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0. Introduction

A functor ® : 1 -+ A is called final if for every B and every I’ : 4 = B the colimit
of T exists whenever the colimit of ' exists and in this case they are isomorphic.

It is well known (see for example [1]) that ® is final if and only if the comma cate-
gory (A4, ®)is nonempty and pathwise connected for every A € [4].

In [12]. a diagram & : I = A is said to have an absolute colimit if it has a colimit
which is preserved by every functor I' : 4 = B for every B. A diagram & has an ab-
solute colimit if and only if certain morphisms of A are conaected in the comma
category (®l, d) for every I € |11

The similarity of these two properties and also of their characterizations leads us
to look for a common generalization. We are naturally led to associate to the dia-
gram & : [ = A4, the functor my(—,®) : A°P - § which associates to 4 € |4] the set
of pathwise connected components of the comma category (4, ®).

The basic resuit, which we prove in Section 3, is the following: Given two dia-
grams ® : I -+ A4 and ¥ : J > A ther: my(—, ®) = my(--, W) if and only if for every B '
andevery I': 4 = B, limI'® and l_i’m "W exist simultaneously and when they do
exist are isomorphic.

Thus all the “functorial™ colimit properties of the diagram & are reflected in the
functor my(--, ), whereas the “‘accidental” colimit properties of & are forgotten.

If we take J = 1, then we get the characterization for absolute colimits. If, instead,
we take W = A then we get the characterization for final functors.

This suggests that if we want to study colimit properties of a diagram we should
study this associated functor rather than the diagram itself. So, after setting the stage
in Section 1 with some preliminary material, we study in Section 2 the properties of
the functor my(—, ). Section 3 relates these functors to colimits.

* This rescarch was done while the author held a Killam Postdoctoral Fellowship at Dathousie
University, Halifax. A preliminary report on this work was presented at the Midwest Category
Seminar in Ziirich, August 1970.
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One of the advantages of considering m,(-, ®) rather than @ itself is that certain
operations can be performed or conditions imposed on these functors which would

be awkward on the diagrams. For example, natural transformations n,(- . ®) = my(- ,¥)

are not always induced by morphisms of diagrams ¢ - ¥, and so we can take colimits
of such natural tronsformations, an operation which would be difficult to perform
on the diagfams themselves. The examples of Section 4 illustrate this.

It is a well known result, in disguise, that every functor F: A°P = § is of the form
n,3( . @) for some diagram ®. Thus we can use the properties of colimits to obtain
properties of set-valued functors. Also certain conditions or operations which are
natural on diagrams are awkward on the functors. As Tierney has pointed out. the
left Kan extension is more easily given in this context. He has used such methods to
compute Kan extensions and to study their properties (see also [2]).

In practice, we are not interested in all functors I' : A = B but often in a restricted
class of functors such as coproduct preserving functors or finite colimit preserving
functors. Thus, in Section S we restrict ourselves to functors I' : 4 = B which pre
serve a given class of colimits in 4. We get results analogous to those of Section 3.

It is difficult to imagine how these characterizations could have been obtained with-
out the functors my(-, ®). In this relative sense, the absolute colimits are intuitively
those whose existence is forced by the existence of the given class of colimits. This
forcing is done in a functorial way.

In Section 6, we work out in detail some examples of the relative theory in the
case of finite coproducts.

1. Preliminaries

All categories are assumed to be small unless they are clearly otherwise. Thus the
categories denoted by 1, J, ..., A, B. ... will be small. The categories S and Cat of small
sets and small categories, respectively, are large, as well as most categories construc-
ted from these such as the functor category S4°P and the comma category (Cat, 4)

The “hom™ functor for a category 4 will be denoted by A( «-) AP X A—-+S
or more frequently by { -, —). Composition is written 4 L4 a-v A" =d'a, and the
identity on A is written 4,

Let 4 be a category and A, A° € |A]. We say that 4 and A’ are pathwise connec-
ted if there exists a finite number of objects of 4.4 = A4y, A, ..., 4, = A, and for
eachi=1,2, .., namorphism A;_; - 4; 0or A; -+ A,_, . This is an equivalence rela-
tion on the set of objects of A and the quotient set will be denoted by myA, and cal-
led the set of (connected) components of 4. m, extends to a functor Cat —~ § which
is left adjoint to the functor dis : § - Cat which associates to a set the discrete ca-
tegory on that set. More explicitly, 7, may be computed as the following coequa-
lizer in Cat :

