Φ)⊗A Ψ

where Ψ is considered as a profunctor 1 • // A.

4.1.4. Definition. D[F ] is called the difference operator.

In [5] we used the finite projection Set×Set //Set as a tangent bundle and saw that
this supported a definition of functorial differences where the lax chain-rule was actually
a lax functor. This generalizes to the multivariable setting. We define

SetA SetB
F

//

SetA × SetA

SetA

P1

��

SetA × SetA SetB × SetB
T [F ] // SetB × SetB

SetB

P1

��

by T [F ](Φ,Ψ) = (FΦ,∆[F ](Φ)⊗A Ψ). We see that T [F ] preserves colimits in the second
variable.

4.1.5. Definition. T [F ] is called the (discrete) tangent functor.

Profunctors A • // B are in bijection with profunctors Bop • // Aop:

P : Aop ×B // Set

P⊤ : (Bop)×Aop // Set

i.e. P⊤(B,A) = P (A,B), the transpose as matrices. This gives the reverse difference
operator

∆⊤[F ] : SetA // Prof (Bop,Aop).
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4.1.6. Definition. ∆⊤[F ] is the reverse difference operator.

This suggests that we take as the cotangent bundle the first projection SetA ×
SetA

op // SetA. As the Yoneda embedding Y : Aop // // SetA is the cocompletion of
A, the category of cocontinuous functors

SetA // Set

is equivalent to the category of functors

Aop // Set

i.e. SetA
op

. So SetA
op

has a legitimate claim to be the (linear) dual of SetA. Now
we can extend the reverse difference to the cotangent bundle. Given a tense functor
F : SetA // SetB, we first pull back the cotangent bundle along F

SetA SetB
F

//

SetA × SetB
op

SetA

P1

��

SetA × SetB
op

SetB × SetB
op⟨F,P2⟩ // SetB × SetB
op

SetB

P1

��

Pb

and then take the functor coT[F ]

(Φ,Θ) � // (Φ,∆⊤[F ](Φ)⊗Θ)

SetA × SetB
op

SetA .

P1

��

SetA × SetB
op

SetA × SetA
op// SetA × SetA
op

SetA .

P1

��

In this Θ in SetB
op

is considered as a profunctor 1 • // Bop.

4.1.7. Definition. coT[F ] is the cotangent functor.

A differential form is a global section of the cotangent bundle, which in our case
amounts to a functor SetA // SetA

op

.
For a tense F : SetA //SetB we get another tense functor ∆[F ] : SetA //SetA

op×B

which, upon composing with the evaluation at B, evB : Set
Aop×B //SetA

op

gives another
tense functor SetA //SetA

op

. This way the difference ∆[F ] may be viewed as a B-family
of differential forms

B // Tense(SetA,SetAop

) .

It is tempting to write Ω1(SetA) for Tense(SetA,SetAop

).

4.1.8. Definition. ∆[F ](−)(B) is the differential form of F at B.
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4.2. Product and sum rules. The evaluation functors evA : Set
Aop×B //SetB jointly

create limits and colimits, and as the composites evA ◦∆[F ](Φ) are ∆A[F ](Φ), the limit
rules of Section 3.2 lift to ∆[F ].

Theorem 3.2.2 gives the following.

4.2.1. Theorem.

(1) If Γ: I // Tense(SetA,SetB) then ∆[lim−→I
ΓI] ∼= lim−→I

∆[ΓI].

(2) If I is non-empty and connected and Γ: I //Tense(SetA,SetB), then ∆[lim←−I ΓI]
∼=

lim←−I ∆[ΓI].

(3) For any set I and tense functors Fi, i ∈ I, we have

∆
[∏
i∈I

Fi

]
∼=

∑
J⫋I

(∏
j∈J

Fj

)
×

∏
k/∈J

∆[Fk].

4.2.2. Corollary. (1) ∆[F +G] ∼= ∆[F ] + ∆[G].

(2) ∆[C · F ] ∼= C ·∆[F ] for any set C.

(3) ∆[F ×G] ∼= (∆[F ]×G) + (F ×∆[G]) + (∆[F ]×∆[G]).

Note that on the right hand side of (3) we have ∆[F ] × G for example. ∆[F ] is a
functor SetA //SetA

op×B whereas G is a functor SetA //SetB. Looking at where this
came from

∆A[F ×G] ∼= (∆A[F ]×G) + (F ×∆A[G]) + (∆A[F ]×∆A[G]) ,

we see that the G is the same for all A, which means the G in (3) should be interpreted,
as is often done, to be the functor

SetA G // SetB SetP2 // SetA
op×B

for P2 : A
op ×B //B the second projection, i.e. G followed by the inclusion of SetB in

SetA
op×B given by functors Aop ×B // Set constant in the first variable.

Of course similar remarks go for the F in the second term of (3) and the Fi in (3) of
Theorem 4.2.1.

4.2.3. Proposition. For a profunctor P : A • // B we have

∆[P ⊗ ( )](Φ) ∼= P .

This is just a restatement of Proposition 3.2.4.
We think of P ⊗ ( ) as a linear functor with coefficients P , and its difference is the

constant functor
SetA // SetA

op×B

with constant value P .
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4.2.4. Corollary.
∆[idSetA ](Φ) = IdA

where idSetA : SetA // SetA is the identity functor and IdA : A • // A is the identity
profunctor.

Like we did in Proposition 3.2.6, we can generalize 4.2.3 to the following:

4.2.5. Proposition. If F : SetA // SetB preserves binary coproducts, then

∆[F ](A,B) = F (A(A,−))(B)

i.e. ∆[F ] = Cor(F ), the core of F (see Definition 1.3.2).

We can improve (2) in Corollary 4.2.2, replacing the set C by a profunctor
P : B • // C. Given a tense functor F : SetA //SetB, we can compose it with P ⊗ ( )
to get another tense functor

SetA F // SetB
P⊗( ) // SetC

which will be called P ⊗ F as its value at Φ is P ⊗ (F (Φ)) although it might be hard to
parse.

4.2.6. Proposition.
∆[P ⊗ F ] ∼= P ⊗∆[F ] .

Proof. The P ⊗ F is the composite

SetA F // SetB
P⊗( ) // SetC

so ∆[P ⊗ F ] is the functor SetA // SetA
op×C with values

∆[P ⊗ F ](Φ)(A,C) = ∆A[P ⊗ F ](Φ)(C) .

On the other hand P ⊗∆[F ] is the composite

SetA
∆[F ] // SetA

op×B P⊗B( ) // SetA
op×C

so has values
(P ⊗∆[F ])(Φ)(A,C) = (P ⊗B (∆[F ](Φ)))(A,C) .

By the definition of composition of profunctors, this is∫ B
P (B,C)×∆[F ](Φ)(A,B)

=
∫ B

P (B,C)×∆A[F ](Φ)(B)

= (P ⊗∆A[F ](Φ))(C)

and by Proposition 3.2.7 this is isomorphic to ∆A[P ⊗ F ](Φ)(C).
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4.3. A natural reformulation. It will be conceptually clearer to reformulate the
definition of ∆ in more categorical terms, that is, in terms of natural transformations,
Yoneda style. This rids us of many of the element-based proofs, eliminating, as it does,
membership and especially non-membership. The results are cleaner and clearer, espe-
cially in the next section where we see the chain rule reduced to composition. This is a
vast improvement over the construction and proof of the one-variable chain rule given in
[5] which is far from transparent.

So why not just start with this as a definition? The basic intuition of finite differences
would be lost. It is hard to imagine why one would define a profunctor using (2) or (3)
in the proposition below, or formulate the product and sum rules or the chain rule.

4.3.1. Proposition. Let F : SetA //SetB be a tense functor and Φ an object of SetA.
Then there is a natural bijection between the following:
(1) Elements x ∈ ∆[F ](Φ)(A,B)
(2) Natural transformations t : B(B,−) // F (Φ +A(A,−)) giving a pullback

0 F (Φ)//

B(B,−)

0

OO

?�

B(B,−) F (Φ +A(A,−))// F (Φ +A(A,−))

F (Φ)

OO

?�

Pb

(3) Natural transformations u : F (Φ) +B(B,−) // F (Φ +A(A,−)) giving a pullback

F (Φ) F (Φ) .

