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INTRODUCTIOHN

Tne sim of this thesis is to investigate those propertiss of
diagrams in a category which are preserved by a given class of
functors. We call these absoluteness properties.

Tn the past, people were interested in classes of functors
which preserve a given class of properties, e.2. MONOPTeserving
functors, continuous functors, exact fmetors, ete. But there 1s a
galois correspondence between classes of functors and classes of
properties of diagrams, which on the one hand associates to 2 glven
class of properties the class of all functors preserving these pro-
perties, and on the other hand associates to a given class of funciors
the class of all properties preserved by these functors. We propose
to initiate the study of this second sssociation and to show its
relevance in category theory.

Since we will be studying those properties of diagrams which are
Snvariant under certsin classes of transformations , we could have
titled this thesis "Geometry in the Category of Categories".

Chapter I deals with total absoluteness, the study of properties

preserved by all functors. We obtain characterizations in terms Of
equations which tell us when diagrams possess some OF the usual pro-—
perties in category theory absolutely.

Tn Chapter II we apply some af the concepts of Chapter L to the

theory of triples and their algebras. It becomes apparent here that

stsoluteness properties are fundamental.

Chapter III is devcted to the study of additive absoluteness.
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Ye give necessary and sufficient conditioms for certain properties of
diagrams to be preserved by all additive functors. The conditions take
the form of equabtions involving composition, addition, subtraction,
identity maps, and O. Certain examples of additive absoluteness are
known in homological algebra, but we shall not go into this here.

Chapter IV studies Cat-abscluteness; properties of functors

which are preserved vy all hyperfunctors of Cat (the category of

smell categories} into itself. The characterizations are in the form
of equations involving functore, natural transformations, the four
kinde of composition, and both kinds of identities. We shall sce that
these notions are closely asscciated with adjointness and tripleable-
ness,

This study is by no means complete. Tt is apparent that one

should investigate relative absoluteness, where the word relative is

taken in the sense of relative category theory of Bilenberg-Kelly
5]. Then the results of Chapter IV would probably fit under hyper-

sbsoluteness. The relationship of absoluteness with homological

algebra should alsc be siudied.

The reader is assumed to be familiar with elementary category
theory as can be found in the first few chapters of Mitchell [19]
or Freyd [7]. The definitions and results which are not easily
sccegsible in the literature are given in the text when they are
needed.

T would like to thank Michael Barr for many stimulating conver-
sations. T would especially like to thank wmy adviser, Professor

Lambek, for his gulidance and encouragement.
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CHAPTER 1

TOTAL ABSOLUTENESS

A property of diagrams is called totally absolute if it is preserved

n

by all functors. For example "a 1s an isomorvhism”  1is a totally

sbhsolute property. Some other trivial totally absolute properties are
"eommutivity of a diagram', "a is an identity map", 'there exists a
r

map from A to A' T, etc.

Tn this chapter we consider scme of the usual properties of diagrans

in a category and establish necessary and sufficient conditions for

these properties to be totally absolute. We obtain eguations which imply

hat a diacram has a given propert and these equations are in the most
) oy i 2 L

ck

g

eneral Form possible,
Tor the rest of chapter T, when we talk of absoluteness, we mean
total absoluteness.
We will not state dual resuits unless it is not obvious what they
should be.

Tollowing Lambek's example [9], we call limits and colimits

T

infimum"

and "supremum" respectively. In fact we refer to them oy

their usual avbreviations "inf" and "sup". Thus if F: I—>A is a

functor, to say that sup ¥ = (A, u) means that u is a natural trans-

Pormation from F o the constant funetor at A such that i v{I):F(I)—=A"

is natural in I, then there exists a unigue map aiA——=-A' such that the

. . - - i b s -
following disgram commutes for every I.€ |T| = opjects of 1.



831, ABSOLUTE EPIMORPHISMS

(1.1) PROPOSITION. Let A ©be 2 category and let s&:A—A' be
— o=

s map in A. Then a 1is an absolute epl 1f and only 1

H
cf
o
D
]
5]
D
<]
l....l
[}
o+
o

a map &': A'——2A such that

al g,
AV f e AT = gal’ = AT,

Proof. The sufficiency of the condition is obvious.

Assume that a is an absolute epl. Apply the hom functor

fA', - 11 A—>35 to a , where

5 = category of sels.

fat, al: [av, Al—=lar, Al

is therefore epi in §. But in 8 epl means onto. Therefore there

exists ate [A', A] such that [AT, al{a') = A'., Thus aa' ¥ A", g

(1.2) DEFINITION. Let a,: Ai——ébA' he

; a family of morphisms of

s category A. {a;} is called a joint epi

[
h

xa. = ya; for all 1

>

implies that x = ¥.

Tf sup P = (A, u) then (ull} Teiz|ll is a joint epi. In our

characterization of absolute sups we will need the following result,

[hS]




(1.3) PROPOSITION. Let a.:Aim—ﬁnA' be a Family of morphisms

=]

ategory 4. Then {ai} is an sbsolute Joint epi i

G
[N
w
¢

one of the a; 1is an absolute =pi.

Proof. The sufficiency is obvious.

Assume that {a;} 1s an absolute joint e

o]
-t

i,  Apply the functor
fa', =1, Then

ar, a;1: [ar, A l——e=lat, o]
is a joint epi in §. But a family of maps In 3 is a joint epi if and
only if the union of the images 1is equal to the codomaln. Thus for
some index j, there exists a'€ [A', Aj] such that [AT, ajj(a’)= Al

That is to say =sja’'= A'.

§2, ABSOLUTE WEAK SUPREMA

{2.,1} DEFINITION. TLet ¥: Ef—ebg_ e g functor. We say that

b
o
—
b

Fl

(A, u) is a weak sup of F if #(I)—A iz natural in I and i1
for any v(I): F(I)——=A' which is natural in T, there exists az map

a; A-—eA' such that

commutes for all I.

)
L

Thus we have dropped the unigueness from the definition of sup.
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(2,2} DEFINITION. Two objects A and A' are said to be
connected in a category A 1T thers exist finitely many objects

A, Ayye.evy Ay such that A=A A= A, and

[ A;1U A, A; 1} # 9 for every 1T 1, 2,..., D

a1
Obviously connectedness is an absolute property.

e will find it coanvenient to use the following special case of

Lawvere's [13] comma category. Let G: A—s3B be a functor and let

B-é\@}, then (8, G) is the category whose objects are maps bt B—G(A

and whose maps are commutative triangles

R
jAY

G{A)
o
3 G{a)
\x
G{AY)

(2.3) FUNDAMENTAL TEMMA, Let F: I—=A Dbe a functor, let

wiI): F(E)mm%wF{IO) be natural in I (L5 1is fixed), and assume that for

every T ei;ﬂ, w(I) and F(T) are connected in the comma category

(F(T), P). Then if «(I): F{T)—>A 1is natural in I

Proof. That w(I) and F(I) are connected in (F(1), F) mesans
that there exist a finite number of objects of 1, 11, Toyenes T,e 88
many maps in A, d.: F(I)-—awF(Ii), and maps in I,
b s ko)

- 1 = - oyl -
I I I that the botbom half of the

o 1

folloving diagram commubes

y
/
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But the top half commutes by naturality of V. Proceeding from left to
right on the diagram we see that V(IO)W(I) = w(I) for every

TeiL]. 4

This lemma tells us that a natural transformaticn from ¥ into a
constant functor is entirely determined by its value at I..

Purthermore we have a constructive (and as we shall see, absolute) way

Fal

of zetting it.
(2.4) THECREM. Let I be a small category and let F: I——4
be a functor. (A, u) is an absclute weak sup of F if and only if

: . ) . ‘ |
u(1): F(I)—>A is natural in I, and there exist It,&1§J and

do: Aw—%»?(lo) such that for every 1T &‘g}, dou{I) and F(I) are

o

I

connected in the comma category (F{I),




Proof. Assume that (4, u) 1s an absolute weak sup of F. Iy

definition w(i): F{I)—=4 1is natural in T.

4

Tow we shall construct a category A' containing A as a full

o

subcategory. Let lé}[ = |§} + LX)} where X is an arbitrary symbol.

55}

Let [X, B]A! = ¢, (%, = {d, and [B, 0y, = (B, F} the

comma cabegory. Composition is the obvious one. This gives us our
category A,
W now define a congrusnce relation on A', Two maps of
o — -~

iR, Xl are congruent if and only if they are connected in (B, 7).

At

Make thnis relation reflexive by adding the conditicn that any nap

of A' 1s congruent to itself. This defines a congruence relation on

The maps of A" are congruence classes of maps of A' and the objects

of A" and A' are the same. A is fully embedded in At
Let w(I): F(I)—>X be the map in A" determined by

(1) e {r(I), ). If b: I—>J din I, then

commutes and so F{b} and F(I) are connected in (F{1), F). This

shows that

A'  5nd we can form the quotient category A" (see Mitchell [19], TN




commites for every map b of I. Thus ¥ 1s natural.
How (A, u) 1is an absclute weak sup of F in A and thus {4, u)

is a weak sup of F in A". Therefore there exists a map d.: A—sX

=l

such that éou(I) = w(I) for all I. This means that dg: A T o)

for some I € [;J and that dou(I) is congrusnt to F(I) for every

)

ki

b
I
&)
3

T €1§J. Therefore dou(I) and (L) are connected in (F(I),

every 1@ I;l .

Conversely, if G: A~—>»B 1is any functor, we have a canonically
induced functor O: (F(I), F)—(G¥(I), GF). Connectedness heing an
absolute property, atdou(I)) and &(F(I)) are connected in (CGF(1), GF).
Bt Gldou(1)) = ¢(d)ou(I) and G(F(I)) = GF(I).

Now assume that v(I): GF(I)—»B is natural in I. Consider

Gd, 7(I,)
QA e GF (T ) me———2=B. (2.3) now says that

V(IO)G(dO)Gu(I) = (1),

Thersfore (CGA, Gu) is a weak sup of GF, and this completes the

T+ is convenient to state these results in terms of connectedness
in comms categories, but it is easier to see the abscluteness by shating
fhese conditions in the form of equations. Even though 1t seems more
complicated in the general case, in specigl cases it 1s sometimes simpler

and more meaningful. Thus we restate {(2.h),

Let I be a small category and let i J—--A TDe a Tunctor.

il

(A, u) is an absolute weak sup of ¥ If and only if there exist




F(bh)ds" dy = Flbg)dg
F(bﬂ_g)dn_3== d,p= F(bnﬂl)dm_l
F(bn)dn_l = 7{1)
1.e. such that
F{T ) I
o o
4, A \
%1
T
B
{
e
P(I) A
°3
b
n

[=1

commutes.

(2.5) REMARK, If dou{I) and (I} are connected in
(F{(1), F) and if ©b: K—I then dou(K) and F(¥) are connscted

in (F(K), ). Indeed, b induces a functor




o
=
—
i
S
-
=
~
—
=
—~
—
—
-
=

y—eem= (F(K), F) which sends dou(I) £0 dou(I)F(b)
and F(I) to F(I)F(b)= F(b). By naturality dou(z)ﬁ'(b}ﬂ dou(K).

Therefore d.ulK) and F(v) are connected in (7(K), F). But

7(b)

(1 )= F(X)

commutes, showing that F(b) and F(K) ave connected in (F(X), ),
This proves our statement.

(2,5) is actually very useful when working with special cases.

(2.6) REMARK. We see immediately from theorem (2.1} that if T
has an absolute weak sup, then {F(I ), d w(T)} 1s one.

O O

The next result 1s some sort of a converse to this.

(2.7) THEQREM. Let F: ;;—ayg_ be a functor. If some weak sup
of ¥ is absolute then they all are.

Proof. This follows immediately from the fact that 1f (B, v) 1is
a weak sup of some functor &, then {(B', v') 1is & weak sup of G

if end only if there exist b: 3——>3B' and b': B'—3 such that

by =v' and b'v'® v, 2

(2.8) DEFPINITION, In this case we say that F has absolute

wealk sSups.
Tf F has absolute weak sups and if it has a strong sup, Lthen

this sup will be absolute as a weak sup but it does not fellow from




(2.7) that it will be an absclute sup.

(2.9) THEOREM. Let F: I—»=A have absolute wesk sups. Let

G: IT—2=A be a functor such that there exist natural transformations

3

o —bim e 3, Assume that for every 1 & gﬁ, s{T)e{Z) and G(I}

tt

sre connected in {(G{I), G). Then G has absolute weak sups also.

Proof. Let (A, u) Dbe an absclute weak sup of F. Then (2.h)

says that there exist IOE ]l' and do: A-—amF(IO) guch that for

).

I

svery ﬁEQIEJ , dou(I) and F(TI) are connected in (F(I),

For svery L, t{I): G(I)=—==F(I) and s: F-=—-0G induce a
functor

(t{1), s): (¥(1), F)—=(C(I), GJ}.

