Multivalued Functors

Robert Paré

Dalhousie University pare@mathstat.dal.ca

October 27, 2012

Adjoints

Lambek - Category theory course 1967

Adjoints

Lambek - Category theory course 1967 Free objects

Bijection $\mathbf{B}(FA, B) \cong \mathbf{A}(A, UB)$ I.e. FA represents the functor $\mathbf{A}(A, U-)$

Adjoints

Lambek - Category theory course 1967 Free objects

Bijection $\mathbf{B}(FA,B)\cong\mathbf{A}(A,UB)$ I.e. FA represents the functor $\mathbf{A}(A,U-)$ F becomes a functor in a unique way so that η is natural

$$FA - \xrightarrow{\exists ! Fa} > FA'$$

$$UFA \xrightarrow{UFa} UFA'$$

$$\uparrow_{\eta A} \uparrow \qquad \qquad \uparrow_{\eta A}$$

$$A \xrightarrow{a} A'$$

Example

Free commutative ring

Example

Free commutative ring

Free field? $\mathbb{Q}(A)$?

Example

Free commutative ring

Free field? $\mathbb{Q}(A)$? No! Not even a functor!

Multi-adjoints

Diers - Familles Universelles de Morphismes Ann. Soc. Sci. Bruxelles 93 # 3 (1979)

 $U: \mathbf{B} \longrightarrow \mathbf{A}$ has a *left multi-adjoint at A* if there is a family $\langle \eta_i A: A \longrightarrow UF_i A \rangle_{i \in I}$ such that $\forall f: A \longrightarrow UB$, $\exists ! i, g$ such that

Multi-adjoints

Diers - Familles Universelles de Morphismes Ann. Soc. Sci. Bruxelles 93 # 3 (1979)

 $U: \mathbf{B} \longrightarrow \mathbf{A}$ has a *left multi-adjoint at A* if there is a family $\langle \eta_i A: A \longrightarrow UF_i A \rangle_{i \in I}$ such that $\forall f: A \longrightarrow UB$, $\exists ! i, g$ such that

Bijection $\mathbf{A}(A, UB) \cong \sum_{i \in I} \mathbf{B}(F_i A, B)$ i.e. $\mathbf{A}(A, U-)$ is a sum of representables what Diers calls *multi-representable*

Example: Fields

Example: Fields

Take
$$I = \{P \lhd \mathbb{Z}[A] | P \text{ prime}\}$$

Universal family $\langle A \longrightarrow \overline{\mathbb{Z}[A]/P} \rangle_{P \in I}$

Different Example

Any groupoid has multi-products: For $A, B \in \mathbf{G}$, take all spans

$$g \in \mathbf{G}(A, B)$$

Different Example

Any groupoid has multi-products: For $A, B \in \mathbf{G}$, take all spans

$$g \in \mathbf{G}(A, B)$$

Works for arbitrary (non-empty) products.

Diers develops a whole "multi-theory". E.g. Multi-monads (JPAA 17, 153-170 (1980))

E.g. Multi-monads (JPAA 17, 153-170 (1980))

L.g. Wulti-Monads (31 AA 17, 133-170 (1900

Field is multi-monadic over Set.

E.g. Multi-monads (JPAA 17, 153-170 (1980))

Field is multi-monadic over Set.

Multi-limits, multi Lawvere theories, multi locally presentable categories, etc.

E.g. Multi-monads (JPAA 17, 153-170 (1980))

Field is multi-monadic over Set.

Multi-limits, multi Lawvere theories, multi locally presentable categories, etc.

But stops short of making multi-adjoints into honest adjoints in a bicategory.

E.g. Multi-monads (JPAA 17, 153-170 (1980))

Field is multi-monadic over Set.

Multi-limits, multi Lawvere theories, multi locally presentable categories, etc.

But stops short of making multi-adjoints into honest adjoints in a bicategory.

Will give three quite different, though biequivalent, bicategories in which they live.

MVFam - multivalued functors
ParFun - partial functors
DetProf - deterministic profunctors

If $\langle \eta_i A : A \longrightarrow UF_i A \rangle_{i \in I}$ is a universal family, then the I, $F_i A$, $\eta_i A$ are unique up to isomorphism.

If $\langle \eta_i A : A \longrightarrow UF_i A \rangle_{i \in I}$ is a universal family, then the I, $F_i A$, $\eta_i A$ are unique up to isomorphism.

Diers calls I the *U-spectrum* of A, denoted S_UA .