3¢

A3 4~ ToA.
3y v
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Given a functor U : B = A, we say that it has a left adjoint at A € | A} if the func-
tor (A4, U )is representable. If (4, U-) = (B, --), we say that B is the value of the
left adjoint to U at A. Let A A be the full subcategory of A4 determined by those
objects at which U has a left adjoint. The value of the left adjoint at.an object is
unique up to isomorphism, and once a representative is chosen for.each object in
Ay, the left adjoint extends uniquely to a functor F: Ay ~> B. We will usually
write F': A = B and specify that it is partially defined. In the sequel, when we speak
of partially defined functors, we will mean a functor defined on a full subcategory
of the domain category. Since the pullback of a full subcategory along any functor
is still a full subcategory, composition of partially defined functors is easy (like the
composition of partially defined functions in §).

Remark. We could use the “profunctors™ of Bénabou, but the extra generality is not
needed and partially defined functors are more conceptual. For example, the co-
limit functor is usually thought of as a partially defined functor, left adjoint to the
diagonal. Furthermore, the composition of partially defined functors is simple com-
pared to the composition of profunctors.

Proposition 1.1. Let C N B Y A be functors and let F, G, H be the partially defined
left adjoints of U, V and UV, respectively. If FA exists, then GFA exists if and only
if HA exists and then they are isomorphic.

Proof. (4, UVC) ~ (FA, V(). thus (A, UV--) = ( FA, V) and the resuli rollows.

The statement "X exists if and only if Y exists. and when they do exist they are
isomorphic™ will be written X = Y. Thus the conclusion of Proposition 1.1 would
be: FA exists = GFA = HA.

Proposition 1.2. Let U : B+ A and ® : I+ A be functors and let I : A > B be the
partially defined left adjoint of U. Assume that F®1 exists for every | € |i]. Then
F® is a functor I - B and is the value of the left adjoint to U! at .

Proof. The resuit follows from the following sequence of natural bijections:

Fé -V

F-indexed compatible families (Fb! > Wiy,
Lindexed compatible families (®/ Uvr 5;
® - Ulw

Propasition 1.3. In the same situation as above, if im ® exists then
Flim ® =lim Fo.
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Procf. Consider the following commutative diagram:
Ag

B > B!

v | E

A— Al
34
By hypothesis, A, has a left adjoint at & and by Proposition 1.2, U’ has a left ad-
joint at @, The result follows from Proposition 1.1.

We will make much use of the so-called comma categories. Let & : I -+ 4 and
¥ : J - 4 be functors. The comma category (P, V) has as objects ordered triples
(, 1% WI, N, whereI€ 1L JE W l a € A. There will usually be no confusion if
we denole this ordered triple by SISV A morphism from &% WJ to
@) % WJ' is an ordered pair of maps (i, j), i €I, j € J such that

&f—2

o

LY (NN 7Y

commutes. (P, ¥) comes equipped with two projections 3,(P, ¥) : (¥, W) + I and
a‘(‘b, W) : (P, ¥) = J defined in the obvious way.

Two special cases of particular interest are (4, ¥) obtained by taking ® to be the
functor 1 = 4 with value A, and (Cat, A4) the category of diagrams in .4 obtained by
taking ¢ to be the identity on Cat and W the functor I -+ Cat with value A.

In dealing with colimits, the following generalization of (Cat, 4) involving the 2-
structure of Cat is useful. Let [Cat, 4] have the same objects as (Cat, A). i.e., dia-
grams in A. A morphism from® : [ - 4 to W : J -+ A is a pair (I", 7) where
F:I-+Jandy: o V¥r,

| —

4

/
Ai‘

2. The basic functor

For any functor & : I - A, amorphisma : 4 - A’ of 4 induces a functor
(A', d) ~ (4, ®) by composition. Thus the comma category gives us a functor

(-, d). A°P - Cat.
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If we compose (-, P) with m, : Cat = 8, we get the functor
(. P): AP > §,

If A5 &/ is an object of (4, P), we will denote its equivalence class in 7y (4, @) by
(A5 @),

The basic object of our study is the functor M : [Cat, 4] = S4°P which sends a
diagram & : / -+ A to the functor my(—, @) : AP > S If (', ) is a morphism & — ¥
in [Cat, 4], then M(T', 7) : my(~, ) = my(—, ¥) is defined at 4 by

AT df) - (45 1 2, ¥rj.

