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EOPOLDO ROMAN  £ra¢nral Numbers Object*

Abstract. The notion of a natural numbers object in 2 monoidal category is defined and it is
shown that the theory of primitive recursive functions can be developed. This is done by considering
the category of cocommutative comonoids which is cartesian, and where the theory of natural

numbers objects is well developed. A number of examples illustrate the usefulness of the concept.

Introduction

The purpose of this paper is to show that one can define the concept ‘of
a natural numbers object in a monoidal category so as to include a number of
naturally occurring examples and then to construct the usual primitive
recursive functions in this setting. It is somewhat surprising that we can obtain
the primitive recursive functions since one of the basic ingredients in their
construction are projections, and these are not available in a monoidal
category. Our method is first of all to reduce the problem to the case of
a symmetric monoidal category by constructing a symmetry for an appropriate
full subcategory. We then show that our natural numbers object is a cocom-
mutative comonoid, and is in fact a natural numbers object in the category of

all such, a category well-known to be cartesian. Then standard results yietd all .

primitive recursive functions. The last section shows that the initial monoidal
category with natural numbers object is isomorphic to the initial cartesian
category with natural numbers object. ‘

1. Natural numbers objects in a monoidal ‘categor'y

1.1. DERINITION. Let V= (V, ®, L, 1, 4, o) be a (not necessarily symmetric)
monoidal category (see [6, p. 21]). By a left natural numbers object (LNNO) in
V we mean an object N and two morphisms 0: /— N, §: N— N such that for
any pair of morphisms [ A—B, g2 B—~B in V, there exists a unique
h: N@ A—- B such that

I®A4 054 N@A 5@A N®A \
11 [,. 1,,‘
A 7 »B . »B

commautes.

* This work was partially carried out while both authors were guests of MoGill University
and while the second author was a guest of Dalhousie University. Both authors acknowledge
support from the Natural Sciences and Engineering Research Council of Canada and the Québec
Department of Education.
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A right natural numbers object is defined 51m11arIy except that we require
a unique h: AQ N- B in this case.

If they exist, left (right) natural numbers objects are unique up to canonical
isomorphism. Furthermore, if ¥ has a left natural numbers object and a right
one, they are isomorphic; either one will be called a (2-sided) natural numbers
object (NNO). In fact, if (N, 0, §)) is a left natural numbers object and
(N,,0,, S,) a right one, then for any A we get unique morphisms ¢, and < .4.
filling in the diagram -

O®A Sl®A

I®A 224 N4 224 N,@4

el ] [

A@I'ﬂ%A(ENA—@%A@Nr

a-:gl lu - Ju

I®A——— 084 N,®AWNI®A -

and uniqueness gives 7,04 = 1y,e4 and 0,1, —-"IA@,N Thus N;@ A=~ A®N,
and, specializing to the case A = I, we get N, = N,. Thus N,®@ 4 = A®N,, ie
N, (and N, too) “commutes” with any object A

If Vis symmetric, then the concepts of left, right, and two-sided NNOs
coincide and ¢, and 7, are instances of the symmetry for V.

In this paper we shall be dealing mainly with two-sided natural numbers
objects but there is one important example of a left one - which is not two-sided,
and that is given by Burroni’s concept of Peano- Lawvere category dlscussed
below.

If Vis right-closed, ie. each of the functors ( )®A V— ¥ has a right
adjoint [4, —]: V-V, then (N, 0, §) is a left natural numbers object iff for
every b: 1—B, g: B— B there exists a unique h: N— B such that

I——»N-—-—S~—+N

H ln lh
[——B——B

commutes. Indeed, given /2 A—B and g: B— B, the existence of the required
h: N® 4 — B satisfying the above condition is equivalent to the existence of
h: N—[A, B} such that

] —2 = N » N

S S L

[4, Al 74, B[4 Bl
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1.2. ExampLes. Every cartesian category (ie. a category with finite
products) with natural numbers object (see [12]) is. a monoidal category with
NNO, in particular every topos with NNO is one.

In the monoidal category Ab with the usual tensor, the polynomlal rmg
Z[x] is an NNO with 0: Z—Z[x] the “inclusion of scalars” and
S: Z[x] - Z[x] “multiplication by x”. Or, more. generally, if R is a com-
mutative ring with 1, R-mod has an NNO, viz. R[x].