If $\langle \eta_i A : A \longrightarrow UF_i A \rangle_{i \in I}$ is a universal family, then the I, $F_i A$, $\eta_i A$ are unique up to isomorphism.

Diers calls I the *U-spectrum* of A, denoted S_UA .

For $a: A \longrightarrow A'$, we have $\forall j \in S_U A' \ \exists ! i \in S_U A$ such that

$$F_{i}A - - - > F_{j}A'$$

$$UF_{i}A' \longrightarrow UF_{j}A'$$

$$\eta_{i}A \uparrow \qquad \qquad \uparrow \eta_{j}A'$$

$$A \longrightarrow A'$$

If $\langle \eta_i A : A \longrightarrow UF_i A \rangle_{i \in I}$ is a universal family, then the I, $F_i A$, $\eta_i A$ are unique up to isomorphism.

Diers calls I the *U-spectrum* of A, denoted S_UA .

For $a: A \longrightarrow A'$, we have $\forall j \in S_U A' \exists ! i \in S_U A$ such that

$$F_{i}A - - - > F_{j}A'$$

$$UF_{i}A' \longrightarrow UF_{j}A'$$

$$\eta_{i}A \uparrow \qquad \qquad \uparrow \eta_{j}A'$$

$$A \longrightarrow A'$$

$$\alpha: S_U A' \longrightarrow S_U A, \quad F_j a: F_{\alpha(j)} A \longrightarrow F_j A'$$

Let Fam***B** be the category whose objects are families $(I, \langle B_i \rangle_{i \in I})$ for I a set and the A_i objects of **A**.

Let Fam*B be the category whose objects are families $(I, \langle B_i \rangle_{i \in I})$ for I a set and the A_i objects of \mathbf{A} .

Morphisms $(\alpha, \langle a_j \rangle) : (I, \langle B_i \rangle) \longrightarrow (J, \langle B'_j \rangle)$ are $\alpha : J \longrightarrow I$, $a_j : B_{\alpha(j)} \longrightarrow B'_j$.

Let Fam***B** be the category whose objects are families $(I, \langle B_i \rangle_{i \in I})$ for I a set and the A_i objects of **A**.

Morphisms
$$(\alpha, \langle a_j \rangle) : (I, \langle B_i \rangle) \longrightarrow (J, \langle B'_j \rangle)$$
 are $\alpha : J \longrightarrow I$, $a_j : B_{\alpha(j)} \longrightarrow B'_j$.

Then a multi-adjoint gives a functor

$$F: \mathbf{A} \longrightarrow \mathsf{Fam}^* \mathbf{B}$$

Let Fam***B** be the category whose objects are families $(I, \langle B_i \rangle_{i \in I})$ for I a set and the A_i objects of **A**.

Morphisms
$$(\alpha, \langle a_j \rangle) : (I, \langle B_i \rangle) \longrightarrow (J, \langle B'_j \rangle)$$
 are $\alpha : J \longrightarrow I$, $a_j : B_{\alpha(j)} \longrightarrow B'_j$.

Then a multi-adjoint gives a functor

$$F: \mathbf{A} \longrightarrow \mathsf{Fam}^* \mathbf{B}$$

Fam*B is the free product completion of B.

Let Fam***B** be the category whose objects are families $(I, \langle B_i \rangle_{i \in I})$ for I a set and the A_i objects of **A**.

Morphisms
$$(\alpha, \langle a_j \rangle) : (I, \langle B_i \rangle) \longrightarrow (J, \langle B'_j \rangle)$$
 are $\alpha : J \longrightarrow I$, $a_j : B_{\alpha(j)} \longrightarrow B'_j$.

Then a multi-adjoint gives a functor

$$F: \mathbf{A} \longrightarrow \mathsf{Fam}^* \mathbf{B}$$

Fam*B is the free product completion of B.

Fam* is a bimonad on **Cat** (of type coKZ).

Let Fam***B** be the category whose objects are families $(I, \langle B_i \rangle_{i \in I})$ for I a set and the A_i objects of **A**.

Morphisms
$$(\alpha, \langle a_j \rangle) : (I, \langle B_i \rangle) \longrightarrow (J, \langle B'_j \rangle)$$
 are $\alpha : J \longrightarrow I$, $a_j : B_{\alpha(j)} \longrightarrow B'_j$.

Then a multi-adjoint gives a functor

$$F: \mathbf{A} \longrightarrow \mathsf{Fam}^* \mathbf{B}$$

Fam*B is the free product completion of B.

Fam* is a bimonad on Cat (of type coKZ).