F (Φ) +B(B,−)

F (Φ)

OO

?�

F (Φ) +B(B,−) F (Φ +A(A,−))// F (Φ +A(A,−))

F (Φ) .

OO

?�

Pb

Proof. An element of ∆[F ](Φ)(A,B) is an element of F (Φ +A(A,−))(B) which is not
in F (Φ)(B). By Yoneda, this corresponds bijectively to a natural transformation

t : B(B,−) // F (Φ +A(A,−))

for which t(B)(1B) /∈ F (Φ)(B). As F (Φ) �
� // F (Φ + A(A,−)) is complemented by

tenseness, that’s equivalent to none of the values of t being in F (Φ), which means that

0 F (Φ)//

B(B,−)

0

OO

?�

B(B,−) F (Φ +A(A,−))t // F (Φ +A(A,−))

F (Φ)

OO

?�
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is a pullback. And this, in turn, is equivalent to

F (Φ) F (Φ) .

F (Φ) +B(B,−)

F (Φ)

OO

?�

F (Φ) +B(B,−) F (Φ +A(A,−))u // F (Φ +A(A,−))

F (Φ) .

OO

?�

being a pullback, where u is the inclusion on the first summand and t on the second.

As mentioned in 1.1.1 it is useful to think of the elements of a profunctor as some sort of
morphism but between objects of different categories (sometimes called heteromorphisms).
Because of the representables appearing in the natural transformations above, it’s not
unreasonable to think of them as morphisms from A to B, as a kind of Kleisli morphism
although F is not a monad. If F were the identity for example, t is equivalent to a
natural transformation B(B,−) //A(A,−) so to an actual morphism A // B. This is
just another way of saying that ∆[1SetA ](Φ) = IdA, the identity profunctor on A, i.e. the
hom functor.

More generally, if F preserves binary coproducts, a t as above corresponds to a natural
transformation

B(B,−) // F (A(A,−)) ,
another way of viewing the identity

∆[F ](Φ) = Cor(F )

of Proposition 4.2.5.
With the natural transformation version of ∆ it is easy to see how ∆[F ](Φ)(A,B) is

functorial in A and B. Given a t as in (2) and morphisms f : A′ // A and g : B // B′

we get pullbacks

0 0 F (Φ) F (Φ) ,

B(B′,−) B(B,−) F (Φ +A(A,−)) F (Φ +A(A′,−))B(g,−) // t // F (Φ+A(f,−)) //

//

OO

?�

OO

?�

OO

?�

OO

?�

Pb Pb Pb

the third one because F is tense.
Similarly, functoriality in Φ is clear. For ϕ : Φ //Ψ we get pullbacks

0 F (Φ) F (Ψ)

B(B,−) F (Φ +A(A,−)) F (Ψ +A(A,−))

//
F (ϕ)

//

t // F (ϕ+A(A,−)) //
OO

?�

OO

?�

OO

?�

Pb Pb
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again using tenseness of F .
The same goes for the functoriality in F . If α : F //G is a tense transformation, we

get pullbacks

0 F (Φ) G(Φ) .

B(B,−) α(Φ +A(A,−)) G(Φ +A(A,−))

//
α(Φ)

//

t // α(Φ+A(A,−)) //
OO

?�

OO

?�

OO

?�

Pb Pb

Showing that ∆[F ] : SetA // SetA
op×B is tense in this context is probably no easier

than the element-wise proof given for Proposition 4.1.3 but it may be more conceptual.
It is a result we need if we want to iterate ∆, as we do. So we reprove it.

The proof that ∆[F ] preserves the pullbacks of complemented subobjects is basically
the same as in 4.1.3 but we reproduce it here without reference to partical differences or
evaluation functors.

Let

Ψ0 Ψ� � //

Φ0

Ψ0

��

Φ0 Φ� � // Φ

Ψ

ϕ

��

Pb

be a pullback of complemented subobjects in SetA and A an object of A. Consider the
four squares in SetB

F (Ψ0 +A(A,−)) F (Ψ +A(A,−))

F (Φ0 +A(A,−)) F (Φ +A(A,−))

∆[Φ0](A,−) ∆[Φ](A,−)

� � //

� � //

� � //

��

�� ��

��

(2)

(1)

F (Ψ0 +A(A,−)) F (Ψ +A(A,−)) .

∆[Ψ0](A,−) ∆[Ψ](A,−)

∆[Φ0](A,−) ∆[Φ](A,−)

� � //

� � //

� � //

��

�� ��

��

(3)

(4)

(1) and (4) are pullbacks by definition of ∆ and (2) because F is tense. As the pasted
rectangle (1) + (2) is equal to (3) + (4), we get that (3) is also a pullback.

As ∆[F ] preserves pullbacks of complemented subobjects, it will take a complemented
subobject Φ0

� � // Φ to a mono, but we still have to prove that it’s complemented. We
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have to prove that for any f : A′ // A and g : B //B′,

∆[Φ0](A
′, B′) ∆[Φ](A′, B′)// //

∆[Φ0](A,B)

∆[Φ0](A
′, B′)

∆[Φ0](f,g)

��

∆[Φ0](A,B) ∆[Φ](A,B)// // ∆[Φ](A,B)

∆[Φ](A′, B′)

∆[Φ](f,g)

��

is a pullback.
An element of ∆[Φ](A,B) is a natural transformation t : B(B,−) //F (Φ+A(A,−)).

To be in ∆[Φ0](A,B) means that it factors through F (Φ0+A(A,−)) � � //F (Φ+A(A,−)).
Referring to the following diagram

B(B′,−)

FΦ0 +A(A,−)) F (Φ0 +A(A′,−))

B(B,−) F (Φ +A(A,−)) F (Φ +A(A′,−))

u

22
B(g,−)

OO

u′

99

u′′

$$

F (Φ0+A(f,−))
//

t // F (Φ+A(f,−)) //

?�

OO

?�

OO

Pb

∆[Φ](f, g)(t) is the composite of the left arrow with the two top arrows, and to say that
it is in F (Φ0+A(A′,−)) means that there is a u making the outside boundary commute.
The square in a pullback because F is tense so there exists a unique u′ as shown and as
F (Φ0 + A(A,−)) is complemented there exists a u′′ by Proposition 2.1.3. So t factors
through F (Φ0 +A(A,−)) which is what we wanted.

4.4. Lax chain rule. We saw in [5] that the chain rule for the single variable func-
torial difference was expressed as a laxity morphism rather than an isomorphism, and
the same applies in the multivariable case. For tense functors F : SetA // SetB and
G : SetB // SetC we will construct a comparison transformation

γ(Φ) : ∆[G](F (Φ))⊗B ∆[F ](Φ) //∆[GF ](Φ)

and establish associativity and unit laws for it. In fact, considering ∆[F ](Φ) as a pro-
functor may not mean much unless it composes like a profunctor. Otherwise it is just an
object of SetA

op×B.
The construction of γ in [5] is perhaps a bit opaque and the profunctor interpretation

clarifies this. We’ll see that it is, in a sense, just composition as it should be.
In the previous section we described the functoriality of ∆ in terms of the character-

ization (2) of Proposition 4.3.1, but for the chain rule the characterization (3) is better,
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so we reformulate the functorialities in this context. As we will refer to it a lot, let us call
a natural transformation t such that

F (Φ) F (Φ)

F (Φ) +B(B,−)

F (Φ)

OO

?�

F (Φ) +B(B,−) F (Φ +A(A,−))t // F (Φ +A(A,−))

F (Φ)

OO

?�

is a pullback, a PPI transformation (for pullback preserves injections).
Functoriality of ∆[F ](Φ)(A,B), considered as a set of PPI transformations, is easy.

It’s just composition with F (Φ +A(f,−)) and F (Φ) +B(g,−) respectively.
Functoriality in Φ and F are a bit more complicated as the Φ and F appear in both

the domain and codomain of t. The following characterization will be useful, although it
is nothing but a reformulation.

4.4.1. Proposition. Let t : F (Φ)+B(B,−) //F (Φ+A(A,−)) be a PPI transformation.
(1) If ϕ : Φ // Ψ is a natural transformation, then ∆[F ](ϕ)(A,B)(t) is the unique PPI
transformation t′ such that

F (Ψ) +B(B,−) F (Ψ +A(A,−)) .
t′
//

F (Φ) +B(B,−)

F (Ψ) +B(B,−)

F (ϕ)+B(B,−)

��

F (Φ) +B(B,−) F (Φ +A(A,−))t // F (Φ +A(A,−))

F (Ψ +A(A,−)) .