Since dou(I) and ¥(I) are connected in (F(I), ),
(£{1}, s)(dou(I)) and {t{(T), s)(F(I)}) are connected 1n (a(x), o).
But by definition of (t(I), s), (t(I), s}(dou(I)) = S(Io)dou(l)t(l)
and  (t{I), s)(F(T)) = s(D)F(T)t(T) = s(T)t(T).

Since s{(I)E(I)} and G(I) are connected in (Q(I), G) ov
hypothesis, we see that S(Io)dou(l)t(I) and G{I} are connected in

(e{1), ¢). I

we take uw'(T)= u(T)t(I): G(I)—s=~A and

we oconclude that (4, u') 1is an absolufe

Ja: A—==G(I,)

weak sup of G.

(£.10) COROLLARY, Tet Fi: I—=A bDhe a functor with absolute

-

weak sups and let G: I——=A e another functor. If there exist

natural bransformations such that




11.

e
5]

then O has absolute weak sups also. B

§3. ABSOLUTE SUPREMA

Obviously (A, u) is an absolute sup if and only it {4, u) is
an sbsolute weak sup and { w(T) | 1€ ;ﬂ} is an absolute Joint epi.
Trus (1.3) and (2.%) give a characterizatilon of absolube sups. The

following results make this more precise.

(3.1) THEOREM. If F:

IEH

—=-4 1s a functor then (A, uw) 1s an

sbsolute sup of F if and only if (A, u) is an absolute weak sup

of F and {:u(I)[Ee§;£|} ig a joint epi.

Proof., The necessity of the condition is obvious.
£
Wow assume that (A, u) 1s an absolute weak sup and '{u(I)LIéiggl}

is a joint epi. Since (4, u) is an absolute weak sup there exist

—

€ | Ll and  dg: A—_ebF(IO) such that for every I, dou{I) and F(I)
o

are conneched in (F(T), ¥). Then by (2.3)
u(IO)dou(I} =1(T)

for a1l T. Since {u(T)} is a joint epi we get ul(I_)d, = A.

Consequently, {u(I}} 1is an absolute joint epi, thus proving our

theoren. B

Theorem (3.1) shows thai the map which makes { u(Iﬂ Tel I ¥ oan

absolute joint epi can be cheosen to be the d, of theorem (2.4}, We




can now state thecrem (3.1) in its final form.

(3.2) THEOREM. Let I TYve a small category and let

o 0ot hFe ]

T. [ —==A be & functor. (&, u) is an absolute sup of I if and
- 2 L

only if u(Il): F(I)—sA is natural in I, and there exist Ioél ;1

and  4: A—uﬁbF(IO) such that

u(IO)dO= A

o]
=
®
<
®
=
o
i
m
[

and dou(I) snd F(I) are connected in (F(I), F)

(3.3) COROLLARY. If F: I—>=A has absolute weak sups and has
& (strong) sup then it is an absolute (strong) sup.
A map a: A-—sA is said to be an idempotent if aa= a. It is

5214 to be a split idempotent if 1t factors

Al

with ata"= A'.

(2.4) THEOREM. Let F: I—3>A have absolute weak sups. [T
(A, u) is one of the absolute weak sups of F, then using the sanme
notation as in (2.4), dou(IO) is an idempotent and the following are
equivalent:

(1) dou(I is a split idempotent,

o

(ii) F has an absolute sup,

(iii)® has a sup.
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&

)

Proof. 3By (2.4), 4 u(Tl) and F(I) are connected in (P11},

for all I. By lemma (2.3), (dou(Io))(dOu{I)) = d u{i) thus

(dou(IO))(dou(Io)) = dqu(Io). Thus dou(Io) is an idempotent.
(1)== {ii). Let dou(lo) =4d',a' such that
4’ al
o
Al f-F(IO) A' = A', Define u'(I) = a'dou(I): PUT) AT,
Then u'(I_}d'y, = a‘dou(Io)d’o = a'd',a'd'y T AT,

Thus d'ou'(I) is connected to F(I) ian (¥(T), ¥} for every L. 3By
theorem (3.2), (A', u') is an absclute sup of F.

(i1)=> (iii) Obvious.

(iii)=2 (1). Let sup F ={A", u'). dou{I): F(I)—>F(1,) 1is

nstural in I, thus there exists a unicue 4',: At—=P(T5)  such that

Al e (T

commutes. By lemma (2.3), u'(Ijld u(T) = u'{1), conssquently
w (T )dr u'{(1) = (I )du(T) = u' (1), Since { u'(I)} is a joint

epi, Wwe get u'(IO)d'O = A, |

&L, ABSCLUTE COEQUALIZERS

Because absolubte coequalizers are important in the theory of




1k,

triples and their algebras (see[20], and chapter T} we shall investigate
these coequalizers in greater detail. This also gives us a chance to

see how the conditions break down in special cases.

a a
(4,1} THEOREM. Ay > A ——> A is an absolute weak coegqualizer
a

1

in A if and only if there exist b: A-——>-4  and a finite number of

maps bi: AO—%}B!‘H such that

f(2)P1 7 Bv(3)P2

ay(bybe = ay(5)b3

2y{on)Pn =g

where (i) =0 or 1, nn 0.

) a
o) . . . ; .
Al ?“AO——mb—A is an sbsolute coegualizer in A 1f and only if
a
1

there exist Db: A—>-A_ and a finite number of maps bi: Aj—==4y

-]

satisfying the same equations as above as well as

ab T A,

Proof. Remark (2.5) says that we only have to worry about A,

The first eguation expresses naturality of wu. It is an easy exercise

to verify that the conditions of theorem (2.4) give the above eguations.




o

The second part follows from (3.2).

& :
I . o ) i . )
(L.2) EYAMPLE. A A —==A, 1is an absolute coequalizer.
a

(4.3) EXAMPLE. If a: A-——s=A' 1is an absolute epi then there

exists b: A'——s-A such that ab= A'. It is easy to see that
ba, =Y
A ___;LA——-§_A’ is an absclute coequalizer.
A
a a
If &: A—3=-A is an idempotent, then A TTo” Awmam=A 15 an
A
a
apsolute weak coequalizer. Thus A'—?P'A hag absolute weak coegua-
A
&
lizers and a oplits if and only if A > A has a coequalizer.
A
a, a
EHAMPLE i —
(L.4) EYAMPLE. Beck defines [2] A ——“ﬂwo A to be a
a

1

contractible coegualizer 1if there exist ©b: A-*@vAO and  Db: AO—~%—A1

such that
aa = aaq
ab = A
ba % aobo
albo= AO.

Contractible coegualizers are absolute.

The natursl guestion arises as to whether there are abgolute
coequalizers which are not contractible. The ansver is yes. Consider
3 At

AT A" ——== A' which is absolute but is contractible if and only if
—_—
a




a 1is an abseclute epi.

(L.5) DEFINITION. We shall say that an zbsolute coegualizer is

)

necontractible if n is the smallest integer for which (L.1) is wvalid.

a, A

B — 1 At 1 —- ot M.
A Al — A 1s O-contractible.

a
B &
If AT A =i ig a contractible coequalizer and if a_ # a
| —— e - O

il

then it ig l-contractible.

We shall show that there exist n-contractible coequalizers in 2
for sach positive integer n. Before we show this, we shall establish

a graph-theoretical characterization of absolute coequalizers in 3.

£

Given a palir of set maps X e v ye define a graph by letting

f
2

the vertices be the elements of Y and the arrows be the elements of

¥  such that fl(x)——§$=fp(x). The coegqualizer of £, and f, is the

set of components of this graph with the natural projection
fng o iy ey

—— i
£

A path from y to y' is a finite number of vertices yo, Y Yooees Vn
such that vy = vy, y' = y,» and such that for each 1 there is an

arrov  ¥i—s=¥i.1 OF Viq—=Ti- The length is said to be n, and the
type is defined to be a sequence of ¢l or -1, one for each arrow in the

path; 41 1f the arrow is VY and -1 1T the arrcw is Vie1—>Yi-




1T7.

If X —L1.Y is a pair of set maps, bthen the
z 1

t
2

o

coegualizer of £, and f2 is absolute it and only 1if there exists a

path type A such that esach component of the graph induced by (f?’ fp)
on Y has a vertex, called the centre, such that every vertex of the

graph has a path of type 4 to the centre of its component.

f il
Proof. Assume that X-~A%wff——€?-z is an absolute ccoequalizer,
Fal
£
2

then by (4.1) there exist g: Z-—>Y and g.: Y—>X such that

We can assume that v(21 - 1) # w{(2i) for 1if not we can shorten the
chain.

If z is a component, define its centre to be g{z). For any y e ¥,
the component containing y is f(y) and its centre gf(y). The

abeve equations give
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o(1)8¥) = T 0y 85(T)

Fal

I

gq(y) v

“v{en)r
Thus taking the vertices to be fv(2i)gi(y) we get a path of length
n from y to gzf(y). The path type is determined by v as follows:

A = (v(Pn-2i4+1) ~v(2n-2is2)}! i =1, 2,..., 0},

Conversely, assume that there exists a path type for which each
component has a centre. Define g: Z-—=Y Dy putting glz) = centre
of . Given yeY, the centre of the component of ¥ is gf(y).

By hypothesis we have a path

Xl X2 XB Xn
ya&—%&-ylﬁérﬁw-ygsﬁ%—%w sas m&-éw»yn = gf(y)

(> stands for " —ssoreg— "}, Define gily) = x, for i=1,2,..,n.
Using the path type to choose the appropriate gubscripts for the {'s,

we see that we have an absolute coequalizer. |

Notice that the length of the path is the same as the n in the
characterization, thus a coequalizer is n-contractible in § if and

only if the minimum path length i1s n.

et ¥ = Y = £0,1,2,..., n} and Z = {0}, £, =X,

£ (1) = min (i%l, n), f the only possible map. The graph induced on
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We take n as the centre and the length of the path is n., Thus

£

0 B . 5y . .
¥ —2>Y —=7 iz an n-contractible coequalizer. This example

-
L

'l

1

was susgesied by Michael Barr to replace a more complicated one.
g L

We now give an example in § where both £, and f, are
onto (absolute epi) but where the coequalizer is not absolute. Let
X=%Y={0,1}, 2 = {0}. £ =X, fg(i) =1 - i. The induced graph

is

Clearly there can te no centre,

We also give the following example to show that there exist
n-contractible coequalizers in the category Ab of abelian groups.
Let Cop be the eyclic group of order two, and consider the

following diagram:

u c,” , O
- e
C, . ¢y ——>-{0}
where f: (al, Bps B3scces an)%-eb(ag, Bassers By 0}, This iz an

n-contractible coegualizer in Ab. The details are left to the

reader,

§5. ABSOLUTE PUSHOUTS
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Tn view of remark {(2.5), the conditions of theorem (2.4) applied to

pushouts specialize to:

=
s
1__!

"o
t

is an asovsolute wesk pushout if and only if there exist d_: A—>=-A;

(say Al, for simplicity) and a finite number of maps di’ d'. such

that
P13 7 Py
dopl = aldl dop2 = g,d",
agdl = 5.26{2 agdt = agdlg
o T — i
aldg = ald3 ald o = ald 3
— 1 —_
aldn = Al a2d m = A2

This diagram is an absolute pushout if g satisfies the further

relation

The first column of equations may reduce to dopl = A, but the

second column never reduces this much, We conclude from agd'm = A2




that 2, 18 an

absolute epi or

21,

abeolute epi. We alsc see that either 8y is an

D is an absolute meno.
1

In the case of absolute pushouts we see that a, ig an absolute

epi and either

aq 1is an asbsolute epi or py 1s an isomorphism.

(5.1) EXAMPLE.

/\

AN
A

is an sbsolute pushout if and only i1f a is an absolute epi.

(5.2) EXAMPLE.

R4

\

is an absoé¥ube pushout Tor-all a.

a P+
\ . —t . . )
The cokernel pair AO——wa»Al A4 1s Just the pushout where
Pp
a Py ‘
8, = 8, = a. As we saw above, 1T AO——mﬁwAl' =5 is an absolute
‘ o,

cokernel pair

, then a must be an absolute epli. We conclude that




22,

= p, = igomorphism., Thus the only absolute kernel pairs are the

trivial ones.

We finish this section with the follewing characterization of

the absolute pullbacks in 5.

(5.3) PROPOSITION. A pullback in £ Is absolute if and only
5£ it is of type (5.2) or a non-empty intersection.

The proof ig straight forward and will be left out.

8¢. MISCELLANEOUS RESULTS

Tn S, the fact that all epimorphisms are absolute is eguiva-
lent to the axiom of choice. Tt is a tyrivial fact that all mono-

morpaisms with non-empty domains are absolute.

Obviously there are no absolute initial objects { = sup of the

empty functor).

If I 1is disconnected, in the sense that I = I + I, where
EJ £ @ %_22, then ne functor g;—abg. can have an absclute sup.
Indeed, I, in (2.4) muet be connected to every object of L.