We will denote the restriction of M to (Cat, A) also by M.
The fundamental property of this construction is the following:

Theorem 2.1. my(-~, ) > lim Y, where Y : A — SA°P is the Yoneda functor.

Proof. The theorem says that my(4, &) ~ liny (4, ®7). the colimit being taken in §.
A simple computation shows this to be true.

Corollary 2.2. Let A : 1 = A. Then my(- . A) = (-, A).

Proposition 2.3. Let I : A = Band let H be a partial left adjoint to I'. Assume that
HB exists. Then ny(B, T'b} ~ 7,(HB, ).

Proof. n(HB, &)~ lim (HB, ®1) ~ lim (B, I'PN) ~ 7y (B, I'D).

Corollary 2.4. If I has an evervwhere defined left adjoint H, then ny(—, ')

Proposition 2.5. my(~. 4) > |, where | : A°P = S is the functor with constant
value 1. '

Proof. The comma category (4, 4) has A : A -+ 4 as terminzl object, and is therefore
connected.

Proposition 2.6. Let o : [ 2 — [ be the functor which sends a morphism of I to its
domain. Then ng(~,9,) > 1.

Proof. 9, has a left adjoint, the diagonal functor & : /- 12. Thus by Corollary 2.4,
mo( -, 3g) = my(A~, I) = my(~, I+ A which is isomorphic to 1 by Proposition 2.5.

Let ' : A - Bbe a functor. The Kan extension theorem shows that the functor
STOP: §BOP - §AP hjs a left adjoint (everywhere defined) which we shall denote
by I'!. One of the properties of I"'! which we shall use often is that it makes the fol-
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lowing square commute up to isomorphism:

A ¥

N |
li ll.

B———s $B%P

§ AP
|

Theorem 2.7. I''my(—. ®) ~ ny(~, D).

Proof. 7,(—. ®) = lim Y&, thus [ 7,(- . ®)~ I lim Y& > lim ! Y& > lim YT'd
> ag( - . Fd).

Corollary 2.8. my( -, ¢) =d'(1).
Proof. ﬂ'“(" . (b) > ¢! ﬂ()( . n > (p'(l ).

Corollary 2.9. The natural transformations ny( . &) = F\V arein a natural bijection
with the natural transformations Aol - Wd) -~ F.

Proof. This is just a restatement of Theorem 2.7 using the adjointness between I'!
and S$19P,

From Corollary 2.9 we conclude that the natural transformations m(- , d) = F
are in natural bijection with the natural transformations my(~, )~ Fb, but by Pro-
position 2.5, m5(—, J) ™ 1. Since the natural transformations | -+ Fd correspond
bijectively to elements of lim F¢, we conclude that n.t. (mg(- . ), F) > Iijp Fb. If
wetake B =4 1 1 >4 wegetnt. ((-, 4}, F) > FA, the Yoneda lemma.

Proposition 2.10. Let & - I+ A and W : J - A be functors and let IV, P) (V. d)—J
be the canonical projection froi the comma category. Then (¥ -, P)
=~ 'T(k)( Y a“( \l’. "b’).

Proof. We only give the isomorphisms, the details being left to the reader. For
Je gy,

To(W, @) 2 mo(J, 35 (Y, P)),
(W2 &) s (1107, w12 b,

(I ) i (1L g W2 1),

Corollary 2.11. lfl’, : A X 0 > A is the projection onto A, then LI E S no(l).
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Proof. Consider the functors T7,: A - 1 and T;: I - 1. The comma category (T4.T))
> A X Tand ay(T4,Ty) = Py. Thus by Proposition 2.10, m,(- . P})

gt O T g TN~ ap (T -, T)) ~ my( -, Ty) T 4. But it is easily checked that
ol . T b= Sis just m,(f) and the result follows.

The following theorem can be found in [7] and [9].
Theorem 2.12. The functor M : (Cat, A) - SA°P has a right adjoint M, and MM ~ SA°P.

Proof. The value of A at F' € $A°P is the corresponding fibered category over A4 with
discrete fibers, i.e. the comma category (¥, F) with its projection d,(Y, F) onto 4.
where ¥ : 4 ~ $4°P is the Yoneda functor.