F (ϕ+A(A,−))

��

(2) If α : F // G is a tense transformation, then ∆[α](Φ)(A,B)(t) is the unique PPI
transformation t′′ such that

F (Ψ) +B(B,−) F (Ψ +A(A,−)) .
t′′
//

F (Φ) +B(B,−)

F (Ψ) +B(B,−)

F (α)+B(B,−)

��

F (Φ) +B(B,−) F (Φ +A(A,−))t // F (Φ +A(A,−))

F (Ψ +A(A,−)) .

F (α+A(A,−))

��

4.4.2. Theorem. For tense functors F : SetA // SetB and G : SetB // SetC there is
a natural transformation

γ : (∆[G] ◦ F )⊗∆[F ] //∆[GF ]

which is:

(1) natural in F and G

(2) associative

(3) normal (invertible unitors)
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Proof. γ is to be understood pointwise, i.e. as a profunctor morphism

γ(Φ) : ∆[G](F (Φ))⊗B ∆[F ](Φ) //∆[GF ](Φ)

A C•
∆[FG](Φ)

//

B

A

??

•
∆[F ](Φ)

B

C

•
∆[G](F (Φ))

��
γ(Φ)��

for each Φ ∈ SetA, and furthermore natural in that Φ.
Let A ∈ A and C ∈ C. An element of(

∆[G](F (Φ))⊗B ∆[F ](Φ)
)
(A,C)

is an equivalence class

u⊗B t = [A •t //B •u //C]

where u and t are PPI transformations. Let γ(Φ)(A,C)(u⊗B t) = Gt · u which is indeed
PPI:

GF (Φ) GF (Φ) GF (Φ) .

GF (Φ) +C(C,−) G(F (Φ) +B(B,−)) GF (Φ +A(A,−))
OO

?�

OO

?�

OO

?�

u // Gt //

Pb Pb

We must show that γ(Φ)(A,C) is well-defined. Suppose we have another pair of
transformation related by a single morphism

A B′•
t′

//

A

A

A B•t // B

B′

g

��
B′ C .•

u′
//

B

B′

B C•u // C

C .

This means that we have commutative squares

GF (Φ) +C(C,−) G(F (Φ) +B(B′,−))
u′
//

GF (Φ) +C(C,−)

GF (Φ) +C(C,−)

GF (Φ) +C(C,−) G(F (Φ) +B(B,−))u // G(F (Φ) +B(B,−))

G(F (Φ) +B(B′,−))

OO

G(F (Φ)+B(g,−))

F (Φ) +B(B′,−) F (Φ +A(A,−)) .
t′
//

F (Φ) +B(B,−)

F (Φ) +B(B′,−)

OO

F (Φ)+B(g,−)

F (Φ) +B(B,−) F (Φ +A(A,−))t // F (Φ +A(A,−))

F (Φ +A(A,−)) .
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If we apply G to the second and paste it to the first we get a commutative diagram which
shows that Gt · u = Gt′ · u′. It follows that γ(Φ)(A,C) is well-defined.

Naturality in A and C is clear as it is just composition with F (Φ + A(f,−)) and
F (Φ) +C(h,−) respectively and has nothing to do with the equivalence relation, which
is localized at B. So we get a profunctor morphism γ(Φ).

To show that γ is natural in Φ, let ϕ : Φ //Ψ be a natural transformation and consider

∆[G](F (Ψ))⊗B ∆[F ](Ψ)(A,C) ∆[GF ](Ψ)(A,C)
γ(Ψ)

//

∆[G](F (Φ))⊗B ∆[F ](Φ)(A,C)

∆[G](F (Ψ))⊗B ∆[F ](Ψ)(A,C)
��

∆[G](F (Φ))⊗B ∆[F ](Φ)(A,C) ∆[GF ](Φ)(A,C)
γ(Φ) // ∆[GF ](Φ)(A,C)

∆[GF ](Ψ)(A,C)
��

where the vertical arrows are induced by ϕ. If we chase an element u⊗B t in the domain,
first around the left-bottom we get u′⊗B t′ and then Gt′ ·u′ where u′ and t′ are the unique
PPI’s such that

GF (Ψ) +C(C,−) G(F (Ψ) +B(B,−))
u′
//

GF (Φ) +C(C,−)

GF (Ψ) +C(C,−)

GF (ϕ)+C(C,−)

��

GF (Φ) +C(C,−) G(F (Φ) +B(B,−))u // G(F (Φ) +B(B,−))

G(F (Ψ) +B(B,−))

G(F (ϕ)+B(B,−))

��

F (Ψ) +B(B,−) F (Ψ +A(A,−)) .
t′

//

F (Φ) +B(B,−)

F (Ψ) +B(B,−)

F (ϕ)+B(B,−)

��

F (Φ) +B(B,−) F (Φ +A(A,−))t // F (Φ +A(A,−))

F (Ψ +A(A,−)) .

F (ϕ+A(A,−))

��

On the other hand, going around the top-right we get Gt · u and then v′ the unique PPI
such that

GF (Ψ) +C(C,−) GF (Ψ +A(A,−)) .
v′

//

GF (Φ) +C(C,−)

GF (Ψ) +C(C,−)

GF (ϕ)+C(C,−)

��

GF (Φ) +C(C,−) GF (Φ +A(A,−))Gt·u // GF (Φ +A(A,−))

GF (Ψ +A(A,−)) .

GF (ϕ+A(A,−))

��

If we apply G to the diagram for t′ above and paste it to the one for u′, we see that Gt′ ·u′
is such a v′, and so v′ = Gt′ · u′. This gives naturality in Φ.

We can check naturality in F and G separately. First, let α : F // F ′ be a tense
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natural transformation. We wish to show that

∆[G](F ′(Φ))⊗B ∆[F ′](Φ)(A,C) ∆[GF ′](Φ)(A,C)
γ(Φ)

//

∆[G](F (Φ))⊗B ∆[F ](Φ)(A,C)

∆[G](F ′(Φ))⊗B ∆[F ′](Φ)(A,C)
��

∆[G](F (Φ))⊗B ∆[F ](Φ)(A,C) ∆[GF ](Φ)(A,C)
γ(Φ) // ∆[GF ](Φ)(A,C)

∆[GF ′](Φ)(A,C)
��

commutes. α acting on an element u⊗B t of the domain gives u′ ⊗B t′ which gets sent to
Gt′ · u′, where

GF ′(Φ) +C(C,−) G(F ′(Φ) +B(B,−))
u′
//

GF (Φ) +C(C,−)

GF ′(Φ) +C(C,−)

GF (α)+C(C,−)

��

GF (Φ) +C(C,−) G(F (Φ) +B(B,−))u // G(F (Φ) +B(B,−))

G(F ′(Φ) +B(B,−))

G(α(Φ)+B(B,−))

��

F ′(Φ) +B(B,−) F ′(Φ +A(A,−)) .
t′

//

F (Φ) +B(B,−)

F ′(Φ) +B(B,−)

α(Φ)+B(B,−)

��

F (Φ) +B(B,−) F (Φ +A(A,−))t // F (Φ +A(A,−))

F ′(Φ +A(A,−)) .

F (α+A(A,−))

��

On the other hand we first get Gt · u and then v′ such that

GF ′(Φ) +C(C,−) GF (Φ +A(A,−)) .
v′
//

GF (Φ) +C(C,−)

GF ′(Φ) +C(C,−)

Gα(Φ)+C(C,−)

��

GF (Φ) +C(C,−) GF (Φ +A(A,−))Gt·u // GF (Φ +A(A,−))

GF (Φ +A(A,−)) .

GF (α+A(A,−))

��

Again, applying G to the square for t′ and pasting to the one for u′, we see that v′ = Gu′ ·t′,
i.e. naturality in F .