Tt follows from this that the only absolute coproducts are the

1-fold coproducts, iL.e. when I has one obhject.

Wow we give an alternate proof of a result of Lambek [91.
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(6£.1) PROPOSITION. Let ¥:

b~

—=A be a functor and let I be

[

s connected small category. Assume that there exists w(I): F(I)——A
natural in I such that u(I) i1s an isomorvhism for every I then
(A, u) = sup F and this sup is absolute.

Proof. Let +v(I): A—=F(I) Dbe the inverse of (). w(I) is

ct
—
o
=
[N

nstural in I. Let w(I): F(I)—e=A' be natural in I. Lef
T' ‘e any two objects of I. There exist

o4 b2 b3 Do
— I, 1" since I 1is connected.

1 5 vas

v and W:

Iy
4]
H
o
|_I
‘_..J
[¢]
=
I
=]
4=}
™
e
w
5]
]
o
=
(9]
é
o
ct
(]
0]
o
<
=3
]
ct
o
H
o
I_i
|_l "
<l
e
o
=

F(1'")
Thus  w(T)v(I) = w(I')v(I') for any I, I'e|L]. But

w(Dv(Du(1) = w(I), thus w(I)v(I) is the unique map making the

A
w‘:m
u{T)T Al
B(T)

following diagram commute:
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Therefore (A, u) = sup F.
But that u is an isomorphism and that I 1is connected are

absolute properties, thus (A, u} ig an absolute sup of F. El

{6.2) COROLLARY. If A 1is a group considered as a one object

category, all sups of functors from & connected category are absolute.d

Lambek proved that if A is a group with more than one element

then & functor from a disconnected category has no sup.

§7. REMARKS

In all of these absoluteness theorems it would have been enough

to require that the given property be preserved by full embeddings.

Thus thege are really results of embedding absoluteness.

For the characterization of absolute epis and absolute sups it
would have been enough to demand that these properties be preserved
by representable functors. For this one must know what epis and sups
are in 5. This process, however, cannot be used to characterize
the dual concepts of mono and inf which are always preserved by repre-
sentable functors. In fact this is how mono and inf are defined. BSee

(0] for an example of this method applied to coequalizers.
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CEAPTER IXI

TRIPLES AND ABSOLUTENESS

In this chapter we examine the relationship between triples and
abscluteness properties.

The veader is assumed to be familiar with the material of §1,
which is inecludsd for completensss. For more details the reader is
referred to Manes' thesis [18].

&2 studies the occurrence of absoluteness properties iln con-
nection with triples and their algebras.

Tn §3 we reformulate Beck's triplesblensss theorem, replacing
nis original contractible coequalizers by the more natural absolute
coequalizers. Although absolute coequalizers consgtitute a more
general class of coequalizers, in practice the conditions are just
as easy to verify. The idea 1s not to use the chgracterization in
terms of equations, given in chapter I, but to get away from these
equations entirely, using only absoluteness {(preservation by all
functors ). This way the proofs are conceptual rather than computa-
tional, and thus clearer.

In the vypp, absolute cosqualizers do give us a slight advantage,
making the conditions weaker. New conditions are given making 1t
easier to prove VIT in some cases.

§ is devoted to some known examples, just to show how these

conditions can be used.




§1. TRIPLES
(1.1) DEFINITION. Let A be a category. A triple on A
is a three—tgiple (T, n, u) vhere T: A—e-A is a functor and
n: %;—%»T and u: Ta——ﬁhT are natural transformations such that
rl'i.
Ty » ™ o

/
-3
)
Y

nT

Y

o
3
T
3
g <l |
pe

=

i
Y
3
-

H [

commute, n and p sare called the unit and the multiplication of

the triple. The above diagrams express that is asgsoclative and

that n is unitary.
U
Let B ¢ z A e an adjoint pair of functors, i.e. we have
¥
natural transformeticns e: FU-—>B and n: éf“%wUF guch that
U gpy ey = U
g N pup 2 = T

This adjoint pair induces {see Huber [81) a triple (UF, n, UeF) .

Eilenberg-Moore [6] showed that every triple was of this form
by constructing the category of algebras over a triple, together
with a canonical underiying - free adjoint palr.

Let T = (T, n, u)

be a triple on A,

A T-algebra is a pair (4, a) where

26,




g: TA—>A ig an A morphism such that
Ta
z m
T4 TA
A a
TA A
a

commute. a is called the structure of

grams assert that a

na

(4, a) and the above dia-

is associative and unitary.

(1.3) DEFINITTION. A T-homomorphism f: (4, a)—>(4", a')
is an A-morphism f: A—>A' such that
a
TA Zpee
T lf
TA? Al
al

commutes, 1.e. [ preserves structure.

We denote the category of T-algebras

l?%

and T-homomorphisms by

We have the canonical underlying functor ul é?aw@»é_ defined
by A, a) = A and oF(f) = . This functor has a left adjoint

7T a—=-aT yhich is defined by FY(A) = (Ta, pa) and FI(f) = OF.

The adjunctions are &£ ﬁTﬁE__ﬂ,éﬁ where gF(A, a) = a and
e gf—e»ﬁwﬁm where n¥ = n. The adjoint pair iy UF induces the

triple L' = (P, n, u); the one with which we started.
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U
On the other hand, if we start with an adjoint pair BT A,
F
Eall, .. . e
F—2 17, form the triple T = (UF, n, UeF) and then form
g
T.____‘.;, > . B o "
g A, we do not 1in general recover the original category B and
7
functors ¥ and U. We have, however, a canonical comparison

functor &

|t

& ie defined by o{(B) = (UB, UeB) and o(g) = Ug. ¢ dis the unique

functor satisfying the following relations:

e = U
el = Ug
= oF,

(1.4) DEFINITION. We say thet a functor U: B——4 is
tripleable if U has a left adjoint and i the above defined com-

parison functor ¢ 1s an equivalence of categories.

§2, TRIPLES AND ABSCLUTENESS

Let T = (T, n, u) bve a triple on A and let (A, a) be a




T-algebrs. By associativity of a,

Tn+la
Tn+2p e TOHL
TELA T
il ™A
n
T a

commutes for all n 0 (r° is defined to be A4).

29.

(2.1)

The u-assceiative law shows that the following diagram commutes

for all n = 1:

TnuA
Tn+2A Tn+lA
=L ma oi=Loa
'Ttn‘i-lA . rl-lﬂA
T T T
T LA
By naturality of u we get that
TnpA
Tn+2A S Tn+lA
Tn—luTiA Tn"lpTl“lA
Tn+1A e g
] i
T uA

commutes for n =iz 2,

{2.4) 1EMMA, ALl maps TRA—3=-A Duilt up from T s and
TJkaA are aqual.

. a
Proof. For n = 1, there is only TA—=A,

(2.2)




For n = 2, the only possibilities are

A .
Ten 2 ga— B n and  TOA M TA—2s-A which are equal oy (2.1).

Agsume that we have proved the result for n + 1 where n >=1l.

We shall prove it for n + 2. Call the unique map TlA"_%~A, W

L
for 1<«n + 1 (ao = A). (onsider
X 8
P 1 1
T SNy LSS Y

There are four possibilities for x:

(i) x = ™4, Then since a1 = an.Tna, B,,1°X = & (TR, Ty
and by (2.1) this is an.Tna.TnpA = an+l.TnpA .

(ii) = = TnuA. Then a_,q1.X = an+1.TnpA.

(iii)x = T2"'yTA. Then since Byl = an,Tn'lpAg

X = an.Tn'luA.Tn_luTA which, by (2.2) is equal to
o TAThA TNA = ap g TRUA.
. -3 ] . -1 =1 3
(iv) x = T"™ P4 for 1= 2. Then &, ,q.x = an.Tn TpAL TR TIA
which oy {2.3) is egual to an.Tﬂ‘iuTl‘—.TnuA = a,,;-7 LA

This proves the lemma.

,opmiel R N u
Define y; = plel T Tt ey ——==T and
uO=T T T
(2.5) LEMMA. Let c, = @ty FPTNA for a tixed n

and 1 <1< n. Then the following diagram commutes:

30.
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T2nA 1 Tn+1A
n-1

Ciel WD A

parly o TOA
e,
Proof. Consider the diagram:
. ity
pon-isly i pi¥dy
(1)
anulA

7R, o T

Tna

Tn+lA

(i) natursality of u;

commutes by

(i1) commutes by definition of u;3

(iii)comnutes by lemma (2.54).

what we had to prove.
n ™
Define n, = A—T — T2 — ,

1 —_—

Commutativity of the outer diagram is

-1
pioty .
We are now in

a position to prove the main theorem of this section.




{p.6) THEOREM., 1If L= (7, n, v} 1is a triple on A and

(A, a) is a T -algebra, then

. T a,
Tty L ThA—-a
uTn_lA

is an absolute coequalizer in A for any n z 1.

Proof. Lemma (2.4) shows that 2, coequalizes T'a and

0. Let A = ng(A), 4 A—T"A. Using the fact that

o
8, = a.Ta.Tga e ™=L5 we show that
n_A
n
A T"a
a
n
A I
A
commutes. Now
a
n
THa A
13
nnT A nnA
2
7 "4
o
1 a
n

commutes by naturality of n,. Thus

I

=
=

o

doan '

Il
-3
o
-
o

it
=
3
o
e}

32.
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=
=]
et
0
o3
=
=
[
=3
fas)
o
o
3
3
|
o

o
=]
3
1
i.‘...}
>
0
n
=
S
=)
o]
.
Il
=]
S
o
0
W8]
=
=
b3
]
T

(by (2.5))

83
v TAa.e _.n T'A = Tla.c_.n T A
n n

n o
lT A.nnL A

—
3
d
s..J
o
o
I3
5
=
=
=
=
1

_ n-1 rirl .
uT AT 8.0 Hn-

Py

]

n-1 n
uT Al 1T An T
=L n

wl
p AL TR
n n

n—lA)

(unwnnT)(T

i

This completes the proof of the theorem. 8

Of course this is nobt an elegant proof, but no further reference
will be made to the proof nor to the definitions connected with it.
The necessary information that the equations contain has been stored
in the fact that we have absolute coequalizers {the next theorem
testifies to this). From now on we forget these equations (including
the ones used in defining contractible coequalizers) and work sclely
with sbsoluteness. We see how Beck's theorem can be proved using only
absoluteness and in the last section we see how 1t can be applied.

n
&

a
- . Nl e n .
Note that generally, T ¥ A T THf =7 is an n-contrac-
Ui
tible, but in some cases it may reduce to i-contractible for some

i en. In any case it 1s a good candidate for an n-contractivle

coequalizer,
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(2.7) THEOREM, Let MW= (T, n, u) bve s triple on A and let

a: TA—>-4 be an A-morphism. Let 8, = 2.Ta.T% ... Tl—la. Iif for
] g n &y
some nxl, T A }9‘ T A—~—s= A 1is an absolute coequalizer,
uTHTEA
then (A, a) is a W-algebra.
e T - mi—1 AT 5
Proot. e have a_.T a = a_.uT A put a, =a.Ta, ; anda
—_ n n 1 n
Ta,
n—l
A A
uTn_lA TuA
T+l - = 124
T Sn-1
commutes by naturality of u, therefore
o =L -l
an.T a = a, .ul A = a'Tan—l'“T A
= a.uA.TEa__1
But
n _ 2
an.T a=a, 4 a.Ta.T 2,1
thus
2 _ 2
a,uA.T a1 a,Ta.T a, 1
80
11 n+l
a.uh Tgan_l e = a Ta.TEan“l._ a
a.uft Tgan = a.la Tgaﬂ.
But &, is an absolute epl, therefore
a.uh = a.Ta (The sa-associative law).

How a@.nA.s = a.Ta.nTA = a.udA.nTA = a,
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Thus a.nA.a, = &, and gince a, is epi

a,nA = A (The a-unitary law).

This completes the proof.

If A and B are categories we let §£~ denote the category cf

functors A-—33B with natural transformations as morphisms. IT
G: B—2C is a functor we have an induced functor\ 6 §£:~4wg§
defined by composition. If +t: G-—=1H 1is a natural transformation
then we have an induced natural transformetion th gA—s=gA also
defined by composition. | VA gends categories to categories, functors
to functors, natural transformations to natural transformaticns, and
vespects all kinds of composition and identities,

et M = (T, n, u) be a triple cn A. We have an induced
triple ﬁfé_ﬁ:(T§, nd, ud) on ggu Since (T, u) 13 = rﬂé-algebra

we get the following theorem.