The monoidal category, Ban, of Banach spaces ¢ and linear contractions w1th
its usual tensor product {ie. the projective tensor & of {4]) has I, (the space of
absolutely summable sequences) as NNO with 0: C—1, the mclusmn of the
first coordinate and S: [, -/, the unilateral shift operator.

An example which is essentially non-symmetric is given by Burroni’s
categories satisfying the Peano-Lawvere axiom [1]. He defines a category E to
be PL if for every object X in E there is given a diagram

such that for every X L5 Y2 Y there exists a unique h: N{(X)- Ysuch that

2 N(X)—Eo N ()

NG

g

commutes. N is easily made functorial by'deﬁning N(x) to be the unique
morphism such that

x 2%, Nix) 5(%) N(X)
x l | | l N(x) l N
X2 ———N(X') X - NX)

commutes. And we also see that Z: 1;—»N and S: N—N are natural
transformations. Consider the monoidal category End(E) of endofunctors of
E with composition as tensor. Then

1,->N-5N
is an LNNO in End(E); in fact, it is easily seen that being an LNNO in End(E})
is equivalent to being a Burroni natural numbers object. However, it is an

" RNNO only for the most trivial E. .
On the other hand, if N is an LNNO, Vis a PL category with
N(X) = N®X. So the two notions of category with natural numbers object

(monoidal V with LNNO and PL category) are closely related. The main
advantage of ours is that we have an actual object (and two morphisms)
representing the natural numbers, and the theory more closely follows the
usual theory of primitive recursive functions.
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In [8], Lambek defines natural numbers objects in Gentzen multicategories.
Gentzen multicategories are to multicategories what cartesian categories are to
monoidal categories, so it would seem natural to generalize our concept of
LNNO to multicategories. Such a generalization would not be difficult, and
indeed there seem to be good reasons for it. For one thing, the theory would be
smoother, avoiding much of the coherence questions. It would also place our
theory in the logical context where it belongs. Also see [7].

The examples for Ab, R-mod, and Ban above all follow from the following
casily established fact.

1.3. PROPOSITION.  If V has countable coproducts which are preserved by the
Junctors (YR A for all Ain V, then Y, I (the coproduct of countably many cop:es
of the unit for ®) is an LNNO. m

The reader may feel that we have been deliberately misleading by saying
that the NNO in Ab is Z[x] when 1.3 says that it is merely @ ~Z. Of course
Z[x] and @y Z are isomorphic as abelian groups, but there is a real sense in
which the NNO is Z[x] rather than @Z. The point is that on any natural
numbers object we can define addition and thus get a commutative monoid
structure. In Ab, a commutative monoid is a commutative ring with I, and the
ring which is the NNO for Ab is precisely Z[x].

1.4, PropPOSITION. If N is an LNNO in a monoidal category V, then we can
define an addition +: NQN — N which makes N into a monotd If Vis
symmetric, then N is a commutative monoid.

Proor. Define + to be the unique map making

I N8, YL NQNZEY, —N@N

A l | 1 - 1 "

N in N 5 N
commute. The proofs of the claimed properties of + are the same as in-the
cartesian case and are left to the reader. (In fact they will follow from the

cartesian case once we have established our. results of Section 3) =

In the case of Ab (or R-mod) it is easily seen that this addition is
multiplication of polynomials Z[x]® Z[x]— Z[x]. As for Ban, it corresponds
to the “Cauchy product” of sequences

(@), (B,), =( Z aibj)n'

i+j=n
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Multiplication -: N ® N — N, however, is more corriplicated.- In the cartesian
case it is often defined by noting that the morphism {p,, > NxN—>NxN is
the unique ¢ such that

Nx1 NxO’NxN Nx§ s NxN
A L
Nxl1 N®0 NXN(.P1.+)rNxN‘

Then - = p, ¢. Or, classically, multiplication is defined by primitive recursion

S

NxI X8 N N2 NxN

1 [ 1

1 N (NxN)xN.

0 pPL+p3

(See [12] for more details.)

In either case we use projections which are not available in monoidal
categories. We shall define maps which act as projections but, before, we
construct a twist map.

2. The twist map and symmetry axioms

Let N be an LNNO and define N* = (NQN)® ...)®N for k = 1, and
N® = I. We wish to construct morphisms o,(4): N*® 4 — 4 ® N*, meant to be
the twist maps, and show that they satisfy

Nk g1 Sy 1 @ Nk
N A
Nk
(V@A) B—— N®(4® B- =422 (4g By @ N*

oxlA)®B l . % l .