For naturality in G, let β : G // G′ be a tense natural transformation. We’ll show
that

∆[G′](F (Φ))⊗B ∆[F ](Φ)(A,C) ∆[G′F ](Φ)(A,C)
γ(Φ)

//

∆[G](F (Φ))⊗B ∆[F ](Φ)(A,C)

∆[G′](F (Φ))⊗B ∆[F ](Φ)(A,C)
��

∆[G](F (Φ))⊗B ∆[F ](Φ)(A,C) ∆[GF ](Φ)(A,C)
γ(Φ) // ∆[GF ](Φ)(A,C)

∆[G′F ](Φ)(A,C)
��
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commutes. An element u ⊗ t of the domain, goes down to u′ ⊗ t and then G′u′ · t for u′
such that

G′F (Φ) +C(C,−) G′(F (Φ) +B(B,−)) .
u′

//

GF (Φ) +C(C,−)

G′F (Φ) +C(C,−)

βF (Φ)+C(C,−)

��

GF (Φ) +C(C,−) G(F (Φ) +B(B,−))u // G(F (Φ) +B(B,−))

G′(F (Φ) +B(B,−)) .

β(F (Φ)+B(B,−))

��

u⊗ t goes across to Gt · u and then down to v′ such that

G′F (Φ) +C(C,−) G′F (Φ +A(A,−)) .
v′

//

GF (Φ) +C(C,−)

G′F (Φ) +C(C,−)

βF (Φ)+C(C,−)

��

GF (Φ) +C(C,−) GF (Φ +A(A,−))Gt·u // GF (Φ +A(A,−))

G′F (Φ +A(A,−)) .

β(F (Φ)+A(A,−))

��

If we paste the diagram for u′ with the naturality square

G′(F (Φ) +B(B,−)) G′F (Φ +A(A,−))
G′t

//

G(F (Φ) +B(B,−))

G′(F (Φ) +B(B,−))

β(FΦ+B(B,−))

��

G(F (Φ) +B(B,−)) GF (Φ +A(A,−))Gt // GF (Φ +A(A,−))

G′F (Φ +A(A,−))

βF (Φ+A(A,−))

��

and compare with the diagram for v′ we see that v′ = G′t · u′, which gives naturality in
G.

Let
SetA F // SetB G // SetC H // SetD

be tense functors. Associativity involves taking an element v ⊗ u⊗ t of

∆[H](GF (Φ))⊗B ∆[G](FΦ)⊗C ∆[F ](Φ)

at (A,D) and applying γ in two different ways to reduce it to elements of ∆[HGF ](Φ),
and seeing that they are equal. This is for any PPI transformations

t : F (Φ) +B(B,−) // F (Φ +A(A,−))
u : GF (Φ) +C(C,−) //G(F (Φ) +B(B,−))

v : HGF (Φ) +D(D,−) //H(GF (Φ) +C(C,−)) .
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And indeed, we get

(Hu · v)⊗ t HGt ·Hu · v .� //

v ⊗ u⊗ t

(Hu · v)⊗ t

_

��

v ⊗ u⊗ t v ⊗ (Gt · u)� // v ⊗ (Gt · u)

HGt ·Hu · v .

v ⊗ (Gt · u)

H(Gt · u) · v

_

��

For the unit laws, first assume that B = A and that F = idSetA . Then γ(Φ) takes the
form

γ(Φ) : ∆[G]⊗A ∆[idSetA ](Φ) //∆[G](Φ)

and an element of the domain is an equivalence class u⊗ t for PPI’s

Φ +A(A′,−) t // Φ +A(A,−) G(Φ) +C(C,−) u //G(Φ +A(A′,−)) .

For t to be a PPI it must be of the form

Φ +A(A′,−) Φ+A(f,−) // Φ +A(A,−)

and every equivalence class has a unique representative where f is 1A. Then γ(Φ)(u⊗1) =
u gives our bijective right unitor.

For the left unitor, let B = C and G = idSetC . Then γ takes the form

γ(Φ) : ∆[idSetC ](F (Φ)⊗∆[F ](Φ)) //∆[F ](Φ)

and an element of its domain is an equivalence class u⊗ t with PPI’s

F (Φ) +C(C ′,−) t // F (Φ +A(A,−)) F (Φ) +C(C,−) u // F (Φ) +C(C ′,−)

For u to be a PPI it must be of the form F (Φ) +C(g,−). Again every equivalence class
contains a unique representative with g = 1C . Then

γ(Φ)(1⊗ t) = t

gives the bijective unitor.

As stated, the lax chain rule is called lax just because what might have been hoped
to be an isomorphism is merely a comparison morphism reducing a more complicated
expression to a simpler one. But, if we reformulate it in terms of the tangent bundle of
Section 4.1, we get an actual lax normal functor.

Recall that the tangent functor T [F ]

SetA SetA
F

//

SetA × SetA

SetA

P1

��

SetA × SetA SetB × SetB
T [F ] // SetB × SetB

SetA

P1

��
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is given by
T [F ](Φ,Ψ) = (F (Φ),∆[F ](Φ)⊗A Ψ) .

If G : SetB // SetC is another tense functor, then the composite

T [G] ◦ T [F ] = (GF (Φ),∆[G](F (Φ))⊗B ∆[F ](Φ)⊗A Φ)

and
(1GF (Φ), γ(Φ)⊗A Ψ): T [G] ◦ T [F ] // T [GF ]

makes T : Tense // Tense into a lax normal functor. We omit the details which only
involve the rearrangement of the facts proved in Theorem 4.4.2.

5. Newton series

5.1. Multivariable Newton series.The Newton series of a function of a real variable
f : R // R is a discrete version of Taylor series. Its aim is to recover f from its iterated
differences, or to approximate f by polynomials. The formula is well-known

∞∑
n=0

∆n[f ](0)

n!
x↓n

=
∞∑
n=0

∆n[f ](0)

(
x

n

)
when x↓n is the falling power x(x− 1) . . . (x− n+1) and

(
x
n

)
is the “binomial coefficient”

x(x−1)...(x−n+1)
n!

.
Although not so well-known, a recursive argument produces a multivariable version:

for f : Rn // R we have

∞∑
k1,k2,...,kn=0

∆k1
x1
∆k2
x2
· · ·∆kn

xn [f ](0, . . . , 0)

k1!k2! · · · kn!
x↓k11 x↓k22 · · ·x↓knn

=
∞∑

k1,k2,...,kn=0

∆k1
x1
∆k2
x2
· · ·∆kn

xn [f ](0, . . . , 0)

(
x1
k1

)(
x2
k2

)
· · ·

(
xn
kn

)
.

In [5] we gave a categorified version for taut endofunctors of Set and showed that for
analytic functors their Newton series converge to them. In fact this holds for a larger class
of taut functors, which we call soft analytic. Not only that, the approximation alluded to
above manifests itself as a categorical adjointness. In this section we develop multivariable
versions of these results.
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5.2. Soft multivariable analytic functors. In order to categorify multivariable
Newton series we must modify the notion of A-B symmetric sequence to take into account
the extra structure that the iterated differences have. We replace the category !A of [2]
by the larger category ↓A with the same objects, finite sequences ⟨A1, . . . , An⟩ of objects
of A, but where the morphisms

⟨A1, . . . , An⟩ // ⟨C1, . . . Cm⟩

are pairs (σ, ⟨fj⟩) such that σ : m // n is a surjection and ⟨fj⟩ is a family of morphisms
indexed by m

fj : Aσj // Cj .

Composition is formally the same as for !A

(τ, ⟨gk⟩)(σ, ⟨fj⟩) = (στ, ⟨gkfτk⟩) .

Whereas !A is the free symmetric strict monoidal category generated by A, ↓A is the
free symmetric monoidal category in which every object has a canonical cocommutative
coassociative comultiplication.

5.2.1. Definition. A soft A-B-symmetric sequence is a profunctor P : ↓A • // B.

Given a soft A-B-symmetric sequence P : ↓A • // B we define the functor

P̃ : SetA // SetB by the formula

P̃ (Φ)(B) =

∫ ⟨A1...An⟩∈↓A
P (A1, . . . , An;B)× ΦA1 × . . .× ΦAn .