(2.8) THEOREM. TIf = (T, n, u) is a triple on A, then

n
n+o ___Li}- N4l Mn . . . A
T I T =T is an absolute coequalizer in A~ for all
i
n }) C. i |

From (2.8) we ses that

] Tn+iij .. Ti Tj . .
Tn+2+i+j::::::::g:Tn+l+1¢3_ﬂ_;j1_a@T1+J+l
1 k)
T

_éu This takes cars of all possibilities

is an absolute coegualizer in
for pairs of maps of the type TP between two consecubive powers

of T.
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I we apply the substitution functor subA: gﬁlmakg_ we saze

that

T ) iy oI(a)
= Tn+m+l+3(A) ...._.__,_,Q_,.__.__.._%. Tl-\-J%l(A)

Tlan+J (A)

Tn+2+i+j(A)

is an sbsolute coequalizer in A. Theorem (2.6} tells us that

mn-;—‘l r?i

. =3 R LA .
Tn-}'}_-}l{A) _ o : Tﬂ-i'l(A) _m_n___l}ale(A)
T (A)

is an absolute coequalizer in A, where (A4, a) is & T-algebra.
This takes care of all possibilities of palrs of maps

Tp+l(A)mmapr(A) where (A, a) 1s a W-algebra.

§3. TRIPLEABLINESS
et U: B—=A Dbe a functor.

(3.1} DEFINITTON. We ssy that B has U-absolute sups if

every functor G: I—=B such that UG has an absolute sup in A,

has a sup (not necessarily absolute) in B.

(3.2) DEFINITION. We say that U_ preserves U-absolute sups

if whenever & functor G: L—»=B has a sup in B and UG has an
absolute sup in A, then U.sup G = sup UG, i.e. 1f sup ¢

= (B, v) and sup UG = (A, u) then there should exist an i50-

morphism a: UB—=-A such that a.Uv = u.

{(3.3) DHEFINITION. We say that U reflecis U-absolute sups

if for every v(I): G{I)—>B, natural in I, such that

(UB, Uv) & sup UG which is absolute, then (B, v) 2 sup G (not
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necessarily absolute).

(3.%) THEOREM., Let T'= (T, n, u) be a triple on A. Then

U’;E Preserves U¥.absolute gups, and

~abgolute sups,

N

Procf. Let G: I—ﬂﬁng‘ be a functor. Let o = B and
UFTe = n, then G{I) = (H(I), n(I)). Assume that H has an

ebsolute sup in A, (A, u) = sup H. Applying T we see that

n(I) (L) u(1) A iz natural

sup TH = (TA, Tu). Since TH(T)

in I, there existe & unique a: TA—s=A such that

=)
TA A
A
Tu(1) u{l)}
TH(ZI) H{I)
h{I}

commutes.

We shall show that (A, a) is a T -algebra. Consider the

following diagram:

Ta, a
74 =y A
pA .
(1) Tul{T) (1)
, T™(I)
TeH(1) _ TH(I) H(I)
uE(T) h{i)

The square on the right commutes by definition of a, the upper

square on the left for the same reason, and the lower sguare on the
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left commutes by naturality of p. Therefore
5.78.Tu(I) = a.ub.Tu(T)
for every I €[1]. Since (A, u) iz an absolute sup, (w(I)iT e |1}
is an absolute joint epi, therefore a.Ta = a.uA.
Next consider the following diagram:
T4

nA =)

H(T)
The right square commutes by definition of a, the left by naturality

of n, the bottom triangle by the h(I) =~ unitary axiom. Therefore

we have a.nh.ull) = u(I) for every I&|L|. Since fw{i)} is a
joint epi, we see that a.nf = A. This finishes the proof that (A, a)
ie a T-algebra.

b, h(T))—=={(4, a} is a T -homomorphism follows

That w(I): (H(

from the definition of a. That u{I) is natural in 1 follows from

the fact that it 1z natural in A.

o

Now let v(I): ((1), n(1))—=-{(A', a') be natural in I. Then

applying GK‘ v{I): H(I)—=A' is natural in I. Since

k]

(A, u) = sup H, there exists a unique A-morphism £: A——s=A4' guch

that
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7(T1)

conmutes.

gram:

But =

is a

Thus

To gee that f is a "I -homomorphism consider the following dia-

th

I
H
<
——
i
S

Il
)
o
-
=
M
e
u
<4
il
I~
&
—
I
@
=)
<
-l

£.8.Tu{l)
= gt 0F.Tull)
ince {u(I)} is an absolute jeint epi, f.a = a'.Tf., Thus ¥

T -homomorphism and we conclude that ((A, a), u) = sup G.

r

ég‘ has U"-absolute sups.

T

It ig obvious that U® preserves these sups.

Since the =a was uaiguely determined by the regquirvement that

ri‘\

be a nomomorphism it is also evident that U” reflects these

We now state Beck's tripleableness theorem.




=
(=]

(3,5) THEOREM. A functor U: B—=A is tripleable if and only
if U has a left adjoint, B has U-absclute coegualizers, and U
preserves and reflects U-absolute coequalizers.

Al

Proof¥. If U is tripleable, we can assume that 3B = and

that U = ﬁT. Then U has z left adjoint and the regst follows from

Now assume that U has a left adjoint F with adjunctions
¢: FU~—B and n: A—>TUF, and that B has U-absolute coegualizers
and U preserves and reflects them., We obtain 3, the inverse of

® as the following coequalizer

133
n+l E_E‘_T__?_% n —
FOCA TR PP A0 (A, a)
cFTHA

where n is a fixed integer (n == 0) and (A, a) is any T -algebra.
This coegqualizer exists since, applying U to the palr of maps, we

get

n+l
Nap, e
et

ngA

n+lA-*®A

which is an absolute coequalizer by (2.6).

The details which show that ¢ and ¢ are inverse equlvalences

are standard (see Beck ({11, [2] or Manes [18]) and are left out. B

In Beck's original statement of the theorem, contractible

coequalizers (see (I, 4.,4)) were used instead of absolute coequalizers.

Y U
Consider the following situation (-——=B —s=A where U and




b1,

V  are triplesble. It does not follow that UV 1is tripleable (e.g.

Torsion free abelisn groups—s-Ab—>-5).

Reck has conditions (VIT) which, when impesed on U, ensure
thet UV is tripleable. We now give these conditions replacing
contractible coequalizers by absclute ones,

(3.6) VIT. Let U: B—>A Dbe tripleable and assume that the
U-gbsolute coequalizers that B has and U preserves and reflects

sre themselves sbsolute. Then for any triplesble V: C—=B, UV

is triplesble, 3

This theorem is not equivalent to Beck's VIT, for it is
quite conceivable that coequalizers of U-contractible pairs be

absolute but noit contractible.

We now prove a sort of VIT which seems to be easlier to use in

practice,

(3.7) THEOREM. (RVIT = relatively vulgar triplesbleness theorem. )

Let g:mzebﬁj—gﬂ=§_ be such that U has a left adjoint, B has
split idempotents, there exists a functor G: A——3B and there exist

natursal transformaticns s and t such thatl

v—Ee gy —FemV = ¥

then for any tripleable functor W: D—s3B factoring through v,
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3
<3

U  is bripleable,

S QUYL = ¥, VD —emgUVT —S2e VT = VT,

Proof., Since V

20

Let H: I—D pe such that UWH has an absolufegln A. Then o

GUWH bhas an absolute sup in B. Since WH-—>-GUWH-—WH = Wi by
(I, 2.10) WH has absolute weak sups. (1, 3.1k) and split idempotents
imply that WH has an absolute sup in B. Since W is tripleable,
H has a sup in D. W preserves this sup (since it is W-absolute)
and then UW obviously preserves 1t.

To zee that UW reflects UW-absolute sups let sup H = (D, u)
be UW-absolute. Assume that u'{I}): H{I})—=D' is natural in I,

then there exists a unigque map d&: D—>»D' such that
D
\
D!
//1;??3

commutes. Assume that UWd is an isomorphism in A and let its

u(1)

H{T)

inverse be a: UWD'—=UWD.




L3,

Wd
WD WD
sTh sTD'
GUWa /
GUWD GudD!
Ga
GUWD

GUWD

£TD +ID!

WD e WD
Wd

commutes, the left half showing that
(tTD.Ga.sTD! ). Wd = tTD,sTD = WD
and the right half showing that
Wa.(tTD.Ga.sTD') = tTD'.sTD' = WD'.
Therefore Wd 1is an isomorphism. This shows that U reflected
this sup. Since W is tripleable (thus it reflects W-absolute SUDS )
and since this sup which U reflected is absolute in B, W also

reflects it, thus showing that UW reflects UW-absolute sups. Thus

UW is tripleable.

(3.8) COROLLARY. Let C—->=p 334 be such that U has &

left adjoint, B has split ldempotents, V 1is triplesble, there
exists a functor G: A—»=B and there exist natural transtformaticns

s and Tt such that




bl

V =S UV —%e-v = V.

Then UV is tripleable.

(3.9) COROLLARY. Let U: B—sA have a left adjoint and
assume that B has split idempotents. Assume, furthermore, that
there exists a functor G: A-—»—B and there exist natural trans-
formations s and © such that

B —2e- U —=-B = B.

Then U is VIT.

§L. EXAMPLES

The category of groups is tripleable over the category of sets.

Let U: Gr—>3 Dbe the usual underlying functor. It is well known
o
, . . 0.
that U has a left adjoint. Let Xl - XO he two greoups and two
1

group homomorphisms and assume thab

is an absolute coegualizer in sets. We must define a group structure

on ¥ in such a way that ¢ is a homomorphism and the coequalizer

~

of fo and f in Gr.

1

Consider the diagram:




b5,

- e .0

XlxXl = — XOXXO X%X
1* 71 :

1
m1 mO jp:d
1

; £ £ y
X C - = X

1 pe 0
1

where m and m, are the multiplications of X and X, respec-

tively. The upper and lower squares on the left commute because

£, and are homomorphisms. Thus f.mo.(fo, £ )= fan (T, fl)'

i
1 o

But the upper row is a coequalizer diagram Decsuse 1% 1s the result
of applying the squaring functor to an absolute coequalizer diagram.

Therefore there exists a unigue m: XxX—==X making the square on the

right commute.
Next we use the same reasoning on the following diagram

£
Xl’“‘“‘““‘g““ﬁ“‘{ R
f1

I
|
- : I,
i 1 1A
1
|
3 sy
b4 X e X
1= f
1

where io and il are the inverses of XO and Xl5 to get a unique
i: X=X guch that the right hand square commutes.

The following diagram gives us the unit of the group:

4




One easily verifies that this defines a group structure on X.

This structure was entirely determined by the requirement that f

f f
. o) . .
be s homomorohism. Furthermeore X, %Y —=X 18 &8 coegualilzer
T 7 i q
1

in Gr. The details are very similar to those of theorenm (3.4},
This sketches the proof that U: Gr—s=S5 is tripleable.

This example 35 typical of varietal categories (see Linton [151).

Tndeed varietal categories are known to be tripleable over §S.

Now let B be a full reflective subcategory of A and
U: B—#A the inclusion. Then if F is the left adjoint of U we
have FU & B, If we assume that B has split idempotents, then
{3.9) implies that U is VIT.

A vefinement of (3.7) and thus of (3.8) and (3.9), specifying

which idempotents must split, gives the result that the inclusion of

any full reflective subcategory is VIT.

Let X be a discrete category and let A Dbe a pointed category
having ¥ indexed products. Assume that A has split idempotents.

L. . 9] .
We have an adjcint pair AXf_“Q”A where U i1s the product and F
J T A e 12
F

is const, the functor which associates to any object of A the
constant functor with thaz value.

We have natural transformations

t, X

JR .

where S(Ai): (Ai)——%"(HAi) is defined by S(Ai)j: Ajﬂ——-HAi which




W,

is determined by
A —pA =
J * 0 ifi#j.
t is defined by the projection maps. Then *T.s = A= thus U is
VT,

U

Let BT A Dbe an adjoint pair and assume that B has spli
F

ct

idempotents. Then one of the adjunction equations says

p—Enepup £ ew o p,

Thus U is RVTT through F, i.e. if W: D—=B 1is a tripleable

functor which factors through F, then UW is tripleable.
U
—e .z 5 .
Let B A be an adjoint pair and assume that B has split

F

idempotents and assume also that U has & right adjeint R. Then

U is BRVTT through R.
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ADDITIVE ABSOLUTENESS

Tn this chapter we propose to study additive absoluteness, i.e.
properties of diagrams in additive categories which are preserved by
31l additive functors. We obitain characterizations of some of the
usual properiies of category theory. These charascterizetions take
the form of eguations involving composition, addition, subtraction,
identities, and zero.

By an additive category we mean a pointed category A such that
the hom functor [, 1 ¢ é?p s g;——%g_factors through the usual
underlying functor from the category of abelian groups To seis.

A%Pxh

| (s )

[, A
5

A funetor G: A——-A' Detween Two additive categories 1s called an
additive functor if the induced maps

A T T
(A, "1) (CAO, GA?)

are abelian group homomorphisms.