(A®NY® B—— ARN*® B) 150 A®BONY),

and a,(NY)o,(N¥) = 1yign« for all k, [, > 0. This will give us a symmetry on
the full subcategory of V¥ determined by all objects isomorphic to some
N, ‘

We first work out the details in the case k= 1.

7 — Studia Logica 3/89
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2.1. DEFINITION. For any A in ¥, define o(A): NRA->A®N to be the
unique morphism filling in the diagram

IQA-BA N@A-24SN®A

-1 l l a(4) 1 a(4)

A®I—‘—*A®N—‘Aj®T’A®N.

Note that if Vis symmetric, w1th symmetry o [6, p. 28], then umquencss
shows that o(4) = oy 4 SO there is no conflict of notation.

2.2, ProposITION. o N®{ )—( )®N is a natural transformatibn.

Proor. Let /2 A= B in V. Then in

o4

IRA——N®A4 N®A
res 1 (l) j N®F (2) J N®f
1B 22.N®B N®B
e~ i l (3) 10(3} (4) l a(B)
B®I—s—B®N BN
I@AiﬂbN®Aw@ieN®A
e-12 l (5) lﬁ(A) (6) l ald)
AR A®N A®N

f®Il (7 lf@N 8y l}'@N
B®}.———>B®N'——>B®N

(1), (2), (7). (8) commute by functorlahty of ® and (3), (4), (5), (6) commute by
definition of a. Thus by umqueness

o(B)-N ®f = [®N-a(4),

ie. o is patural. ®m

2.3, ProPOSITION. -Ao(I} = g.
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ProOOF.

Q1 0] N®I -3 NI

3_10 l 1 J.'lé Jv _ﬁ‘.lg

1@I~5 1@ N—5~ I®N

commutes by naturality of 27 '¢ and since A-fg =0 A IQI—I®I (they
are both equal to 1;g;) uniqueness gives () =A4"1p. m

This result gives commutativity of = in the special case where k = 1. We
wish to prove a similar special case for »+. In order to simplify notation, we
shall omit the associativity isomorphisms o and the brackets in tensor
products. The interested reader can easily supply them if he wishes, but Mac
Lane’s coherence theorem for monoidal categories [10, p. 162] says that it is
not necessary. This theorem says (roughly) that any two morphisms with same
domain and same codomain built out of instances of A, g, ¢ and their inverses
using composition and & are equal. These morphisms are called canonical (see
loc. cit. p. 165). We often use the notation feg for a composite in which an
obvious canonical morphism has been omitted. See [11] where this notation is
used systematically (and rigorously).

24, ProrosiTiON. For any objects A and B of V, "

 6(A®B) = (N®A® B2 4@ N®@ B—2"2+4A®B®N).

Proor. In : . .

I®A®BMN®A®BM,N®A®B
e~ 1A®B l l AASE l H{A)®B

AQI®B ABO®E AQN®B AQS®B AQN®B

A®e-14 J l AQa(B) j A@a(B)
A®B®IWA®B®NWA®B®N
all squares commute by definition of 'a(4) and o(B). The coherence theorem

says that the mor_ph1sm on the left is equal to g~ 1A for A® B, thus the result
(follows by uniqueness. ™ ‘

2.5. ProposITION.  0(N)* = Iygn-
. \
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Proor. Consider

I®N&N®NﬂN®N

a-1i J (1) l alN) (2) l a(N)
NRI2 NN SN@N

A"el (3) JG(N) (4) ld(N)

Squafes (1) and (2) commute by definition of ¢(N), whereas (3) and (4) commute
by naturality of ¢ once we have noticed that 27 1p = a(I) by 2.3. Since the map
on the left is 1;gx, Uniqueness gives o(N)* = lygy. ®

2.6. DEFINITION. We define morphisms a,{4): N*® 4 — A ® N* for each
patural number k by induction:
() opdy=907 A2 IRA-ARI
(2) o,(4)=0(4): NRA-A®N
() 03:1(4) = (o (A)@ N)o(N* @ (4)) for k= 1.
2.7. PrOPOSITION. For any k =0, Ao, () = ¢, ie. » holds.

Proor. For k = 0, this follows since ¢™*1 = 17"o: I®I—~I®I. Proposi-
tion 2.3 is the case k = 1. For k > 1, a simple induction shows that g,() is
a canonical morphism as described before 2.4. Thus 1o, (I) and ¢ are two
canonical morphisms N*®I— N* and therefore are equal. m

2.8. PROPOSITION. Forany k 20, 0,(A®B) = A®0,(B)*a,(4)Q B, i.e. the

diagram %+ commutes.