MM(I') = 1n(, 9p( Y, F)) which by Propuosition 2.10 is isomorphic to m,(Y(-).F)
which by Corollary 2.2 is isomorphic to n.t. (¥Y(-),F) which by the Yoneda lemma
is isomorphic to F. Thus MA ~ §AOP,

MUN') is the diagram 9,,: (Y, 74(~, ®)) ~ 4. The objects of (Y, 7’0( , ®)) are
equivalence classes [A ~ BI} € m,(A, ‘l') A mmphlsm A=l > [A'>d'jisa
morphism of 4. 2 1 A -+ A" such that [A"> 4" > ®J'| = {4 = ®l]. 3, sends [4 — D/]
to 4 € |A|. The unit for the adjunction is given by the commutative triangle

Hg,
I (Y. (-, @)
/
L \\ i1
W/

where Hy,: [+ [Pl : &I - $I). The adjointness is easily checked.

We see from this that every functor F € $AP is of the form #,( -, b) for some
diagram @. Furthermore this is just the well-known fact that every functor is a co-
limit of representables. Indeed,

F~>my( -, 85(Y, F)) = lim [(Y, )~ A4 - $4°P|.

As Tierney points out, this gives us an efficient method for computing the values
of the left Kan extension. Let I' : A4 - B and let F € SA“P Then F~ m( - . &) for
some P ( the discrete fibration over 4 associated to F)and then I'(F) ~ '{n, (- . P))
> my( - . I'D). This idea has been developed extensively in {2].

We conclude this section with a result on categories of fractions which we shall
use later. Let A be a category and I a subcategory with the same objects as A. Then
P: A~ A[E71] 15 defined by the fact that P sends the morphisms of X to isomorph-
isms in A[£7!] and is universal with this property (see [4]). 4[E"!] has the same
objects as A and has as morphisms 4 — A’, equivalence classes of finite sequences of
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morphisms

WA, iwnsndered gsa;.n»uphxsm ftoy.,‘ A wA
Propr.sition 2.1 3. Wivit the abeove notar:om, nyt -, P)=)

Proof. Consider my(A4, Pi Then [4 A4 — 4] € my{4, P). Now assume that 4 - 4’
is 3 morphism of A} 571 and therefore of the type

23 €y a3 ¥ #13

A= Ay Ay = Ay et 4= A

It iy casily checked that this finite sequence of vbjects and maps s a path connesting
the morphism in question with the identity on 4. Thus my{— £) =1,

3. The connection with colimits

Let ¥ 4 = 8§47 be the Yoneds funcior and fet R be it pmmﬂy defined feft
. . " ¥ en g0 X
adjoint. R is defined on every representable and 4-t-s §A9A 4 =

Proposition 3.0, Lot & - [~ .4 be ¢ diggran: in A, Then hm oz Ry~ D).
Proof. ¢ . D) > lim Y by Theorem 2.1, thesefore R npi~ 9> R Him ¥, But
R is defined on the values of Y&, thus by Propusition 1.3, B (-, &y 3 = hm RY 4
= timd,

-

Recall that according to the convention made following Propusition 1.1, the
statement of the preceding proposition means that ® has a columit if and onby if
Tl ) has a reflection in A, gnd then they are isomarphic,

We can make Propasition 3.1 more pracise in the following way: Let i @ o~ 4
be 2 natural transfonnation (compaiitie family b This gives s 3 worpbism in (O, 4]
fromd  J - Atwd: b= .4 Theretore we have o asturs! ansformation
gl opy t gl (DY ol LAY ™ 0 A) Then 0 b - 4 15 a colinit diggeon of and
only g, uy o mpt - Ry (LAY s a reflection into the full subcategory of 47
determined by the representables.

Conversely, if we have such a reflection ¢ Fol - oo - A) we get a naturad
tmnsk\rma&:un b e A4 by defining pf @ OF -+ 4 o be the maage of (B 4 - DY)
ander 187 : m 4 bS, by - (D], 4),
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Theorem 3.2. Let<b I~ Aand ¥V :J -~ A be diagrams in A. Then lim I = lim M
Jor every category B and every functorT : A = B if and only if "o( -, P) = no(— W).

Proof. («).
=, ) = M=, ) P g, 81 = DY (=, $) 1, 9) = (. )
= R ﬂ0(- Pby = Qﬂo(— Té#)=1i n:!‘*“* bt '1[“1/

(=} Let 5 S the full subcaicgory of $4°P determined by all the representable.,
plus the twa functors 71—, @) and #el -, V). Let [ : 4 - B be the restriction of Y.
Since by Thearem 2.1, lim Y 2 my(- &ii) in §4°P inen lim 0d = ny{, &) in B
Adso Him b = g~ . ¥)in B. Therefore, by the hypothesis of the thearem, zrn( P)
™ gl -, W)

According 1o the convention at the beginning of Section 1, the category 8in the
preceding thoeorem has 1o be small. This explains why 8 was chosen as it was whea
BA® would have sufficed.