Additive sbsoluteness has been used often in homological algebra,

]

.g. split short exact sequences are absolute short exact sequences
and for chain complexes, contractible means absolutely acyclic. We

leave all guestions of homological algebra for a later work.

T+ 1ig understond that whern we speak of absolutensss in this

chapter we mean additive absoluteness.
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§1. ABSOLUTE EPIMORPHISMS

(1.1) PROPOSITION. Let A be an additive category and let
a: A—A' be an A morphism. Then a 1is an absolute epi if and

only if there exists a map &a': A'——A such that aa' = A',

Proof. The sufficiency i1z obvicus.
Wow assume that =& 1s an absclute epli. Then
(&7, a): (&7, A)—(a"', A") is an epi in Ab. Thus (4%, a) is

onte and therefore there exists a'e (A', A) such that aa' = A'. B

(1.2) PROPOSITION. Let A Dbe an additive category and let
;1 Ai——sA" Dbe a fanily of maps in A. Then {a.}! 1is an absolute
joint epi if and only 1if there axist maps a'.: A'——s 4, , only

finitely many non-zero, such that

3 v, o= At
facaly
Proof. Asgssume that Zaia'i = A" and assume that xay = ya.
for all 1. Then xa.al=ya.a' and Ixas.a'. ™ IZya.a', bul
1Tk 1 1 I s 1 i

rxajal: = x and Iya;a’; Ty thus x y and {ai} is a Joint epi.

However the fact that Zaia'i = A' 1is preserved by all additive

functors, thus {ai} is an absolute Jolint epi,
Now assume that f{a;! is an absolute joint epi. Apply the

funetor (A', -). (AY, ay): (A", A, )——(4", A') is a joint epi in

Ab, But this is a joint epi 1f and only if the induced map

lgA', Aﬁ)um%v(A', A') is epl in Ab, i.e. onto. Therefore there
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i
exists an element of l]A . A which is sent onto A', i.e. there

exist a'.: Al— A, only finitely many non-zero, such that

82, ABSOLUTE WEAK SUPREMA

Let A be an additive category, s small category (not

necessarily additive)}, .and F: I—sA & funclor.

{2.1) DEFINITION. An TF-matrix is a matrix {aI J) with rows

3

erd columns indexed by the objects of I such that a ?(J)—=F(T)
I, J

1i - - 3 o
Tt row and the JYY column, and

where ap s ig the entry in the
5

such that only finitely many rows are non-zero.

(2.2) DEFINITION.. lLet b: J,—>I_ be amap in I. Define

#(b) to be the F-matrix (aig 7) where all ap 5 8Te Zero except
aIO, Jo_ F(b) and aJo: JO" —F(JO). It is understood thatl if
I. *J then a = a = ®(o) - F{J_).
@] -
O IO’ JO dob JO Q

(0.3) DEFINITION. Define a D-columa to be a column matrix

indexed by the objects of I such that the entry is an A~

morphism D—=F(I), all except finitely many belng zero.

Nobe that the domains and codomains of the maps in F-matrices
and D-columns are s0 arranged that we can compose F-matrices
together and we can compose an F-mafrix with a D-column. The
1

nitensss conditions in (2.1) and (2.3) insure that all sums make

senseae.,




(p.4) DEFINTTION. Let H{I) denote the F(Iij-ccluan whose
I antyy is F(I) and whose other entries are zero.

"he terminology of definitions (2.1), (2.2), (2.3), and (2.L) is

not standard.

rth

fo]
=
I
7
i
<
}“l
H
|
¥
4
o]
H
w

I where the

entry 18 an A-morph:

fixed A, Then (T} 1is natural in T 1if and only if Lv(T]u{p) =

-

-

ya(p) - v{J ), 0,...) whicn is [0
and only if v(I _}¥(p) = V(JO), i.e. if and only if the following

diagram commites

i O
(b)) :‘A

i 1)

F(J.) °

The lemma 1is QoW COVLOUS.

J= can now i

and only oi

w(IY: P(T)-—=~4 is natursl in T and thers exists an A-column




such that for each Je& I there exist a finite number of 1T~

B

1 } b and as many F(J}-columns By, Boseens .

morphlsns s Dpseves

3

such Tthat

Troof. Assume that thers exists an A-column  {a
- I k]
hesF(T), such that the zbove conditions are satisfied. Let
v(T): B(I)~—A" be natural in I. We want a map fi A——A'  such

that ful(T) = v(I) for all I.

Define £ = %v(I)aI and let [v(I)] e the row matrix, indexed

by objects of I, whose IPH entry is v(T}.
(a1)u(3) = B(3) + 3 (v )8
(D)1 (2 uls) = W(T)IE() -a-_%l[v(I)]z‘«l(bi)Bi

Therefore fu(J)® v(J) for ail J. This proves that (A, u) 1is a
wegk sup of F. But the above conditions, being equations involving
composition, addition, subtraction, identities, and zerc, are preserved
by all additive functors. Thus (A, u) 1is an absolute weak sup of

™
it
Y

Assume that (&, u) is an absoluts weak sup of .

We shall construct an additive category A' which contalns A

I . -
|§f| =1 al s {¥} where ¥ dig an arbitrary

as a full subcategory.

symbol. (X, X}A'= 7, the ring of lategers. For C¢ A,
/ » _ , . . ,
L5, C)D = {0} and {(C, L)p = Lilc, #(1)), (the coproduct in AB) .

L a8 T A

Thus a map C —=X can be thought of as a C-column. Composition in

A' is just ordinary multiplication of a matrix by a scalar. As we

have defined it A' is an additive category containin A as a full
g0y =




subcategory.
Wext we define an additive congruence relation, = on the hom

)

sets of A'. (1) For all A'-morpnisms f, we have 2 = f.

[

(2) For f{a-), (bT): C—X, (aI) = (bI) if and only if there exist
b

b ., D and a3 many C-columns

a finite number of maps of I, parees P

l’

Bys Bpseees By such that (a; - bp)= ii? M(bi}Bi.
This relation is reflexive, symmetr;c, transitive, additive, and
multiplicative, i.e. it is an additive congruence relation on A'.
Form the quotient category A'/Z. This category is additive and
containg A as a full subcategory. We have the following maps

Fa

E(T): P(T)—¥% (we represent a congruence class by any one oi

elements ).
¥ow ®E(I) is natural in I, for if b: J—=1I, then

2{(DF{e) - BE(J) = M(p)E(J) and so E(J)¥(v) = (I} in A'. There-

fore in A'/

F(bﬂ_ *x
e
F(J)

commutes.

Now since (A, u) is an absolute weak sup in A 1t is also a

weak sup in A'/Z. Therefore there exists a map (al): A—=X, such

that




{a.)

T
A e X
u(;\ B(I)
\\
F{J)

commutes for all J. Thus (aT)u(J) = B{J) in A'/z, i.e.

(aYul(J) = B(J) in A' for every J. Therefore, for every
I

J‘€1§J there exists a finite number of I-morphisms Dy, 05,ee0s Do
and as many F(J)-columns By, Bo,..., By, such that
n
= H(Jd L Mi{Db.)B,. i
(ap)ul(7) (J)+l=l (b, )B,
(p.7) REMARK. If the condition of theorem (2.6) is satisfied

-

for J and if b: K—=J, then this coandition is also satisfied for

K.
Indeed, if (az)u(J} = E(J) +i§1 M(b;)B; then
(aI)u(J)F(b) = B{J)F (D) +i§1 M(bi)BiF(b). By naturality u(J)F(b) = u(X).

Also BiF(b) is an F(K)-column for all i. Finally, note that
E(D)F(p) = B{X) + M(b)E(X), thus
(ap)u(k) = E(K) + M{b)E(K) +. 2 M(b B, Flb).

This proves our claim.

{2.8) REMARK. If one weak sup of F 1is (edditively) absolute,

then all wezk sups of F are. 1In this case we say that F  has absolute

waak sups.

If F: I—=A is & functor from a small categor T to an
—_— Ja— =
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sdditive category A then i€ is obvious that if ¥ has a toltally
absolute wesk sup then this week sup is sdditively absolute. We now
<how how the conditions of theerem (I, 2.4) Imply the conditions of

theorem (2.6).
Let % and y be two maps of A such that

. F{
>
xl

7

J)

7(b)

|
)

1§

=
—

bl
o
e

"

;

'

commutes. Then M(p)E{J)x = E(I)y - E(J)x thus E{J)x
A" (defined in (2.6))., Therefore if x: {(J)—=F(I) and
z: ?(J)—=F(K) are connected in (p(J), F) then E(I)x = B{K)z,
Since by theorem (T, 2.4 dou(I) and #(J) are connected in
(w(J), ¥) for all J, we see that
B(1 )a uld) = E{J)
therefore

n
v M{b.)B.

E(T )dou(J) = RB{J) + N 1B

i

o
for some bi and B;. Tnis shows that (A, u) 1s an additively

absolute weak sup.

{2.9) THEOREM. Let F: I-—=4 have absolute wesk sups. Let

oy
| -

—s=A Dbe a8 functor such that there are natural transformations

ot

a_t.w s.0, Assume that for every I, there exist I-morphisms

Dys Dpyeees Py and C{I)-columns B' , Bls,..e, B', such that

s(T)L(D)EW(I)= E'(I) +,L M'(0;)B,




Lo 4 Under these conditions G has absolute weak sups also
Proof. Let {A, u) be a weak sup of F. How assume that
7(T): G(I)~-=A' is natural in T. Then we have

#(T) s(T) G(1) v(I)_ At thus there exists f: A—=A' such that

£
A___._ﬁ#*_..._____v,lf_\‘_t
‘ Pt
u{T) /G(I)
E s(I)
(I}

commutes. Then ful{i}t{I) = v{I)s(I)t{L). But

1l
<
O
e
=t
[

Therefore v(I)s(I)t(T) = +(I) for all T, thus M(I}E(T) = v(I).
We see that (Ag u.t) 1s a weak sup of G. Since F haz absolute
weak sups and the hypotheses are preserved by additive functors, then

(A, u.t) 1is an absolute weak sup of G.

{2,10) COROLLARY. If ¥:

=

—=A has absolute weak sups and 1if

there exisgt natural iLransformations s and 1t such that

t g

T

hen § Thas absolufe wesk sups also.

i)




§3. ABSOLUTE SUPEEMA

let I Ybe a small category and A an additive category. If

® 1if

F: IT—=A 1s a functor then (A, u) is an absolute sup of F 1if

]

and only if (A, u) is an absolute wesk sup of F {see (2.6)) and
{u(I)lI E‘EJ} is an sbsolute joint epi (see (1.2)). The following
results tell us even more.

(3.1) THEOREM. Let F: I—>A be a functor from a small
category to an additive one. Then (A, 1) 1s an absolute sup of
F if and only if (A, u) is an absgolute weak sup of F and

{u(I)!Eel 1!} is a joint epi.

Proof. The necessity of the condition is obvious.

Now assume that (A, u) is an absolute wesk sup and
{v{z) z Ei;ﬁ} is a jolnt epi. By thecrem (2.6) there exists an
A-column (&;) such that for each Jel 1| there exist a finite

number of I-morphisms b., Dasee., D and as many F(J)-columns
* I 2 ] T‘i:

n
Bus Boaeees By such that (aziu(J) =E(J) #iza M(bi)Bi. Thus
(1) apdula) = (1) IE(T) + L { u(I)]M(bi)B{. Since ulI) is

natural, by lemma (2.5) h(I)EM(bi) = [0] <thus we have

(% u(I)aI)u(J) =u{J)

But since {ul(J}} is a joint epi we get

T)a_= A.
u(_)aT

— ™~

This shows that {ul{I)} is an absolute joint epi and thus proves

the theorem.
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We now state the characterization of additiwvely absolute sups in
its final form.

(3.2) THEOREM, Let I be a small category, A an additive
category, and F: I—>A a functor. (A, u) is an absolute sup of

? if and only if there exists an A-column (aI) such that for

every J etl} there exist I-morphisms bl, Dogesss bn, and
P(J)-columns By, Byseows B such that
n
(aI)u(J} = B(J) +i£1 M(bi)Bi
and
P2 I = A
z 1 )aI

(3.3) COROLLARY. If F: L——A has absolute weak sups and has
a (strong) sup then this (strong) sup is absolute.

(3.4) THEOREM. Let F: I—>A have sbsolute weak sups. IT
{A, u) is one of the absolute weak sups of F, then using the notation
of (2.6), % u(I)a; is an idempotent and the following are equivalent:
(i}
(ii)

by u(I)aI is a split idempotent,
I
F has an absolute sup,

(1ii)}F has a2 sup.

Proof. Assume that

(aT)u(J) = w(J) + sM(b.)B, .