Of course, for this to make sense ΦA1× . . .×ΦAn must come from a functor ↓A //Set,
which is indeed the case. For a morphism

(σ, ⟨f1 . . . fm⟩) : ⟨A1, . . . , An⟩ // ⟨C1, . . . , Cm⟩

we have a unique morphism making

ΦAσj ΦCjΦfj
//

ΦA1 × . . .× ΦAn

ΦAσj

projσj

��

ΦA1 × . . .× ΦAn ΦC1 × . . .× ΦCm// ΦC1 × . . .× ΦCm

ΦCj

projj

��

commute for all j ∈ m.
A more conceptual description of P̃ is in terms of Kan extensions. Let

Q : (↓A)op // SetA be the functor defined by

Q⟨A1. . .An⟩ = A(A1,−) + . . .+A(An,−) .
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It is indeed a functor, its value on a morphism

(σ, ⟨f1, . . ., fm⟩) : ⟨A1, . . ., An⟩ // ⟨C1, . . ., Cm⟩

being the unique morphism making all the squares

A(C1,−) + . . .+A(Cm,−) A(A1,−) + . . .+A(An,−)//

A(Cj,−)

A(C1,−) + . . .+A(Cm,−)

injj

��

A(Cj,−) A(Aσj,−)
A(fj ,−) //A(Aσj,−)

A(A1,−) + . . .+A(An,−)

injσj

��

commute. A profunctor P : ↓A • // B is a functor P : (↓A)op×B //Set which may be
alternately described as a functor (↓A)op // SetB (which we denote by the same letter).

Then P̃ is the left Kan extension of P along Q:

(↓A)op

SetB .

P

��

(↓A)op SetA
Q // SetA

SetB .

LanQP=P̃

��

η +3

Indeed,

LanQP (Φ) =

∫ A1...An

P (A1. . .An;−)× SetA(Q⟨A1, . . ., An⟩,Φ)

(see [4], p. 236) and SetA(Q⟨A1. . .An⟩,Φ) ∼= ΦA1 × . . .× ΦAn.
Q may be considered as a profunctor ↓A • // A and we have the following “soften-

ing” of Proposition 2.5.1.

5.2.2. Proposition.

1. P̃ is the composite P ⊗ (Q; ( ))

SetA
Q;( ) // Set↓A

P⊗( ) // SetB .

2. Q satisfies the condition of 2.4.1.

Proof. (1) Same as in 2.5.1.
(2) Again π0Q(A1, . . ., An;−) = n for the same reason (sum of n representables), but

now for a morphism (σ, ⟨f1, . . ., fm⟩) : ⟨A1, . . ., An⟩ // ⟨C1, . . ., Cm⟩ the morphism

π0Q(C1, . . ., Cm;−) // π0Q(A1, . . ., An;−)

is σ : m // n, which is onto.
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5.2.3. Corollary. P̃ is tense.

A more elementary understanding of P̃ will be useful. From the coend formula for
Kan extension we see that an element of P̃ (Φ)(B) is an equivalence class of pairs (p, ϕ)[

p : ⟨A1, . . ., An⟩ • // B, ϕ :
∑

A(Ai,−) // Φ
]

where p ∈ P (A1, . . ., An;B) and
∑

A(Ai,−) is short for
∑n

i=1A(Ai,−). The equiv-
alence relation is generated by identifying (p, ϕ) and (q, ψ) when there is a morphism
(σ, ⟨fj⟩) : ⟨A1, . . ., An⟩ // ⟨C1, . . ., Cm⟩ in ↓A such that

B

⟨C1, . . ., Cm⟩

88

• q

⟨A1, . . ., An⟩

B

• p

&&

⟨A1, . . ., An⟩

⟨C1, . . ., Cm⟩

(σ,⟨fj⟩)

��

Φ

∑
A(Cj,−)

88

ψ

∑
A(Ai,−)

Φ

ϕ

&&

∑
A(Ai,−)

∑
A(Cj,−)

OO

∑
σ A(fj ,−)

where
∑

σA(fj,−) represents the natural transformation taking g : Cj // A to

Aσ(j)
fj // Cj

g // A.

Functoriality of P̃ in B and Φ is by composition: for b : B //B′

P̃ (Φ)(b) : (p, ϕ) 7−→ (bp, ϕ)

and for θ : Φ //Ψ
P̃ (θ)(B) : (p, ϕ) 7−→ (p, θϕ) .

The universal property of Kan extensions says that for any functor F : SetA //SetB

we have a natural bijection

P̃ t // F

P
u // FQ .

The correspondence between t and u is the following. t : P̃ // F is given by a family of
natural transformations

⟨P̃ (Φ) // F (Φ)⟩Φ
natural in Φ ∈ SetA, which further breaks down into a doubly indexed family of functions

⟨P̃ (Φ)(B) // F (Φ)(B)⟩Φ,B

natural in both Φ and B. So for every equivalence class

[p : ⟨A1, . . ., An⟩ • // B, ϕ :
∑

A(Ai,−) // Φ]

we get an element t[p, ϕ] ∈ F (Φ)(B).
On the other hand u : P // FQ is a doubly indexed family of functions
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⟨P (A1, . . ., An;B) // F (
∑

A(Ai,−))(B)⟩
natural in ⟨A1, . . ., An⟩ ∈ ↓A and B in B.

Given t we get u by restricting to the case Φ =
∑

A(Ai,−) and ϕ the identity

u(p) = t[p, id∑
A(Ai,−)] .

Given u we get t by
t[p, ϕ] = F (ϕ)(u(p)) .

There is nothing to check, such as naturality or well-definedness, as it all follows by the
general theory of Kan extensions. We will use these formulas in the proof of Theorem 5.3.2.

Another result that will be useful is the following fact which, although trivial, is
interesting in its own right and worth pointing out.

5.2.4. Lemma. For a pair (p : ⟨Ai, . . ., An⟩ • // B, ϕ :
∑

A(Ai,−) // Φ), the Boolean
image of ϕ ∑

A(Ai,−) // Bim(ϕ) �
� // Φ

is an invariant of the equivalence class [p, ϕ].

Proof. Suppose (p, ϕ) and (q, ψ) are related by a single morphism (σ, ⟨fj⟩) of ↓A, i.e.

B

⟨C1, . . ., Cm⟩

88

• q

⟨A1, . . ., An⟩

B

• p

&&

⟨A1, . . ., An⟩

⟨C1, . . ., Cm⟩

(σ,⟨fj⟩)

��

Φ

∑
A(Cj,−)

88

ψ

∑
A(Ai,−)

Φ

ϕ

&&

∑
A(Ai,−)

∑
A(Cj,−)

OO

∑
σ A(fj ,−)

commute. Because (σ, ⟨fJ⟩) is in ↓A,
∑

σA(fj,−) is π0-surjective, so Bim(ϕ) = Bim(ψ).

5.2.5. Definition. A functor of the form P̃ : SetA // SetB for P : ↓A • // B will be
called soft analytic.

It will become clear below that P is uniquely determined by P̃ (see 5.4.1).

5.2.6. Proposition. Analytic functors are soft analytic.

Proof. The category !A of Section 2.5 is a subcategory of ↓A, and the Q of 2.5, the
restriction of the one just introduced. For an A-B symmetric sequence P : !A • // B,

P̃ is the left Kan extension

(!A)op (↓A)op// //(!A)op

SetB

P

""

(↓A)op

SetB

P ′

��

+3

(↓A)op SetA
Q //(↓A)op

SetB

SetA

SetB

P̃

||

+3

which can be taken in stages giving, first a soft A-B symmetric sequence P ′ and then the
analytic functor P̃ which is isomorphic to P̃ ′.
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We can describe P ′ explicitly. It’s the left Kan extension of P along the inclusion
(!A)op // // (↓A)op so

P ′(A1 . . . An;B) ∼=
∫ ⟨C1...Cm⟩∈!A

P (C1 . . . Cm;B)× ↓A(A1 . . . An;C1 . . . Cm) .

