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Lambek - Category theory course 1967
Free objects

~ 3dlg
UFA 4y < g
nA UB

Bijection B(FA, B) = A(A, UB)
l.e. FA represents the functor A(A, U—)
F becomes a functor in a unique way so that 7 is natural
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Example

Free commutative ring
ZIA]

~ 78
vzZ[Al s

7

Free field? Q(A)?
No! Not even a functor!



Multi-adjoints

Diers - Familles Universelles de Morphismes
Ann. Soc. Sci. Bruxelles 93 # 3 (1979)

U : B— A has a left multi-adjoint at A if there is a family
(niA 1 A—= UF;A) ¢, such that Vf : A— UB, J!i, g such that
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Multi-adjoints

Diers - Familles Universelles de Morphismes
Ann. Soc. Sci. Bruxelles 93 # 3 (1979)

U : B— A has a left multi-adjoint at A if there is a family
(niA 1 A—= UF;A) ¢, such that Vf : A— UB, J!i, g such that

i

UFA <
i Ug A B
\
;A UB

i

Bijection A(A,UB) = .., B(FiA, B)
i.e. A(A, U—) is a sum of representables
what Diers calls multi-representable

A



Example: Fields

U(Z[A]/ker g)

k
U(Z[A]/ker g
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Example: Fields

U(Z[A] /ker g)

k
U(Z[A]/ker g

ve -~ YUF

UZIA]

AN

A

Take | = {P < Z[A]|P prime}
Universal family (A—Z[A]/P)pe/
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Different Example

Any groupoid has multi-products:
For A, B € G, take all spans

R

g € G(A, B)

Works for arbitrary (non-empty) products.
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Diers develops a whole “multi-theory” .
E.g. Multi-monads (JPAA 17, 153-170 (1980))
Field is multi-monadic over Set.

Multi-limits, multi Lawvere theories, multi locally presentable
categories, etc.

But stops short of making multi-adjoints into honest adjoints in a
bicategory.

Will give three quite different, though biequivalent, bicategories in
which they live.

MVFam - multivalued functors
ParFun - partial functors
DetProf - deterministic profunctors
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Functoriality

If (niA: A—= UF;A)ic; is a universal family, then the /, F;A, n;A
are unique up to isomorphism.

Diers calls I the U-spectrum of A, denoted Sy A.

For a: A—= A, we have Vj € SyA’ 3!i € SyA such that

FiA— - —>FA
UF,A — UF;A'

niAT TT)jA/

A A

(o7 SuA/%-SuA, Fja : Fa(j)A% FJ'A/
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MVFun

Let Fam*B be the category whose objects are families (/, (B;)ie/)
for I a set and the A; objects of A.

Morphisms (o, (a;)) : (1,(Bj)) —=(J,(B;})) are o= J —= 1,
aj . Ba(j) ‘>le

Then a multi-adjoint gives a functor

F:A—Fam™B

Fam*B is the free product completion of B.
Fam® is a bimonad on Cat (of type coKZ).

Get a Kleisli bicategory MVFun = Catp, -
(See Cheng, Hyland, Power - Electronic Notes in Th. Comp. Sci.
83 (2004).)
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ParFun

If <ALA> UFiA)ics,a ia a universal family for U : B— A, then
Sy is a presheaf A°? — Set

Thus we get

I(SU\)\

A B
where F(i € SyA) = FA.

2

N'm

Definition (Lawvere)
A partial functor F : A — B is a span

F MFE
Z O\
A B

with F a discrete fibration.
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The bicategory structure

Because discrete fibrations are closed under composition and stable
under pullback, we can compose partial functors as spans, i.e. by
pullback.

We get a bicategory if we take as 2-cells t : F— G

Theorem
ParFun is biequivalent to MV Fun.
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DetProf

A partial functor
_ AF
N
A B
gives a profunctor F.® F*: A—e>B.
Theorem

ParFun — Prof®, F— F, ® F* is a locally full and faithful
strong morphism of bicategories.

Definition
P : A—e—=B is deterministic if YA, P(A,—) : B—Set is
multi-representable, i.e. P(A,—) = .., B(B;,—).

Theorem
P is deterministic iff it is isomorphic to F, ® F* for a partial funtor
F. Thus we get a biequivalence of ParFun with DetProf .
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Partial Functors

We have three notions of partial functor:

Spans with F a discrete fibration Partial functions
_ Ar hich dt Ao
i/ \F which correspond to / \
A B A B
Functors Functions
A—— Fam*B which correspond to A— B
Deterministic profunctors Single-valued relations

A—e—B which correspond to A—J| —B



Multi-adjoints are Adjoints

Theorem
Given partial functors

F P J  o.BUg
an

N N

A B B A

F 4 U in ParFun iff U is an isomorphism and F is left
multi-adjoint to UU™!.