Then [u(I)](az)uCJ) = [W(D)1s(a) + Z[u(I)3M(bi)Bi and so

[u(I)](aI)u(J) =4(J) i.e. (%u(I)aI)u(J) = 3(J). Therefore

Zu(I)aI is an idempotent.
I




Now to see that (iii) implies (i) assume that F has a sup
(A', v). By (2.6) we see that £ = Ev(I)aI g guch that the folloving

diagram commutes:

Since (A, v) = sup F, there exists a unique g: A'———4A such that

A!
\\\g\\h
v(1) N A
(1)
F{I)

commutes and by the usual arguments fg~ A', 3But

gf = gi v(I)a_ = T gv(l)a

This shows that our idempotent is split.
¥ow to see that (i) implies (iii) assume that Zu(I)aI=: gf
such that fg= A'. Let w(I}: F(I}—>B be natural in I. Then
there exists x: A—=DB such that xu{I)~= w(1). Consider
xg: A'—=B, Then xgful(l)~™ x. Zu(I}ai, u(I)
= xu(I)= wii).
Thus (A', fu) is a weak sup of I.

Assume that xfu(l)= yfu(Il) for all I. Then




£0.

XTu(I)aI = yfu(z)aT and Ixfu(lja_= ZIyfull)a_ thus
LA I i I
xf Eu(I)aT = yf Eu(I)aI i.e. xfgf = yfegf thus
xf = yT
xfg = yfg
X =y

o, —

Therefore {(fu(I)} is & joint epi and (A',fu) = sup F.
Notice that (ii) is equivalent to (iii) by (3.3) and this finishes

the proof. 8

§h, ABRSCLUTE COEQUALIZERS

We now show how these rather complicated conditions simplify

in the case of coegualizers.

o]
(b.1) THEOREM. Let As A A be maps of A. Then a

is an absolute weak cokernel of a if and only if there exist do

a N
Q
and  dy, A A A

o 1 such that

aa, = O
doa + aodl = AO
Moreover, a 1is an absolute cckernel of a, it and only if there
exist 4 and 4. satisfying the above conditicns as well as ad, = A,
Proof. "o say that a 1s a weak cokernel of a, means that a

ig a weak ccegualizer of a, and O.

Assume that a is an absclute weak cokernel of ag. Then




ag, = 0. Theoren (2.6) implies that there exist maps ¢y, Cp,s»«.» Cg
such that
: - .
cy _ AO 0 ay Cq o 0 c5
a = + +
co 0 0 —Al ey, 0 _ALJ c6_

which implies that

cla = AO + aocu,

Taking do = c and d, = -c; we get the required equation.

1
Wow assume that there exist do and dl such that aa, 0

and doa + aodl = AO. Let x: Ad——$wX pe such that xa, = 0.

Define y: A—>X to te xd . Then xda ™ X(AO - aodl) = x - x.4,7 x.

This shows that the conditions imply that we have a weak cokernel, there-

]

ore an asbsolute weak cokernel.
If we have the extra relation adO= A then a is an absolute

epl, thus we have an absolute cokernel.

Finelly if a 1is an absolute cokernel of &/ then aa ~ o
nd 4 ad, T A . i d sa d. = ad a = a. Since a is
a o2 * & 8y o Thus =ad.a + a,dy do
epl we have ado = A, This completes the proof of the theorem. g

The dual of (h.1) is the following:

a a
o i . . .
A-wméwAO-——a-Al is an absolute weak kernel diagram if and only 17T

. 1
there exisht maps A e B A such that

a =0
gy

dlao + ado— AO

Moreover, a is an absolute kernel of a if and only if there exist

d, sand d, satisfying the above equations as well as

d a= A.
o]




We note that a 1is an absolute wesk kernel of a  if and only

it ag is an abzolute weak cokernel of a.

In view of the fact that xa = xe, 1if and only if xlag, - &) = 0,
3 a
we gee that A —2-A_ > A igs a (weak) coequalizer 1f and only if
ST g y
1

a2 is a (weak) cokernel of a, = 21, and thus we state the following
result.
o %o &
(k,2} THEOREM. Let Al::::j:ASww—e»A be a diagram in A.
o
Then this is an absclute weak coequalizer diagram 1f and only i1f there

exilst do and @l

4+ =
such that 23, aal
doa + aodl = A 4 ald1,

Moreover this is an absolute coequalizer if and only 1f d satisfies

the extra condition

Tn the case of coequalizers it is easy to see how the conditions

for total absoluteness reduce to those for additive absoluteness.

aq a
Let A —>=p = A be a totally absolute coegualizer. Then
=0
gl

vy theorem (I, 4.1) there exist b: A——=A and a finite number of

. e R h;'lv.-w
maps  Ds: AO »—Al guch that




aV(En) n 0

where w(i) =0 ocr 1, n 3z C.

The first two equations are the same as in the additive case

(a, = b). Now, adding the remaining equations we get
ba + (av(E) - av(l))bl > (av(h) - aV(B))b2 e (av(En) - av(En—l))bn
But
a, — &1
(av(gi) - av(gl_l)) = -‘(ao - al)
0
Thug ba + (ao - al)(z Eibi) = Al where e; = vipi-1) - w(2i).
Therefore dy = Zeqb;.

The following theorem is interesting in that 1t ties up abgolute
coequelizers with contractible ones. It is also interesting because
it is an example whers certain simple conditions on a dlagram ensure
that additive abscluteness implies total abscluteness.

a
(L,3) THEOREM, Let Ay D=4 pe g reflexive diagram in A,
l——a "0 & =

a1




an additive category. That is to say there 1s ©b: A —4A guch

t‘J

a, a
0
- = = el s . R -\
that aob Ao aib. Then Ay AO——wﬁwA lgs an additively
a
.

Proof., Obviously 1f A ) —— A i contractible then it i

o— 1
additively absolute.

Assume now that it is additively absclute. Thus we have &
o

ad guch that

1

il
jul
o

a8
© 1

ado = A

doz + 2gdy = Ay + azdy.
Define d‘l = b + baldl - dq: AO—Ma_Al.

aoﬁ‘l = aob + aobaldl - aodl

it

Ayt aqdy - apdy ¥ doa

il

a.d' aib + alba dl - ald1

1
= Ay ok oEdy - a8y 7 A,

=

S We nave

ag, = aa,
ado = A

d a = aod'_
ald'l= AO

bh.

s
EANY

sbsolute coegualizer if and only if it is a contractible coegualize:

S

gnd

We never used the relation ad,= A in the proof, thus we could

wave stabad the result for weak coegualizers. In this case e




contractible weak coequalizer is the same as the contractible palrs

of Manes (18],

85, ABSOLUTE PUSHOUTS

(5.1) THEOREM. Consider the following diagram in A

Al
ay 19
A P
o /
;\\\& D
i . =2
Ay

This ie an absolute weak pushout diagram 1f and only if there exist

Ay .
SN
AL P

. 8]
2 y/////
gi\\\\ # 4
o

dl, doy G c,

A
such that
D&y DPodon
dlpl = ajcy o+ A_
ng7 = ~8,0,
dlp2 = ~8. %,
dppp a5ty ¥ Ao

Furthermore, this diagram is an absolute pushout 1T and only if we have




the extra relation

pldl + pgdg = P.

Proof. Assume that we have an absolute weak pushout, Then

theorem (2.6) implies that we have maps d_, dy, dp, C3, e’y C,

c’2 such that

fa, 0] -A 0 0} oy f-a, 0 o |ey
& | my= fB| ey 0 O F gk [ o 0 o] |*®
d2 hO | 0 0 OJEmé = 0 0 "
and
a 0 a0 0]Te, -4 00 0 ferp
4 |pp= [0 |+ 0 OlF i+ 0O 0 0 #
| 4, 4, ] Lo o ol|® e, 0 0 LF
We get
dopl = -y - c’l
dlpl = Al ¥ ac,
dgpf agc'l
d0m2 = -ty - ¢y
dlp2 = 8,Co
dppy = Ay ast .
Solving for c'l and c‘2 in the first and the fourth equations and

substituting in the third and sixth we get

dlpl = Al + alcl
(d2 + agdo)P1 = -2,0q
ad
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(d2 ¥ agdo)pg = A, - ety
How set d', = d, + agd, and C”E = -c,. The eguations novw look like
dlpl = Al *8c,
d‘gpl = -a5Cy
d

1Bp = -a0
d'opp = Ay a20”2
the reguired result,
Now essume that we have dy, ds, Cys Cp satisfying the given
equations. Let xq: Aq——-X and Xyt Ag——A»X be such that

x18) = %e,. Define P—=X to ve x34; + Xpdp.

(% dq + ngQ)Pl o delpl + %58,

= Xl(alcl +_Al) + Xe(—agcl)
= Xlalcl + Xl - Xgagcl
= x,
1

{x dl + xgdg)p2 = xydyp, + x2d2p2
= xl(—alce) > xg(azc2 + Ag)

= —xla}_co + X2 2C2 + XE

2
Thus the equations force the given diagram to be a weak pushout, there-
fore an sbsclute weak pushout.

Next, 1f we have pldl t ppd, TP then 1{p,, p2} is an absolute
joint epi, therefore this extra condition ensures that we have an
absolute pushout.

Pinally, assume again the equations in the statement and suppose

that the diagram is a pushout. Then




Bince 1ipy, pg} is a joint epi, we get
= P
pldl 3 p2d2 P,

This completes the proof of our theorem, #

We now state the dual result.

ie an absolute weak pullbsck diagram 1f and only if there axist dl’

dg, Cl’ ¢p such Tthat

810y T Sobp
¢! dl = cyaq Al
p7d2 = -Cq8,

pgdl = —ChBy

i

_'0251.2 Cgag + A2=

Furthermore, this is an absolute pullback 17 and only 1f we have the
extra relation

4,y + d2p2 = P,

We see, by interchanging the e with the d. and by changing

the sign, that
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i

e
is an absolute weak pushout if and only if it 1s an absolute weak

pullback.

From this we see that if

A ey -
o1
is an sbsolute weak cokernel pair diagram then it 1s also an absolute

weak equalizer diagram.

86, ABRSOLUTE COPRODUCTS

In the case of total absoluteness, a disconnected diagram never
had an absolute sup. For additive absolubeness the ban on disconnected
diagrams is lifted. In fact disconnected diagrams are particularly
well disposed to having additively absolute sups, as long as there are

not too many components.

Trivially the zero object is absolute, thus initial objects are
sbsolute (initial object = sup of the empty diagram = empty coproduct ).
Thus wesk initial objects are alsc absolute, but this is trivially so,

pecause all cbjects in an additive category are weak initial.
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(6.1) THEOREM. A (weask) coproduct is absolute if and only if

there are only finitely many non-zero terms.

Proof. Let {Ai} be a family of objects of A and let (&, u)
be an sbsclute weak coproduct of the A;. Since the index category

I is discrete the only maps are identities but M{id) = zero matrix.

Therefore the conditions of theorem (2.6) become: (A, u) is an
sbsclute weak coproduct if and only 1f there exists a family of maps
a. A-—%hAi, only finitely many non-zero, such that

1

or

3N A iriT g
1
Since only finitely many a, are non-zero, then only finitely many
i

Aﬁ can be non-Zero.

Now assume that only finitely many A; are non-zerc and let

(4, u) oe a weak coproduct of {A;}. For a fixed 1 we have a family

of maps &, ::! A:——sA: thus there exlsts a map a;: A—A: such
1, J J 1 £ 1 1
that
A
~
~ 4,
~i
\‘&L
uj ) Ai
8: -
i
A J
J

1

Thus aiuj 5.. and since almost all Ai are zero Then almost all




a; are zero. Then by the above chsracterization, (4, u) 1s an

apsolute weak coproduct of the {Ai}. g

e state the characterization in terms of equations for reterence.

(6.2) THEOREM. Let {A;} Dbe a family of objects of 4. let

A be an object of A and u, A, —sh 2 family of maps. Then (A, u)}

-

is an absolute weak coproduct of the A if and only if almost all

A, are zero, and there exist maps a;: A——s-A:  such that

0 if i
A if i o= .

1

Moreover (A, u) is an absolute coproduct if and only 1f we have ths

extra condition

We remark that the notion of absolute (weak) coproduct is self-

dual., Thus A is an sbsolute (weak) coproduct of {A;} if and only

£ A ig an absolute (weak) product of {Ai}‘

e
1~

(6.3) THEOREM. Let F: I—A be a functor into an additive
category. Assume that I = L' + I". Then by restriction we have
P I'—sA and F": I"-—=A. If F has a weak sup then so do F!
and F"., If F has absolute weak sups so do F' and F". If F'
and ¥' have weak sups (A', u') end (A", u") respectively and if

A' and A" have a weak coproduct them F has a wesk sup. If, further-

more, F' and F" have absolute weak sups then go does F.

Proof. Let (A, u) be a weak sup of F. Let u' be u
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restricted to I', then it 1s easy to see that (A, u') is a weak
sup of F'. It follows thatb if F has absolute weak sups then so does
T”

F', Ve have the same resuits for .