A diagram & F - 4 is defined in [12] to have an absolute colimit A if for every
category B and every functor I 4 —» B, lim I'd=TA

Corollary 3.3. 4 disgram & [ - A has an absolute colimit if and only if np(~. b)
is representable,

Proof, tF 4 0 1 - 4 is the trivial diagram with value 4, then forevery I' 1 A4 » B,
lie ©'A = T Therefore @ has absolute colimit 4 il and only if forevery I 1 4 ~+ B,
fis % ™ i °4 which by Theorem 3.2 happens if and only if ry(-, ®) > 1,0, 4)

P Q . A ¥

This can be made more precise in the following way. Let g : & — A4 be a natural
transformation. Then, as before, there is a natural transformation my( -, ) : 7y(~-,P)
o {—, 47 bn this setting, p o D -+ 4 is an absolute colimit diagram if and only if
fs;ﬁ,{w-, i} is an isomorphiss. For my(—, &} to be an isomorphism it must have ao in-
verie & 1 (-, A} wp{-~. ) which, by the meecﬁa leinma, corresponds t+ an ele-
ment of iy{d. DL Let this element be f.! A - ®f, }. The conditions expressing

hai Tl -, u) and § are inverse are, {i} fi » '1)1;, s 4 = 4, and (ii) for every
SRV AN ifB*/‘«'“’-* At r bl b= (D) 0 Df > DF in my(P], ). This is the characteriza
voi given in {12].
Atunctor @ f - A s called final if for evary fanctor I' 2 4~ B i Pe = lim T
The following result is well known: see {1] for example.

Carollary 3.4. <D is final if and only if ng(--, PV L.

Proof. By Proposition 2.5, 1 = mg{~, A) and the resuit then follows from Theorem 3.2,
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Let A : L - $4°P be a diagram and assume that for every L € L1, AL = my( -, ®;)
for some diagram &, : I, -*A;_This is always true by Theorem 2.12, but #; need
not be the canonical diagram MAL. The natural transformations Al my(-. &, )

- my(- . ;) are not necessarily induced by morphisms &, -- &, - in [Cat, A]. If
for some I' : 4 - B, lim N)L exls}s for evgry L €Ll thenlimI'd; extendstoa
functor in L, namely [AY YL ARV LI )

Theorem 3.5. Let A : L > SAP be as above. Then lim I'd = liny (lim I, 3 for all
categories B and all functors ' : A = B for which hm re, exists ]ar every [ € |L|
if and only if my(-, ) ~ limy wo(-, 4>L)- limA.

Proof. my(~, @) > limy mp(—, ®p) =T my(—, ¢) = lim; my(-. Py )

>limy Fmg(-, &y )= my(~. TP) > lim; ny(~. F'P; ) forevery ' : 4 -+ B. If for
every L €|L|, lim I'®, exists, then R my(~. I'd; ) also exists and we have

lim; R my(-, N’L )R lim; my(—, TPy ) >R ap(~, I'P). Thus limI'd ~

hm, (hm I'e;).

(‘mwerselyv let B be the full subcategory of $4°P determined by the represent-
ables, the functors mg(—, ¥, ) for every L €L}, my(—, ). and “.’PL (-, ;). B
is then a small category, and let I" : 4 = B be the restriction of the Yoneda functor.
Then limI'®, exists and is my(—, ®; ). From the hypothesis of the theorem we con-
clude that my(-, ) = Ii_r,n,‘ mo(—. )

Corollary 3.6. A natural transformation ny(—, ®) = ny(~, W) is an epimorphism if
and only if for every I" : A = B for which lim I'd and li_xp I’V exist, the canonically
induced map lim b -1 im Y is an epimorphism.

Let® : I - A he a diagram and u : d - 4 a natural transformation. g : ® » A4 is
a weak colimit diagram if for every pu’ : b -» 4’ there exists (not necessarily unique)
¢: A -~ A" such thatau = u'. We state the following proposition without proof. No
further use will be made of it except in the two subsequent corollaries.