Get a Kleisli bicategory $MVFun = Cat_{Fam^*}$. (See Cheng, Hyland, Power - Electronic Notes in Th. Comp. Sci. 83 (2004).)

ParFun

If $\langle A \xrightarrow{\eta_i A} UF_i A \rangle_{i \in S_U A}$ ia a universal family for $U : \mathbf{B} \longrightarrow \mathbf{A}$, then S_U is a presheaf $\mathbf{A}^{op} \longrightarrow \mathbf{Set}$ Thus we get

where $\tilde{F}(i \in S_U A) = F_i A$.

ParFun

If $\langle A \xrightarrow{\eta_i A} UF_i A \rangle_{i \in S_U A}$ ia a universal family for $U : \mathbf{B} \longrightarrow \mathbf{A}$, then S_U is a presheaf $\mathbf{A}^{op} \longrightarrow \mathbf{Set}$ Thus we get

where $\tilde{F}(i \in S_U A) = F_i A$.

Definition (Lawvere)

A partial functor $F : \mathbf{A} \rightharpoonup \mathbf{B}$ is a span

with \bar{F} a discrete fibration.

The bicategory structure

Because discrete fibrations are closed under composition and stable under pullback, we can compose partial functors as spans, i.e. by pullback.

The bicategory structure

Because discrete fibrations are closed under composition and stable under pullback, we can compose partial functors as spans, i.e. by pullback.

We get a bicategory if we take as 2-cells $t: F \longrightarrow G$

The bicategory structure

Because discrete fibrations are closed under composition and stable under pullback, we can compose partial functors as spans, i.e. by pullback.

We get a bicategory if we take as 2-cells $t: F \longrightarrow G$

Theorem

ParFun is biequivalent to MVFun.

A partial functor

gives a profunctor $\tilde{F}_* \otimes \bar{F}^* : \mathbf{A} \longrightarrow \mathbf{B}$.

A partial functor

gives a profunctor $\tilde{F}_* \otimes \bar{F}^* : \mathbf{A} \longrightarrow \mathbf{B}$.

Theorem

ParFun \longrightarrow **Prof**^{co}, $F \mapsto \tilde{F}_* \otimes \bar{F}^*$ is a locally full and faithful strong morphism of bicategories.

A partial functor

gives a profunctor $\tilde{F}_* \otimes \bar{F}^* : \mathbf{A} \longrightarrow \mathbf{B}$.

Theorem

ParFun \longrightarrow **Prof**^{co}, $F \mapsto \tilde{F}_* \otimes \bar{F}^*$ is a locally full and faithful strong morphism of bicategories.

Definition

 $P: \mathbf{A} \longrightarrow \mathbf{B}$ is deterministic if $\forall A, P(A, -): \mathbf{B} \longrightarrow \mathbf{Set}$ is multi-representable, i.e. $P(A, -) \cong \sum_{i \in I} \mathbf{B}(B_i, -)$.

A partial functor

gives a profunctor $\tilde{F}_* \otimes \bar{F}^* : \mathbf{A} \longrightarrow \mathbf{B}$.

Theorem

ParFun \longrightarrow **Prof**^{co}, $F \mapsto \tilde{F}_* \otimes \bar{F}^*$ is a locally full and faithful strong morphism of bicategories.

Definition

 $P: \mathbf{A} \longrightarrow \mathbf{B}$ is deterministic if $\forall A, P(A, -): \mathbf{B} \longrightarrow \mathbf{Set}$ is multi-representable, i.e. $P(A, -) \cong \sum_{i \in I} \mathbf{B}(B_i, -)$.

Theorem

P is deterministic iff it is isomorphic to $\tilde{F}_* \otimes \bar{F}^*$ for a partial funtor F. Thus we get a biequivalence of ParFun with DetProf^{co}.

We have three notions of partial functor:

We have three notions of partial functor:

Spans with \bar{F} a discrete fibration

Partial functions

which correspond to

We have three notions of partial functor:

Spans with \bar{F} a discrete fibration

Partial functions

A

B

Functors

A

Functions

We have three notions of partial functor:

Spans with \bar{F} a discrete fibration Partial functions \bar{F} which correspond to **Functions** Functors $A \longrightarrow Fam^*B$ which correspond to

Deterministic profunctors

Single-valued relations

 $A \longrightarrow B$ which correspond to $A \longrightarrow B$

Multi-adjoints are Adjoints

Theorem Given partial functors

 $F\dashv U$ in ParFun iff \bar{U} is an isomorphism and F is left multi-adjoint to $\tilde{U}\bar{U}^{-1}$.