Aesume that F' and F" have weak sups (A', u') and (A", u")

respectively. Let A be a weak coproduct with injections
al: A'— s A and a'": A"—sAi. Define u(I): F(L)——A Ty
a'u'(I) 1f I e‘é}l
a"a" (1) if I é];ﬁ|
v is natural snd {A, u) 1s a weak sup of F.

Sipce finite weak coproducts are sbsolute then if F' and ¥

have absolute wesk sups, so does F. [

Most of the interesting additive categories have finlte coproducts
and then we have the following result.

(6.4) COROLLARY. If A has finite coproducts then a dis-
connected diagram with o finite number of components has absolute weak

sups 1if and only if each component has absolute weak sups. B

57. REMARKS

As we see from the proofs, it is not necessary to demand that the
properties be preserved by all fuactors but only by additive full
embeddings.

Tt is possible to characterize additively absolute sups by
demanding only that they be preserved by representable functors. For

this one must know what sups are in Ab. We show how this can be done
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by working out a typlcal example,

g a

O . .
et A™——>A.. ..A be an absolute coequalizer in A, an
1z O = -
-3
1

saditive category. Apply (A, -) to this diagram.

(A, a}
(&, A)" (A, A ) —— (4, A)

1 —= o
is a coegualizer in Ab. Thus (&, a} 1is epi in Ab, bout epi is
the same as onto in Ab. Thus there exists a map D& (A, AO) such

that (4, a)(b) ® ab = A.

We now apply the fumctor (A, -).

is a coequalizer in Ab.

Coequalizers are constructed as follows in AD: Let

g
(o3 B - .
Glnmﬂmﬁ_eo be two avelian group homomorphisms. Let
&1
= g (x) - gl(x) xeG b, H is a subgroup snd the coequalizer is

Go/H with the canonical surjection.

dince (Ao3 a}{va) = aba = & = (A, a)(A ), thus

Ay)

. _ {-‘ L A FTVm oy v gy £ o 1 I
ca - A& {agx ~ agX | % (A, Ay)}. Therefore we have a map x& (b, Ay

such that

ba - AO T oagx - agX.

o}

This is the required characterization.
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Cat - ABSCLUTENESS

Tn this chapter we are concerned with those properties of functors

which are preserved by all hyperfunctors from Cat to 1tself. Here we

take gggzto be the hypercategory (see Eilenberg-Xelly (51} of small
categories with functors as morphisms and natural transformations &as
hypermorphisms. A hyperfunctor from {al to itself sends categories to
categories, functors to functors between the corresponding categories,
and natursl transformations to natural transformations between the
corresponding functors. Furthermore a hyperfunctor is reguired t¢ pre-

serve both kinds of identities and the four kinds of composition.

One can also take Cat to be lLawvere's hypercategory of all cate-

gories.

We shall see that Cat-zbsclute properties can be expressed in

terms of equations involving functors, natural transformations, and

Sdentities. The Cat-absoclute property derived from some property is,

in & sense, the closest one can come to defining the given property in

terms of the hyperstructure of Cat.

The fact that a functor is an eguivalence of categories is a

Cat-sbsolute property. To say that (T, n, 4) is a triple i1s a Cat-

absolute property (we used this fact in chapter 11, where we applied
A _
the hyperfunctor { ) to & given triple).

The example which motivated this study ig the following. Clearly,

the fsct that a functor U has a left adjoint 1s a Cat-absclute




property. Functors with left adjointls preserve monos, thus they pre-

serve monos absclutely. As we shall see, assuming certain mild
completeness properties, this is the whole story; i,e. funciors which
preserve monos absolutely usually have left adjoints.

From now on, when we talk of absoluteness we mean Cat-abscluteness.

e slso make the convention to underline hyperfunctors.

§1. ABSQLUTE FRESERVATION

(1.1) THEOREM. Let U: B—A be a functor between two small

Then the

categories.
(i} U preserves
(11} U preserves
(111 )U preserves
{iv) U preserves

property of

(v}

There exist

e FU—B

Proof.

To ses that

functor with a weak inf

following statements are eguivalent:
weak infs absolutely

(strong) infs absolutely

monos absolutely

those monos which are also epis absolutely {only the
being monc is to be preserved)

and two natural transformstions

a functor F: A—3

and n: gf—%wUF such that

ndJ Us

Plan of prooctf:

(1)
(v)g h>(iii)‘:’7>(i\f):i}>(v}

(13

(v) implies (i) assume that §: I—=B is &

(B, v) and let T, ¢, n be as in (¥).
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Assume that uw{I): A—-=-UG{I1) 1s natural in I. Then we have

Pul{T) eI
A e FUG{ ) e G{T)

which is also natural in 1. Thus there exisis a map b: FA—=3

such that the following diagram commutes:

e
~
~
™~
v(1) “FA
) ALJ(T)
GiI)

fpplying U we get

Uv(1).Ub = UeG(I).UFL{I)

Uv(I).Ub.nA = UeG(L).UFu{I).nA

U

= Ue@(I).nUc(I}. (1)
= u{I)
This shows that (UB, Uv) is a weak inf of UG and thus (v} dimplies
that U preserves weak infs. But {v) 1is obviously an absolute
property therefore U preserves weak infs absolutely.

That (i) implies (iii) and (i1} implies (iii) follow from

B b
the fact that a map b: B-—=B' 1is mono if and only if BT B—3B'
B
B b
ig g weak kernel pair, and this is so if and only if BITZ2B—B' is

B
5 strong kernel palr,
That (iii) implies (iv) is obvious.

We now show that (iv) implies (v). TFor this we shall construct
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s hypercategory A Dby adding to Cat an extra cbject X and morphisms

and hypermorphisms as described below.

There are three kinds of morphisms X-—=C: {F, 1) where

F: A—=C and (G, 2} and (G, 3} where G: B—C,.

There ave no morphisms C-—s=X and only X: X—X,

The hypermorphisms (F, 1)—==(F', i} are {t, 1) where
t: P—e-F' and 1 =1, 2, 3.

The hypermorphismg (F, 1)——=(G, 2} are (t, uv) and (%, v)
where t: FU—==(G and u and v are arbltrary symbols.

The hypermorphisms (G, 2)—=-(H, 3) are of the form (g, w)
where s: G—=H and w 1s an arcitrary symbol.

The hypermorvhisms (F, 1)—>-(H, 3) are of the form (e, w')
where r: FU-—=H and w' 1is an arbitrary symbol.

There are no hypermorphisms (F, i)-—s(F', 3} feor 1> ).

We define composition by the following relations:

(P, 1) = (K&, 1)

I

K{t, *) = (Kt, *)

93]
bt
~—
——
ot
e
—
1}
—
mn
o+
w
=

{r, 3). (s, w) = (r.s, w)
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(v, v). (g, L) = (t.8U, v)
(¢, w').lr, 1} = (s.xU, w')

5

With composition defined this way, A is a hypercategory and the

embedding of Cat in A 1is a hyperfunctor. The details are straight-

forward and are left to the reader.

Next we define a congruence relation on the nypermorphisms of
A, Bvery hypermorphism is congruent to itself and

(t, u), (t, v): (F, 1)—==(G, 2) are congruent if and only if there

2

—=CH and m: HU-—~B such that

-}

exist H: A—=B, I

N/

copmutes. This indeed defines a congruence relation on the hyper-
morphisms, in the sense that 1t respecis all possible kinds of com-
position in A,

Form the quotient hypercategory B which has the same objects
and morphisms as ég and whose hypermorphlsms are congruence classes

of hypermorphisms of A. Cat is still embedded in B and this

embedding is a hyperfunctor.

Define the hyperfunctor F to be the composition

(X, -

Cat™

o

Cat.




F(U): F(B)—F(A). Therefore F(U)
are epis.
The objects of F(B) = (X, B)
and (G, 2) and (G, 3) where G:
(B, w): (B, 2)—==(B, 3)
(B, w) is epi in F(B) for if
then
(g, w) =
thus
g =
therefors
(s, 3) =
(8, v) is mono in F(B) for i
then
(r, w) =
50
o=
therefore
(r, 2) =
1 (B, w).(t, ny) = (B, W) {tt, uy)
then
(t, ul) =
thus
T

Since

9.

preserves those mones which
are (F, 1} where F: A—>D3
B—=-B., Consider the map

(s, 31.(B, w) = {(s', 3).(B, w)
(s', w)
5t
(s', 3)
£ (B, w). (r, 2) = (B, w).(z', 2)
(r', w)
ot
(rt, 2).

for gsome t, t': KU—=15
(', us)

t'.
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T
KU oo B
KU Bt
KU

commutes then (%, ul) = (t', us) in A, i.e. (%, uw) = {t!, up) in
B where u; = u or V. This shows that (B, w) 1is mono.
Consequently F(U}B, w)= U(B, w) = (U, w) 1is mono in F(A).

are of the form (¥, 1) where F: A—=A and

The objects of F(A)

(¢, 2} and (G, 3) where G: B-—>=A. Consider

(U, w) (U, w)
(4, 1)y, 2)—=>=(U, 3.
(U, v)

Both compositions are equal to (U, w'). Therefore (U, uw)= (U, v)
=, there

in F(a), di.e. (U, u) = (U, v) in A. By definition of

and e: FU—=38 such that

F: A—>B, n: A—>UF,

exist
Y
nyg e
uEd
commutes. This completes the proof of the theorem.

We now establish when such a functor has a left adjoint.

U
(1.2) THEOREM. Assume that B_2A are functors such that
G

there exist e: GU-—=>=B and h: A-—=UG such that




nt Ue Gh eG

v UGU U =1, Then G = QUG —>G is an idempotent in

E&- and U has a left adjoint F, if and only if oG, Gh is a

split idempotent.

Proof, The commutativity of the following diagram shows that

aG. Gh 1ig an idempotent.

Gh el
G GUG G
Gh GUGh Gh
GhUG 4 aGUG \
QUG =—————s= GUGUG = GG
GUel e
GUG
el

GUG i (G

Assume that U has a left adjoint F with adjunctions
g: FU=—=B and n:A—=TUF. Then the following diagrams show how

eG. Gh splits.

Gn eF
G GUF F
Gh GUFh ¥h
GnUG 3 eFUG
GUG ————mmmze GUFUG e TG
GUeG £G
GUG
aG

UG ————>=G
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Fn £

FUR

Assume that eCG. Gh splits making the following diagram commute.

eG-Gh

gU e h o
Define ¢ = FU = U B and n A——2= UG > JF, MNow the

following diagrams commute showing that F is left adjoint to U

with adjunctions n and e.

nt

hU Uaé\\\&

z= UGU UrFy

e
hU Ughu UBY

hiGuU UeGU {

oy ———— - UeUsy —————==JGU Us

\
UGy Ue
. 0 e
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Fn
/ \
F FUG FUF
Th FUa \\\
B BUG RUF
¥
F G GUG GUF el
Gh GUo
o el el
\f ) (i
r G F
B a/
7]
F

(1.3) COROLLARY. Let A and B be small categories and
assume that B has split idempotents. Then Eé. has split idemgotents
and U: B—s»A preserves monos absolutely if and cnly 1T it has a

left adjoint. g

We now give an example of a functor which preserves monos
absolutely but has no adjoint.

Let B be the category with one object B and two maps (0, 1},
composition being ordinary multiplication. Let A Dbe the one
morphism category L. U: B—sA is the only functor and G: A—>3
is also the only functor. Now UG: A--2=A mnust be the identity thus
define n: A—>=UG to be A: A—>-4A. Define g: GU-—>B by
£(B) = 0. Then we have

nU Ue
u = UGU U= 4.

However there can be no adjoint to U, for the only hom set in B

1

has 2 elemente and the only hom set in A has 1 (they cannot be
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isomorphic).

We obtain the dual statements as follows. Assume, for example,

that U: B—A preserves epis absolutely. Consider D: Cabt—s—Cal,

D(c) = E?p. D is not a hyperfunctor since it interchanges the order
of composition of hypermorphisms, but it has all the desirable
properties., If §: Cat—s~Ca®t 1is any hyperfuncior then DGD is also

a hyperfunctor. Taus DGD(U) preserves epis. Then we see that

aD(U) preserves monos, i.e. G{U°P): ¢(B%®)—=-G(A°P) preserves monos

for all hyperfunctors G. Therefore U°F: BOP——»A9F preserves monos
absolutely, and by (1.1) there exist G: AP —BOP | er GUOP-—>-BOP,
n: A°P—= %G such that

nyo? UCPe
7P e 7P G OP = P = OP

Putting F = 3%®, ¢ = 1P, n = e®P  ye get e: UP—=A and
n: B-——=FU such that

Un el
U UFry U =1.

if B has split idempotents then U has a right adjoint.

#2. ABSQLUTE REFLECTION

If P is a property, then to say that U raeflects P means
that U preserves 'mot P, thus reflection properties are really

preservation properties.