An element of P ′(A1, . . . , An;B) is thus an equivalence class

[⟨A1 . . . An⟩
(σ,⟨f1...fn⟩) // ⟨C1 . . . Cm⟩ •

p //B]

where σ : m // //n is onto, fj : Aσj //Cj and p ∈ P (C1 . . . Cm;B). The equivalence relation
is generated by identifying (σ, ⟨fj⟩, p) with (ρ, ⟨gj⟩, q) is there exists a morphism (τ, ⟨hj⟩)
in !A such that

⟨A1, . . . , An⟩ ⟨D1, . . . , Dm⟩
(ρ,⟨g1...gm⟩)

//

⟨A1, . . . , An⟩

⟨A1, . . . , An⟩

⟨A1, . . . , An⟩ ⟨C1, . . . , Cm⟩•
(σ,⟨fi...fn⟩) // ⟨C1, . . . , Cm⟩

⟨D1, . . . , Dm⟩

OO

(τ,⟨h1...hm⟩)

⟨D1, . . . , Dm⟩ B•
q

//

⟨C1, . . . , Cm⟩

⟨D1, . . . , Dm⟩

⟨C1, . . . , Cm⟩ B•
p // B

B

i.e.

n

m

gggg

ρ

m

n

σ

wwww

m

m

τ

��
Aρτj Dτjgτj

//

Aσj

Aρτj

Aσj Cj
fj // Cj

Dτj

OO

hj B

⟨D1 . . . Dm⟩

66
• q

⟨C1 . . . Cm⟩

B

• p

((

⟨C1 . . . Cm⟩

⟨D1 . . . Dm⟩

(τ,⟨h1,...hm⟩)

��
.

In every equivalence class there are representatives of the form

⟨A1, . . . , An⟩
(σ,⟨1Aσj

⟩)
// ⟨Aσ1, Aσ2, . . . , Aσm⟩ •

p //B

and, after some calculation, we see that two such are equivalent if and only if there is a
τ ∈ Sm such that

n

m

gggg

ρ

m

n

σ

wwww

m

m

τ

��

B

⟨Aρ1, . . . , Aρm⟩

66
• q

⟨Aσ1, . . . , Aσm⟩

B

• p

((

⟨Aσ1, . . . , Aσm⟩

⟨Aρ1, . . . , Aρm⟩

OO

(τ,⟨idAσm ⟩)

We can further nail down the equivalence class by choosing canonical surjections
m // //n, the order preserving ones, and these are determined by their fibres mi which are
positive integers. This gives a relatively simple description of P ′

P ′(A1, . . . An;B) ∼=
∑

m1,...mn>0

P (A⊗m1
1 , . . . , A⊗mn

n ;B)/Sm1 × . . .× Smn

where A⊗mi
i = ⟨Ai, Ai, . . . , Ai⟩ ∈ Ami and the action is by permuting those entries.
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5.3. The Newton series comonad. In this section we show that taking iterated
differences is right adjoint to summation of a multivariable symmetric series. We first
combine all the iterated differences into one soft symmetric sequence.

5.3.1. Proposition. Let F : SetA //SetB be tense. Then taking the iterated symmetric
differences of F evaluated at Φ gives an A-B symmetric sequence

∆∗[F ](Φ) : ↓A • // B

∆∗[F ](Φ)(A1, . . . , An;B) = ∆A1 . . .∆An [F ](Φ)(B) .

Proof. ∆A1 . . .∆An [F ](Φ)(B) = ∆⟨Ai⟩[F ](Φ)(B) consists of the new elements of

F (Φ +A(A1,−) + . . .+A(An,−))(B) ,

i.e. those elements not in F (Φ+A(Aα1,−)+ . . .+A(Aαk,−)) for any proper subsequence
⟨Aα1, . . . , Aαk⟩, α : k // // // n a proper mono. We’ll show that ∆∗[F ] is a subfunctor of
F (Φ + Q). Let (σ, ⟨f1, . . . , fm⟩)) : ⟨A1, . . . , An⟩ // ⟨C1, . . . , Cm⟩ be a morphism in ↓A,
and let x be an element of

∆C1 . . .∆Cm [F ](Φ)(B) ⊆ F (Φ +A(C1,−) + . . .+A(Cm,−))(B) .

Then y = F (σ, ⟨f1, . . . , fm⟩)(B)(x) is an element of F (Φ+A(A1,−) + . . .+A(An,−)(B)
and suppose it’s not new. There is a proper monomorphism α : k // // // n such that
y ∈ F (ΦA(Aα1,−) + . . .+A(Aαk,−))(B).

The pullback of a proper mono along an epi is again proper so we get

k n// //
α

//

l

k

ρ

����

l m// // β //m

n

σ

����

Pb

which, in turn, gives a pullback of complemented subobjects in SetA

A(Aα1,−) + . . .+A(Aαk,−) A(A1,−) + . . .+A(An,−) .� � //

A(Cβ1,−) + . . .+A(Cβl,−)

A(Aα1,−) + . . .+A(Aαk,−)

(ρ,⟨fβ1,...,fβn⟩)

��

A(Cβ1,−) + . . .+A(Cβl,−) A(C1,−) + . . .+A(Cm,−)� � // A(C1,−) + . . .+A(Cm,−)

A(A1,−) + . . .+A(An,−) .

(σ,⟨f1,...,fm⟩)

��

Pb

Adding Φ produces another such pullback and F , being tense, will preserve it

F (Φ +A(Aα1,−) + . . .+A(Aαk,−)) F (Φ +A(A1,−) + . . .+A(An,−)) .� � //

F (Φ +A(Cβ1,−) + . . .+A(Cβl,−))

F (Φ +A(Aα1,−) + . . .+A(Aαk,−))
��

F (Φ +A(Cβ1,−) + . . .+A(Cβl,−)) F (Φ +A(C1,−) + . . .+A(Cm,−))� � // F (Φ +A(C1,−) + . . .+A(Cm,−))

F (Φ +A(A1,−) + . . .+A(An,−)) .
��

Pb
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Then x in the upper right corner gets sent to y which is in the lower left corner, so x itself
is in the upper left corner, i.e. x wasn’t new after all. Thus ∆∗[F ](Φ) is a subfunctor of
F (Φ +Q).

∆∗[F ](Φ) is functorial in F . Indeed, applying Proposition 3.1.3 recursively, we see
that any tense transformation t : F //G restricts to

∆A1 . . .∆An [G](Φ) G(Φ +A(A1,−) + . . .+A(An,−))� � //

∆A1 . . .∆An [F ](Φ)

∆A1 . . .∆An [G](Φ)
��

∆A1 . . .∆An [F ](Φ) F (Φ +A(A1,−) + . . .+A(An,−))� � // F (Φ +A(A1,−) + . . .+A(An,−))

G(Φ +A(A1,−) + . . .+A(An,−))

t(Φ+A(A1,−)+...+A(An,−))

��

which will be natural and functorial automatically. Thus for each Φ in SetA we get a
functor

∆[ ](Φ) : Tense(SetA,SetB) // Prof (↓A,B) ,

i.e. ∆∗[F ](Φ) is an A-B soft symmetric sequence.
The main result of this section is the following:

5.3.2. Theorem.
∆∗[ ](0) is right adjoint to (̃ ) .

Proof. P̃ is the left Kan extension of P along Q

(↓A)op

SetB

P

��

(↓A)op SetA
Q // SetA

SetB

LanQP=P̃

��

+3

so for any functor F : SetA // SetB we have a bijection

P̃ t // F

P u
// FQ

as discussed above. Now ∆∗[F ](0) is a subfunctor of FQ. Indeed

∆∗[F ](0)⟨A1, . . . , An⟩(B) = ∆A1 . . .∆An [F ](0)(B)

consists of the new elements of

F (Q⟨A1, . . . , An⟩)(B) = F (A(A1,−) + . . .+A(An,−))(B) .

We’ll show that t : P̃ // F is tense if and only if u factors through ∆∗[F ](0)
� � // FQ

which will establish the theorem.
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First assume t is tense. Let p be in P (A1, . . . , An;B) so u(p) is in F (A(A1,−) + . . .+
A(An,−))(B) and assume u(p) is in F of some subsum F (A(Aα1,−)+. . .+A(Aαk,−))(B)
for a subset α : k // //n of the indices. Tenseness of t applied to the complemented subsum
µ :

∑
A(Aαi,−) �

� //
∑

A(Ai,−) gives a pullback

∫ ⟨Cj⟩∈↓A P (⟨Cj⟩;B)× SetA(
∑

A(Cj,−),
∑

A(Aαi,−))(B) F (
∑

A(Aαi,−))(B) .//

∫ ⟨Cj⟩∈↓A P (⟨Cj⟩;B)× SetA(
∑

A(Cj,−),
∑

A(Ai,−))(B)

∫ ⟨Cj⟩∈↓A P (⟨Cj⟩;B)× SetA(
∑

A(Cj,−),
∑

A(Aαi,−))(B)

OO

?�

∫ ⟨Cj⟩∈↓A P (⟨Cj⟩;B)× SetA(
∑

A(Cj,−),
∑

A(Ai,−))(B) F (
∑

A(Ai,−))(B)// F (
∑

A(Ai,−))(B)

F (
∑

A(Aαi,−))(B) .