ProoF. For k =0, all morphisms involved are canonical so %+ commutes
by coherence. Proposition 2.4 is the case k = 1. Now, assume we have * for
some k> 1 and we show that we have it for k+1.

A® 04 1(B)eoys1(A)®B
= A® 0, (B)@Ne AR N*® d(B)*s,(A)@N @ BeN*®c(A)® B
= AR 0 (B)®Nes (A) @ BRNeN*Q@ AQ 6(B)e N*Q@c(A)® B
— 6 (AR B)® NeN*® 0(4A® B)
= 0+ 1(A® B)

where the second equality holds by functoriality of ® and the third by
proposition 2.4 and the induction hypothesis. - m

2.9. PROPOSITION. For any k, 120 we have 6,(N)o (N*) = Lyigys.
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Proor. . The proof is by induction of k.
When k=0 we have ¢~ 'Ao,(I) = lyigr by 2.7.
When k=1 we prove that ¢(N)o,(N) = lygy by induction on [
For I =0, we have o(Doy(N)=21""g0 "1 =1l,ey by 23. The result for
=1 follows from 2.5. Now, assume we have the equality for /> 1 and
consider . :
U(NHI)UHI(N)
= (N'®@ a(N))#(a(N)® N)e{g,(N) @ N)*(N' ® a(N))
= (N'@ o(N))o(N'®@ a(N))
= 1. |

The first equality follows from 2.4 and definition of &4 ;, the second by

~induction hypothesis, and the third by 2.5.

For k+1, given the result for some k=1,

Grr1 (NN (N¥*)
- (Uk(NI)®N).(Nk®O'(NI)) (Nk®o'l ) (O-!(Nk)®N)
= (6,(N)Y® N)*(c,(N)® N) ,
=1,

The first equality follows from the definition of o+, and 2.4, the second by the
case k=1, and the third by the induction hypothesis. - ®

2.10. THEOREM. If V is a monoidal category with a left natural numbers
object N, then the full subcategory determined by the objects isomorphic to N * for
some k>0 is a symmetric monoidal category with symmetry defined by
Onk, N1 = O'k(NI).

Proor. In view of 2.7, 2.8, 2.9, the only thing to show is that oy« is
patural in both variables, which is the same as in each variable separatcly That
it is natural in the second variable follows easily from Proposmon 2.2 and
Definition 2.6 by induction. Naturality in the first variable follows from the
equation oy = (o nx)” ' Which proposition 2.9 gives. M

This theorem says that if we wish to study which morphisms can be defined
N*— N'in a monoidal category with LNNO, we can restrlct our attention to
symmetric monoidal categories with NNO.

3. Natural numbers objects in a symmetric monoidal category.

Let ¥V be a symmetrlc monoidal category with éymmetry o. We get the
notion of a comonoid in V by reversing the arrows in the definition of
monoid.- .
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3.1. DEFINITION. A comonoid in V is an object C together with two
morphisms & C—1 and &: C—->C®C such that - -

c —— c®cC

(coassociativity) 8 l l C®s
CRC—55CRCRC
4 g :
: ) C—C®C - —>CeC
(counitary) \ l ces \ l&‘@C
‘..5"1 cC®/ | Al I@ C

commute. Furthermore, C is cocommutative if o8 =4 A hémomdrphism
between two coalgebras C and D is a morphism f: C=D such that

C ——D

C®CWD®D
and
Y%
~ . . I

commute.

It is well-known that the category CC(V) of cocommutative comonoids in
V is cartesian. The cartesian product of C and D is given by C®D with

| p, =(C@®DEHCRIF0)
p, = (CRD-E-I®DC)
gy = (BREQE¥sCceD)

for f: E=C, .g: _E'—.>D. The terminal object is I with =1, ‘and
§ = Ar1(= gr V). Cocommutativity is used to get the comonoid structure on
C®D. e e

The category CC(V) is in some sense the best approximation to V by
a cartesian category. More precisely, if Mon denotes the category of (small)

monoidal categories with functors preserving the monoidal structure exactly,
and Cart the category of (small) cartesian categories -‘with- chosen ‘binary
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products and functors preserving the cartesian ‘structure exactly, then
CC: Mon— Cart is right adjoint to the forgetful functor Cart — Mon. This fact
was first observed by Fox [2]. See also [5] where the point of view that CC(V)
is, the category in which the logic of V takes place is espoused.