(p.1) THEOREM. Let U: Ba- A be a funchbor between small
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categories., Then the following are equivalent:

(x1ii)

(xiv)

U reflects isos absolutely,

U reflechts monos absolutely,

U reflects epis absclubely,

U reflects weak infs absolubely,

U reflects weak sups absclutely,

U reflects joint monos absclutely,

U reflects jeoint epis absolutely,

U reflects infs absolutely,

U reflects sups sbsolutely,

U reflects totally absolute monos absolutely,

U reflects totally sbsolute epis absolutely,

U reflects totally absolute infs absolutely (where by U
reflects totally absolute infs we mean that U not only
reflects the inf but alsc the absolutensss),

U reflects totally absolute sups absolutely,

there exist a functor F: A—=B and two natural trans-
formations r: B——=FU and s: FU=—>B such that

B —=+-FJ—2>B = B.

Proof. (xiv)=> (iv). Assume that we have F, r, s as above.

Let u(I):

that

B—=H(I) be natursl in I, where H: [——>B. Assume

(UB, Uu) is & weak inf of UH in A. TWow let v{I): B'—=H(I)

be natural in I. Then there exists a map & such that
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UR
‘ﬁ“\\%
ey
Ta(T) SyRt
Uv{T)
UA(T)

commutes, Therefore

commutes, showing that (B, u) is a weak sup of H.
By duality, (xiv)==(v).
The following implications are straightforward:
(iv)=> (vi)=> (ii)
Y ,
(xi)
(v)=> (vii)=>> (iii)
N
(=}
(i) A {xi))=> (1)
{{iv) A (vi))=>> (viii}
((v) A (vii))=> (ix)

({1, 2.10) N\ {xiv) A(ix))=>(xi1). Indeed, let w(T): H{I)—==-B




ve natural in I  and assume that

UH. Then (ix)=>{R, u) = sup H.
(1, 2.10)=>> H has absclute weak
absolute sup of H. (dual of (I,
This shows that (xiv) implies all

o show the converse we have

8T.

(UB, Uu) is an absolute sup of

(xiv)=2> H—TFUH—>E = H thus
sups. Therefore (3B, w) is an
2.10) A (xiv) N(viii))=> (xii)
the other statements.

the following straightforward

implications:

(iv)=> (ii)

(v)=> (iii)

(viy=> (ii)

(vii)=> (iii)

(viii)=> (1)

(iz)== (1)

(xii)==(1)

(xiii)=2>(1)

Now each of (i), (ii), and (x) implies that U reflects isos to monos

absolutely (U reflecis isos to monos meaning that Um iso=%>n mono J.

Also (iii) is the dusl of (ii) and (xi) is the dual of {(x). Therefore

it will be sufficient to show that (U reflects isos to monos abso-

lutely == {(xiv).
We shall construct a hypercategory A containing Cat, by
adding a new object X and morphisms and hypermorphisms as described

below.

The morphisms X—>C  are of the form (F, 1) where
P £ ~

F: B—>C and i= 1, 2, 3. There are no morphisms C—>X and only

X: Eﬁ%ﬁnz.




b

The hypermerphisms (¥, 1)—>(F", i)

are of

88.

where t: F—=F!' for i *1, 2, 3.

The hypermorphisms (F, 1)—=(G, 2) are of the form (t, uy)
and (%, u2} for t: F—=0 and vhere U, and u, are arbitrary
symbols .,

The hypermorphisms (F, 1)—={H, 3} are of the form (£, v)
for t: F—=H and v an arblireary symbol.

The hypermorphisms (G, 2)—=(H, 3) are of the form (t, m)
for t: G—=H and m an arbitrary symbol.

The hypermorphisms (H, 3)—s—(G, 2) are equivalence classes of
(s, K, v} where r: H—>KU and s: KU-—>=G. (g, K, ) ~{s', XK', ')

if and only if there exist a finlte number of T

sy K natural transformations

n‘)

k k k
1o 2 1 3
s K; K, Ky o oeone

K

and natural transformations p: such

and g;

and

unctors ¥

Kys Kps Kpyoo

k'ﬂ
Kn—lﬂg:_—_Kn’
K'= K

that K= K

SO 2 n?

commutes.,
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There are no hypermorphisms (G, 3)—s(H, 1) nor (G, 2)—~(H, 1),
Composition of hypermorphisms is defined vy the following

relations:

!
o
=t
1
for)
5]
=

G{s, K, r) = (Gs, GK, Gr)
s(F, 1) = (tF, 1)

(t, #). (r, ®) = (z.r, #)
where % on the right is determined by the domain and codomain and in

the case of ui the 1i's are the same as on the left.

(t, 2).(s, K, ) = (t.s, K, r}
(s, X, v).(t, 3) = (s, K, v.t)
(t, m).(s, X, v) = (t.s.r, 3)
(s, K, v).(x, m) = (s.r.t, 2)

The verifications that composition is well defined and that this
defines a hypercategory structure on i are left to the reader. We
work out the only case which is not straightforward, to show why we had
to take eguivalence classes as hypermorphisms.

Tet (s, K, r): (H, 3)—=(¢, 2) and . L—-s—M, then the

following must commute:

L(¥, 3) L{G, 2}

LE, 3) e, 2)




Q0.

The following diagram commutes by naturality

bl
]
]
o
[y
4]

MG

]

Therafore (§G.Ls, LK, Lr} = {Ms, MK, Mr.QH), i.e.
(4c, 2).(1s, IK, Lr) = {Ms, MK, Mr}.(R¥, 3}, Which is what we had to

prove.

Therefore we have a hypercategory A and Oat is contained in

it,
Next we define a congruence relation on the hypermorphisms of

A vhich identifies (t, u;) with (t, uy) for some t: F—G.

(b, wy) = (%, ug) if and only if thers exist H and r and s

such that

Hy
commutes. We mske this relation reflexive by reguiring that all hyper-
norphnisms be in relation with themselves. The details that this is a
congruence relation are left to the reader.
Form the quotient hypercaltegory §; Cat is embedded (hyper-

embedded) in B.




(x, =)

Cat .

|
li
[
o
ct

i
Jro

By hypothesis F(U): F(B)—>F(A) reflects 1sos o monos.

I

PUYE, m) =U(E, m)= (U, m): (U, 2)—(U, 3). But (U, n).(U, &4, U)

= {(U.U.U, 3)= (U, 3)= identity on (U, 3}. Also (U, A, U). (U, m)
= (U,u.U, 2) ={(U, 2}= identity on (U, 2}, Therefore F{U}(B, m)

is an iso in F(4). Thus (B, m) is more in F(B). Now

(B, m).(B, ul} = (B, m).(B, uy) since both equal (B, v). This

implies that (B, uy) = (B, u,) in I{

(B, ug)

y, i.e. (B, ul)

[t

Therefore there exist a functor H and natural transforma-

|_)
o
li=

tiong s and r such that

B—S>Hy—5=3 = B.

This completes the procf of the theorem.

Consider the following diagram of small categories and functors:

U
B ———14

[Sh g

Then by 'absolute nonsense' we see that (U" reflects nonos

absolutely) (u! reserves monos absolutely)==> (U preserves monos
5 P 5 L

absolutely). We should be able to see this from the characterizations.

Assime that we have G, ¥, r, s, n, £ such that

A f"’"GU” 5 %‘:: &
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nu’ Ule

Ut —— (VR —— ] = U7,

Then for U we gel
] GnU"U sURU"U Ue
U qu'u GUMIRFU"Y e UFU U = U

1.2,

{aUrU".GnU". 1)U Ue

U Uy —- U = U,

We also see from the diagram that (U" preserves monos sbgolutely)
A (U' reflects monos absolutely)=2{(U reflects monos absolutely}.
We see more from the characterization: if U1U2 raflects monos abso-

lutely then so does Ugg

§3. ABSOLUTE FAITHFULNESS

(3.1) THEOREM. Let U: B—s=A De a functor between two small
categories. Then U is absolutely faithful 1f and only if there
exist a functor G: 57—%~§_ and natural transformations r and 8

such that

Proof. Assume that U is absclutely faithful. Since
(U faithful)=> (U reflects monos) then (U absolutely faithful)=>
(U reflects monos absolutely) and oy (2.1} there sxist G, r, s

guch that

B—Zom GU—5>-B = B.
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Assume that we have &, v, s as above. Let bl, b2: B—=DR'
be such that Uby = Ub,. Then sB'.GUb, = sB'.GUb, and by naturality
by.sB = by .sB and composing with rB we get Dby % b, Thus U 1s
faithful. But the asbove conditions are absolute thus U 1is

absolutely faithful. |

A functor U which is tripleable 1s faithful thus apsolute
tripleableness implies absclute faitnfulness. Therefore U must have
g left adjoint and there must exist G, r, s such that
3—Le-qu—E»3 = B. We saw (II, 3.9) that if 2 nas split idem-
potents these conditions imply tripleableness, even V.T.T. of
course this is not absolufe tripleableness but it 1s close enough.

No doubt one could find an exact characterization of absclute triple-
ableness but it would probably not be worth the effort, considering

how wesk a condition idempotent splitiing ig.

§4. ABSOLUTE FULNESS

(L.1) THEOREM. Let U: B——=A De a functor between small
categories. U is absclutely full if and only if there exist Tfunctors
G: A—=B, K;: A—4 (3= 1, 2, 3,..., n-1), and natural trans-

formations r: B—>=CU, s: GU—>E,

A, D¢ U——awKiU, and

45 KiUuﬁvU such that the following diagram commutes:




Proof. Assume that U is absolutely full. TDet A be the

nypercategory described in (2,1). Define a ayperfunctor G Cat—=Cat

to be the composition Cat®>A o Cat. G(U): G(B)—>C(A)

Ly
Il
o
I

o
o
o
[
o
5
v
I}
[
o]
Mo

is full. ¥ow C(U)(B, 3) = U(B

= (U, 2). We have (U, A, U}: (U, 3)—»1(U, 2) a map of G(A).

Therefore there exists a map (B, 3)=>=(3, 2) in G(B), say

(s, G, r): (B, 3)—>=(B, 2), such that a(ui(s, G, v} = (U, 4, U).
sut  G{U)s, G, r) = Uls, G, r) = (Us, UG, Ur). To say that
(Us, UG, Ur) = (U, 4, U) means that there exist fTunctors

L A—eA  and aatural transformatlicns
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K X %
UG __E;hzglme,g__Kg e Kn_lﬁérfiw.g, ot U—sK.U, and

a3t KiU——%wU such that the diasgram in the statement OF

the theorenm

commutes.
Now assume that we have functors and natural transformations such
=1

as in the statement of the theorem. Let B and B be cbjects of

B and a: UB—sUL' an A-morphism. We have the following morphism

in 3B:

5 LB aup —G2s qup'—EBlsmt,

Applying U we get

e 3 1
vs—22B, v 2% ygupt —2E2

= JB1,

However the following diagram Commuies

UGa

ug!




thus proving that UsB'.UGa.UrB = a, and U is full. The conditions

are obviously absolute therefcre U is abgsolutely full. g

§5, REMARKS

We include a few remarks to clarify the constructions of theorems

(1.1) and (2.1). Effectively we have pursued the following course.

In {1.1) we constructed a hypercategory & by adding to Cat

g new object X, three new morphisms, 91, ¢p, o3 as follows

u m
=Uds  and @2-—"€w®3 such that

and three new hypermorphisms ¢

Un.u = Un.v, and all consequences. Keeping in mind that our hyper-
functor F will be essentially (X, -) we identify all palrs of
hypermorphisms coequalized by m and all consequences of this. Then
in F{B), m 1is monoc; since F(U) preserves monos, Un is mono in
F(A) and thus u = v. Interpreting the consequences of this we obtain
the characterization.

In (2.1), the idea is the same. We add a nev cbject X to
Cat, three new morphisms @l, $o, @B: Xm—z=B  and four new hyper—

morohisms




i m
o} o ———=3
=" 3
v‘
and
w
&y = O
U.j U,

auch that m.u = m.v and Um.w = U@S and w.Um = U?, eand all con-
sequences. The same 1dea &8s 1in (1.1) gives the characterization.
This construction should have occurred in (4.1) but luckily it

was possible to use the construction of (2.1) again.

97.




D
(@]

The methods used in this thesis are quite general. Givan &

certain property, one can find necessary and sufficient conditions

for the diagram to DOSSESS this property absolutely.

sation tekes the form of equations imvelving all the peouliarit

of the extra structure considered.

These charscterizations are found by generatlng

prescribed properties. However, once the characterizations have been

Found it is fairly easy to find more elegant proofs,
messiness involved in generating categorles.

It is amazing that one has a "mechanical' means of extracting
the sbsoluteness from a given property. We obtain a "best approxi-
mation" of a given property by an absclute one.

T+ ig our thesis that sbsoluteness propertles in category
theory are fundamental 1in mathematics and should be studied more
extensively. One should be able to recognize these propartles in a

diagram and make full use of them.
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