OO

?�

Pb

Then u(p) = T [p, id∑
A(Ai,−)] is in F (

∑
A(Aαi,−))(B) so [p, id] is in the lower left corner

which means there are q : ⟨C1, . . . , Cm⟩ • // B and ψ :
∑

A(Ci,−) //
∑

A(Aαi,−)
such that [q, µψ] = [p, id]. Thus by Lemma 5.2.4 we see that Bim(µψ) = Bim(id) =∑

A(Ai,−). It follows that µ is the identity, so u(p) is not contained in F of any proper
subsum, i.e. is new. This gives our factorization of u through ∆∗[F ](0).

Conversely, assume that u factors through ∆∗[F ](0). We’ll show that t is tense. Let
Ψ �
� // Φ be a complemented subobject. We must show that

P̃ (Ψ) F (Ψ)
t(Ψ)

//

P̃ (Φ)

P̃ (Ψ)

OO

?�

P̃ (Φ) F (Φ)
t(Φ) // F (Φ)

F (Ψ)

OO

?�

(*)

is a pullback. Take an element [p : ⟨A1, . . . , An⟩ • // B, ϕ :
∑

A(Ai,−)Φ] of P̃ (Φ)(B)
and assume t(Φ)[p, ϕ] = F (ϕ)(p) is in F (Ψ). Form the pullback

∑
A(Aαj,−) Ψ .

ψ
//

∑
A(Ai,−)

∑
A(Aαj,−)

OO

?�

∑
A(Ai,−) Φ

ϕ // Φ

Ψ .

OO

?�

Pb

It is induced by a monomorphism α : m // // n because a complemented subobject of a
sum of representables is a subsum. We get a new pullback now by tenseness of F

F (
∑

A(Aαj,−)) FΨ .
F (ψ)

//

F (
∑

A(Ai,−))

F (
∑

A(Aαj,−))

OO

?�

F (
∑

A(Ai,−)) FΦ
F (ϕ) // FΦ

FΨ .

OO

?�

Pb
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F (ϕ) takes u(p) to an element of F (Ψ) so u(p) ∈ F (
∑

A(Aαj,−)). But u(p) was supposed
to be a new element of F (

∑
A(Ai,−)) so α is not a proper subsum which means that∑

A(Ai,−) Φ
ϕ //

∑
A(Ai,−)

Ψ .

ψ
$$

Φ

Ψ .

OO

?�

Thus [p, ϕ] is in P̃ (Ψ). This shows that our square (∗) is indeed a pullback.

The adjoint pair (̃ ) ⊣ ∆∗[ ](0) induces a comonad on Tense(SetA,SetB) which we
call the Newton series comonad.

5.4. Convergence. In this section we show that the Newton series for a soft analytic
functor “converges to it”.

5.4.1. Theorem. For every A-B soft symmetric sequence P : ↓A • // B, the unit for
the adjunction of 5.3.2

P //∆∗[P̃ ](0)

is an isomorphism.

Proof.An element of ∆∗[P̃ ](0) at ⟨A1, . . . , An⟩, B is a new element of P̃ (
∑

A(Ai,−))(B),
i.e. of ∫ C1,...,Cm∈↓A

P (C1, . . . , Cm;B)× SetA(
∑

A(Cj,−),
∑

A(Ai,−))

which is an equivalence class[
p : ⟨C1, . . . , Cm⟩ • // B, ϕ :

∑
A(Cj,−) //

∑
A(Ai,−)

]
(satisfying the newness condition, of course).

The unit P //∆∗[P̃ ](0) takes p : ⟨A1, . . . , An⟩ • // B to the equivalence class[
p : ⟨A1, . . . , An⟩ • // B, id :

∑
A(Ai,−) //

∑
A(Ai,−)

]
.

A ϕ as above is, as explained in the discussion around Proposition 2.1.6, of the form∑
αA(fj,−) for α : m // n and fj : Aαj //Cj and we can take its Boolean factorization

by factoring α (in Set)

m

k

σ
!! !!

m nα // n

k

==

µ
==

and taking∑
j∈m

A(Cj,−)
∑

σ A(fj ,−)
//
∑
i∈k

A(Aµi,−) �
�

∑
µ A(1µi,−)

//
∑
i∈n

A(Ai,−) .
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If µ were a proper mono, [p, ϕ] wouldn’t be new as it would be in P̃ (
∑

i∈kA(Aµi,−)), so
µ = idn and α = σ, a surjection. Thus (σ, ⟨f1⟩) is a morphism of ↓A and we have

B

⟨A1, . . . , An⟩

99

•
p′

⟨C1, . . . , Cm⟩

B

• p

%%

⟨C1, . . . , Cm⟩

⟨A1, . . . , An⟩

OO

(σ,⟨fj⟩) ∑
A(Ai,−)

∑
A(Ai,−)

88

id

∑
A(Cj,−)

∑
A(Ai,−)

ϕ

&&

∑
A(Cj,−)

∑
A(Ai,−)

∑
α A(fj ,−)

��

so [p, ϕ] = [p′, id], which shows that the unit

P //∆∗[P̃ ](0)

p 7−→ [p, id]

is onto.
To show that the unit is one-one we must show that if [p, id] = [q, id] then p = q.

[p, id] = [q, id] means there’s a zigzag path of

B

⟨D1, . . . , Dr⟩

99

• q̄

⟨C1, . . . , Cm⟩

B

• p̄

%%

⟨C1, . . . , Cm⟩

⟨D1, . . . , Dr⟩

OO

(ρ,⟨hj⟩) ∑
A(Ai,−)

∑
A(Ds,−)

88

ψ

∑
A(Cj,−)

∑
A(Ai,−)

ϕ

&&

∑
A(Cj,−)

∑
A(Ds,−)

∑
ρ A(hj ,−)

��

with (ρ, ⟨hj⟩) in ↓A joining [p, id] to [q, id]. The Boolean image of ϕi (and ψi) is an
invariant of the equivalence class (5.2.4) and as Bim(id) =

∑
A(Ai,−), all the ϕ and

ψ also have
∑

A(Ai,−) as their images. That means that the morphisms (σ, ⟨fj⟩) and
(τ, ⟨gs⟩) corresponding to ϕ and ψ are actually morphisms in ↓A, i.e. σ : m // n and
τ : r // n are surjections. Now we have

⟨Ai, . . . , An⟩

⟨D1, . . . , Dr⟩
(τ,⟨gs⟩)

##

⟨C1, . . . , Cm⟩

⟨Ai, . . . , An⟩

;;
(σ,⟨fj⟩)

⟨C1, . . . , Cm⟩

⟨D1, . . . , Dr⟩

OO

(ρ,⟨hj⟩) B

⟨D1, . . . , Dr⟩

;;

•
q̄

⟨C1, . . . , Cm⟩

B

• p̄

##

⟨C1, . . . , Cm⟩

⟨D1, . . . , Dr⟩

OO

commuting p̄(σ, ⟨fj⟩) = q̄(τ, ⟨gs⟩) at every stage of the path joining (p, id) to (q, id), and
for these endpoints we get p and q respectively, i.e. p = q.
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This shows that the Newton series comonad is idempotent.

5.4.2. Corollary. If F : SetA //SetB is soft analytic (in particular analytic) then its
Newton series converges to it, i.e. the counit

˜∆∗[F ](0) // F

is an isomorphism.

5.5. Concluding remark. In the previous sections, we touted the functor taking F to

F̄ = ˜∆∗[F ](0) as a categorical version of the Newton summation formulas at the beginning
of 5.1, but in fact it looks nothing like them.

Let’s consider the first one

f̄(x1, . . . , xn) =
∑

k1,...,kn

∆k1
x1
. . .∆kn

xn [f ](0, . . . , 0)

k1! . . . kn!
x↓k11 . . . x↓knn

where f is a function Rn //R and the sum is taken over all n-tuples of natural numbers.
We’ve replaced f by a (tense) functor SetA //SetB and the difference operators by our
functorial ones, but it’s not clear how to interpret the rest of the formula. Let’s look at
it more carefully.