Let N be an NNO in ¥, We wish to endow it with a comonoid structure,

3.2. DEFNITION. The morphisms ¢: N—I and é: N SN & N are defined
to be the unique morphisms filling in the diagrams

0 5

- ]——N——N
) H J’ : l e
I I I,
2~ N L= N
L
I®I;z7 N®ON5z> NON.
3.3. PROPOSITION. N equipped with & and & is a cocommutative comonoid.
PROOF. '
I ‘- N S N

S S
Il —22°— NN —2— N®N

I®g-1 l ' ‘ l N® l N@3

I®I®IWN®N®NWN®N®N

commutes by definition of 6 and functoriality of &. So does the one with N® &
and I ® ¢! replaced by 6@ N and ¢~ ' @1 respectively, for the same reasons.
The coherence theorem says that I®¢ ' = '®]I so uniqueness gives
coassociativity of N. ‘ '

Cocommutativity follows from uniqueness by considering the following
commutative diagram ‘ T

;] %2+ N 25 N

SN

I®ID—®5—*N®NW'N®N

I®IWN®NS—®S“>N®_N

and noting that ooj ' = o ! follows from the fact that go = 1 and i; = g
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Finally, the right counit law can be read off the diagram

S

I —2= N > N
e"l 16 J.s
 I®IpN®Nz NN
” lN@z lnge
IQIgep N®Iz > N®I
S LR
I~ N—— N

and the left counit law follows by cocommutativity. ®

34. CoroOLLARY. N* is a cocommutative comonoid in a canonical way, for
each k> 0.

Proor. N* is the cartesian product of k copies of N in CC(V). =

3.5. THEOREM. N with O: I N and §: N— N is a natural numbers object
in the category CC(V) of cocommutative comonoids in V.

Proor. We have already seen that N is a cocommutative comonoid, and
the definitions of ¢ and & (3.2) are such that 0: I-N and S: N—N are
comonoid homomorphisms. ‘

Now let f: A-»B and g: B— B be comonoid homomorphisms and let A be
the unique morphism making

S5@4

IRA-24N®A YN® A

zl l;, Jh
A—— B— B

commute. We wish to show that  is a2 comonoid homomorphism.
First, note that

| | .
l IQA O®A7N®A S@A 7N®A

&

o
l[
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commautes, as does

IAN@A N®A
_reel ' .ls@s . ls@e
I®I I®I#I®I~
TNt
I I —— 1

and, since A(I ®¢) = &4, we see that A(e@e¢) =‘ah, ie. h preserves the counit.
Finally, the preservation of comultiplication can be seen by comparing the
following commutative diagrams

QA4 N@424 . N® 4 |
11 l,, l;.
Jl . 16 . l'é

A Ao BOB—5~B®B

@4 2245 N@Aa 5 N@4

L ATI@0 ) 8R4 @3

ST S
‘ rea 2@ - RPN N R 42
o . T LI

(I®A)2(0®A)1 (N@A)z (S@A] (N®A)2

AZ },2 l hl

. Az . 7 3 BZ ‘_Hw;z_—“> BZ

and noting the equality of the two left-hand arrows. m

It follows from [12] that every primitive recursive function has a counter-
part in CC(V), or to put it differently, every primitive recursive function
f: N*— N" can be defined in any monoidal category with an LNNO and this
fis actually a comonoid homomorphism. Furthermore, any equalities provable
in the theory of primitive recursive functions hold in any such V.
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The reader may wonder what operation on polynomizls corresponds to
multiplication on N in R-mod since, as we saw, multiplication of polynom:als
.corresponds to addition +: NN N. It is the operation, denoted by -

R[\]®R[r]-*R[\] which is the bilinear extension of x'sx/ = x", Thus,
for example, (2x7 4+ x — 1}#(7x? —2) = 14x%47x2— 11, This strange operation is
unitary, commutative and associative, as multiplication of natural numbers
must be. It also distributes over multiplication of polynomials but in an
internal sense, ie. the following diagram commutes

R[x]®-

RIXI®R[x]J®R{x] —=— R[x]®R[x]
a@n[xlgnl.rl l . T l .
R[x]® R{x]® R[~x]® R[x] R[x]

Rx]®R{x]® R[x]®R[x] “ar RIXI®R[x],

in which a,, denotes the isomorphism which switches the second and third .
factors, and ¢ is the comultiplication on R[x], ie. 8(x") = x"® x". Of course,
since  is defined on the tensor product, it is bilinear so it distributes over
addition in the usual sense. Thus replacing mulnphcauon of polynomials by
* we get & new ring structure on R[x]. _

Many symmetric monoidal categories which arise in practice are closed and
admit a colrce comonoid construction. This is true, for example, for Ab, Ban,
and GrAb (graded Abelian groups) (see [3]). For such categories, the previous
theorem has the followmg converse,

3.6, PROPOSITION.  Let V be a monoidal closed category Jor which the
Jorgetfil functor U: CC(V)- V has r:ght adjoint!( ). If (N, 0, 8) is a natural
nmumbers object for CC(V) then (UN, uo, US) is a natural numbers object
Jor V,

PrOOF.  Since Vis closed it is sufficient for (UN, U0, US) to be a natural
numbers object that, for every b: =B, g: BB in V, there exlsts a unique
B: UN - B such thdl : L .

vt

Ul-—= N———"UN
I
I T" B P B
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commute. But this is equivalent to the ekistence. of a unique comonoid
homomdrphism k such that - :
o | 19, NS N

AN

AT T!B " 'B

commutes (n: 1—1U1 is the unit of the adjunction !( )—U). But this exists
because N is an NNO in CC(V). ®

4. Free monoidal categories with LNNO

We end with a short discussion of the free monoidal category with LNNO
generated by the empty category (or graph). The free cartesian category with
NNO generated by the empty category is of considerable interest if we wish to

‘study primitive recursive functions, Its morphisms are equivalence classes of

formulas for primitive recursive functions. Since it is free on the empty
category, it is initial in the category of cartesian categories with NNO. Thus
any relation between primitive recursive functions which holds in it must hold
in any cartesian category with NNO. See [9] and [12] for more details.
One might ask whether an initial monoidal category with LNNO exists,
and, if it does, what is its structure. Theorem 4.2 below says that it is the same
as the initial cartesian category with NNO. This says that for the ‘theory of
primitive recursive functions we can dispense with projections alid.symmetry. ’

Let Monnat denot the category whose objects are monoidal categories with

" LNNO and whose morphisms are functors precisely preserving all of the

structure, ie O, I;a, 4,0, N, 0, 5. There is an obvious forgetful functor,
Y. Monnat — Cat, to the category of small categories. A straightforward
application of Freyd's general adjoint functor theorem gives the following.

. 4.1. ProposSITION. Every category generates a free monoidal category with
LNNO, i.e. Y has a left adjoint- @: Cat—Monnat. B '

Of course the free monoidal category with LNNO will not be cartesian or
even symmetric in general but the initial one, ie. @(@), is quite special. . .

'4.2. TueoreMm. The initial monoidal category with LNNO is isomorphic 10
the initial cartesian category with NNO. N

Proor. Let ¥V, denote the initial monoidal category with LNNO and G§
the initial cartesian category with NNO. IR
The full subcategory, Vo, of ¥, determined by those objects isomorpl
some N* is also monoidal and has an LNNO, so there is a unigw functort.
F: V,— V, preserving all the structure. When F is composed with the.i
we get 1, by initiality, so ¥, = V. Thus every object of ¥, is ‘isorn_lqrpﬂl'li,_
of the form N* and, by Theorem 2.10, ¥, is symmetric. Now, by The
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CC(V,) is a cartesian category with NNO so there is a unique functor
G: Cy— CC(V,) preserving the cartesian structure and N. Since C, may be
viewed as a monoidal category with LNNO, there is a unique morphism in
Monnat, H: V,— C,. Finally, the forgetful functor U: CC(Vy) =¥, is also in
Meonnat. Now, by initiality, the composite :

Vo= Co—> CC (Vo) -,
is the identity. The composite

Co= > CC(Vp) ¥, -E5 €,
being a morphism in Mennat, preserves N, 0, S, 1, x, but it also preserves
the unique morphism T,: A4—1 (since it is unique) and projections,

m4p AXB-A and 7/, 5: AxB— B, since

Tap = (4 x BB 4 x1-% 4)
and similarly for 7 p. ) ‘ .
Thus the composite HUG is a cartesian morphism and so it is the identity
by initiality of C;. Therefore ¥, = C,,. L h '
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