The first thing to note is that, while the xi in ∆xi and in x↓kii refer to the same
thing, they play different roles. The xi in ∆xi is merely a subscript indicating which
difference operator is used, and we could well have written ∆i instead, although ∆xi is
more descriptive. The xi in x

↓ki
i , on the other hand, represents a variable which can take

values, ci. So we have

f̄(c1, . . . , cn) =
∑

k1,...,kn

∆k1
x1
. . .∆kn

xn [f ](0, . . . , 0)

k1! . . . kn!
c↓k11 . . . c↓knn .

Here all the like ∆’s have been grouped together which is fine as we have finitely many
variables and they’re totally ordered. It would be more natural to sum over all finite
sequences of variables ⟨xα(1) . . . xα(m)⟩ and group the terms together by the length m. Of
course we get more terms: ∆k1

x1
. . .∆kn

xn gets counted(
k1 + . . .+ kn
k1, . . . , kn

)
=

(k1 + . . .+ kn)!

k1! . . . kn!
=

m!

k1! . . . kn!

times, so now we have

f̄(c1, . . . , cn) =
∑

α : m // n

∆α(1) . . .∆α(m)[f ](0, 0)

m!
c↓k11 . . . c↓knn .

In fact this takes care of the finiteness and total ordering of the variables, as far as
the ∆ part of the formula is concerned. We take a set of variables Var and consider the
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free monoid on it Var∗, over which the sum is to be taken. The ci are a choice of value
for each variable ϕ : Var // R but we still have to deal with the ki in this setup.

The k’s count the number of occurrences of a given variable y in a sequence ⟨x1, . . . , xn⟩.
Let

δ : Var× Var // N

be the Kronecker delta, i.e. δ(x, y) = 1 if x = y and 0 otherwise. For each y, extend
δ(−, y) to a function δ(−, y) : Var∗ // N using the additive structure of N, so

δ(x1, . . . , xn; y) =
m∑
i=1

δ(xi, y)

is exactly the number of y’s in ⟨x1, . . . , xn⟩. Thus we end up with the Newton series in
the form we want

f̄(ϕ) =
∑

⟨x1,...,xn⟩∈Var∗

∆x1 . . .∆xm [f ](0)

m!

∏
y∈Var

ϕ(y)↓δ(x1,...xn;y)

which, admittedly, looks more complicated than the original but it’s the closest we can
get to the categorical version.

Now the Newton series comonad of Section 5.3

˜∆∗[F ](0) =

∫ ⟨A1,...,Am⟩∈↓A
∆A1 . . .∆Am [F ](0)× SetA(A(A1,−) + . . .+A(Am,−),Φ)

looks similar to the above, with the following correspondences:

f : Rn // R ↔ F : SetA // SetB

variables x ↔ objects A of A
Var ↔ A
Var∗ ↔ ↓A

ϕ : Var // R ↔ Φ: A // Set
δ(x, y) ↔ A(A′, A)

δ(x1, . . . , xn, y) ↔ A(A1, A) + . . .+A(Am, A)∏
ϕ(y)↓δ(x1...xn;y) ↔ SetA(A(A1,−) + . . .+A(Am,−),Φ)

The correspondence is not perfect, of course. Var∗ might rightly be said to correspond
to !A rather than ↓A. Then the m! in the sum is incroporated in the coend via the
symmetric groups.

Also
∏
ϕ(y)↓δ(x1,...,xm,y) should correspond to monomorphisms

A(A1,−) + . . .+A(Am,−) // Φ

rather than arbitrary natural transformations. That’s what the extra morphisms in ↓A
(involving surjections σ) take care of. We need a bit more theory to explain this.
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5.5.1. Definition. Let Φ: A // Set and x ∈ ΦA. An ancestor of x is a y ∈ ΦA′

for which there is a morphism f : A′ // A such that Φ(f)(y) = x. Two elements
x1 ∈ ΦA1 and x2 ∈ ΦA2 are relatives if they have a common ancestor. A sequence
⟨x1 ∈ ΦA1, . . . , xn ∈ ΦAn⟩ is called diverse if no two elements are relatives. A natural
transformation ϕ :

∑
A(Ai,−) //Φ is diverse if the corresponding sequence of elements

⟨ϕ(Ai)(1Ai
)⟩ is.

All the elements of a diverse sequence are different and more, but not enough
more to make the corresponding transformation monic. One could have i ̸= j and
f : Ai // A, g : Aj // A with Φ(f)(xi) = Φ(g)(xj). But if A is a groupoid, then ϕ
is monic if and only if it is diverse. The variables x1, . . . , xn in the formula we’re abstract-
ing from form a finite discrete set so diverse restricts to one-one in that case.

5.5.2. Proposition.

(1) ϕ as below is diverse if and only if for every factorization of Φ

Φ

∑
A(Cj,−)

;;

ψ

∑
A(Ai,−)

Φ

ϕ

##

∑
A(Ai,−)

∑
A(Cj,−)

∑
σ A(fi,−)

��

with (σ, ⟨fi⟩) : ⟨C1, . . . , Cm⟩ // ⟨A1, . . . , An⟩ in ↓A, we have that σ is a bijection,
i.e. (σ, ⟨fi⟩) ∈!A.

(2) Every ϕ factors as ψ
∑

σA(fi,−) with (σ, ⟨fi⟩) ∈ ↓A and ψ diverse.

Proof. (1) ϕ and ψ as in the statement correspond to an n-tuple x1 ∈ A1, . . . , xn ∈ ΦAn
and an m-tuple y1 ∈ ΦC1, . . . , ym ∈ ΦCm, respectively. The x’s and y’s are related by

xi = Φ(fi)(yσi) .

If σ is not one-to-one, say σ(i1) = σ(i2), then xi1 and xi2 are relatives as they have
the common ancestor yσ(i1) = yσ(i2). So the xi are not diverse nor is ϕ.

Conversely, if the xi are not diverse, then there are two x’s that are relatives. Assume,
for simplicity of notation, that they are xn−1 and xn. So we have f : C //An−1, g : C //An
and y ∈ ΦC such that Φ(f)(y) = xn−1 and Φ(g)(y) = xn. Then we get a morphism

(σ, ⟨fi⟩) : ⟨A1, . . . , An−2, C⟩ // ⟨A1, . . . , An⟩

σ(i) =

{
i if i < n
n− 1 if i = n ,
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⟨fi⟩ = ⟨1A1 , . . . , 1An−2 , f, g⟩ .

Let ⟨y1, . . . , yn−1⟩ = ⟨x1, . . . , xn−2, y⟩. Then

xi = Φ(fi)(yσi)

so the y determine a ψ giving a factorization as above, and σ is not a bijection.
This proves (1).
(2) If ϕ is not diverse, there exists a factorization as in (1) with σ onto but not one-to-

one, so
∑

A(Cj,−) has fewer terms than
∑

A(Ai,−). If we take, among all factorizations,
one with the minimal number of terms, the ψ must be diverse, otherwise we could factor
it again and get a smaller one.

5.5.3. Corollary. Every equivalence class[
x ∈ F (

∑
A(Ai,−))(B), ϕ :

∑
A(Ai,−) // Φ

]
in ∫ ⟨A1,...,A⟩∈↓A

∆A1 . . .∆A[F ](0)(B)× SetA
(∑

A(Ai,−),Φ
)

has a representative in which ϕ is diverse.

Proof. Factor ϕ as in 5.5.2 (2) above. Then

y ∈ F (
∑

A(Cj,−))(B)

x ∈ F (
∑

A(Ai,−))(B)_

��

F (σ,⟨fi⟩)

�� ∑
A(Cj,−) Φ

ψ
//

∑
A(Ai,−)

∑
A(Cj,−)

∑
σ A(fi,−)

��

∑
A(Ai,−) Φ

ϕ // Φ

Φ

so [x, ϕ] = [y, ψ] and ψ is diverse.

The diverse transformations are our categorified set injections so

Diverse (
∑

A(Ai,−),Φ)

is our version of falling power. Note, however, that it is not functorial, and we need all
transformations to make it so.
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