Proposition 3.7. Every weak colimit of T'® is a weak colimit of TV for all B and all
F:A-Bisand only if ng(—-, W) isa retract of ”0( , ®), ie. ifand only if there
exist natural transformations ny(— ) no(-, d)Ls no(--, V) such that ut =
(-, ¥).

Corollary 3.8. A diagram & : I~ A has an absolute weak colimit if and only if
g(—. P) is a retract of a representable.

If A has split idempotents, then a retract of a representable is itself representable.
In this case, ¢ has an absolute weak colimit if and only if it has an absolute colimit.
Let us say that a functor ® : I - A4 is weakly final if for every B and every
I’ : A ~ B, all weak colimits of I'® are also weak colimits of I".
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Corollary 3.9. ® : I = A is weakly final if and only if there exists a natural transfor-
mation § = ny( -, P).

It is clear from the definitions that the composition of two final functors is again
final and that the wmposumn of two weakly final functors is weakly final.

If we have two functors I'-%= 1 %> 4 such that D’ is weakly final, then d is
weakly final. Indeed, we have a canonical natural transformation (-, dd') -
(. ) and thus the assertion is obvious in view of Corollary 3.9. However, if
@b’ s final we cannot conclude that @ is final, as we can see from the following
example:

i| v
I—1+1—1

Itis clear thatif @ : 7 -+ 4 and ¥ . J - A are two diagrams, and it A : /- J is such
that WA = & and A is final then, as far as colimits are concerned. ¢ and W are
equivalent diagrams. In the remainder of this section we show how our construction
relates to this,

Let @ : I - A be a diagram. The unit H,, - I~ (Y, 73(-. ®)) of the adjointness
M 1 M was described in the proof of Theorem 2.12.

Theorem 3.10. The functor Hgy, is final.

Proof. H,, can be factored as follows: H, = I—Q—> (A, q;)_'f.. (Y, my(-, @), where Q
sends / € {1} to the object &/ : ®f =D/ in (A, D)and Psends A ~ D/ 10 14 > D]
(Y, m,( -, P)). Now Q has a left adjoint §, which sends 4 -~ B to ! € 1, there-
fore by Corollary 2.4, 7,( -, Q) > 7,(S( ), I) which by Proposition 2 Sis isomorphic
to 1. Thus Qs final.

It is readily ventied that P : (4, ) = (Y. 7,( -, 4)) is equivalent to Pl: (A, D)
(A, ®)[Z!], where E consists of those morphisms of the form

in (4. ®). Then by Proposition (2.13), P is also final. The result follows from the
fact that the composition of final functors is final.

We recall the following fact from the theory of categories of fractions (see [4,
chapter 1, 2.5)]).
v
Proposition 3.1%. Let X 5 Z be an adjoint pair, F — U, with unit n: Z - UF and
counit € . FU =~ X. Assume that € is an isomorphism. Let £ be a subcategory of Z
such that (Y YZ €1Z).nZ € X and (ii) Vs EXL, Fs is an isomorphism. Thei & satisfies
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a calculus of left fractions and Z [E°1] is equivalent 1o X, the equivalence interchang-
ing F and Py.

Let X be the subcategory of (Cat. 4) consisting of those morphisms

A““’J
/

1

\ /
® P
\n /

A

\
N

such that A is final. Then M(A) is an isomorphism. Furthermore, by Theorem 3.10
the unit of the adjunction M 4 M is in X. Therefore, by Proposition 3.11, X satis-
fies a calculus of left fractions and (Cat, A) [£7!} is equivalent to SAP. Under this
equivalence, a diagram ® is sent to the functor (-, ®). So if we adopt the point of
view that two diagrams ¢ and ¥ with & = WA should be identified if A is final, then
we are automatically led to associate my(-, @) to the diagram ®. This result shows
that, although a natural transformation mol—. b) -~ mp(—. W)is not necessarily in-
duced by a morphism of diagrams in (Cat, A) or even in [Cat, 4], there is a diagram
© and morphisms & -+ © and ¥ -+ O in (Cat, 4) such that the morphism ¥ -+ O is
given by a final functor and the given natural transformation is equal to the induced
natural transformation my{ -, ®) - (-, ©) followed by the inverse of the induced
natural isomorphism 7 (-, ¥) - 7,(-. O).

4. Examples

Example 4.1. One raight suggest, as a naive generalization of cofinal subsequence,
that the following, condition be imposed on a functor @ : I - A: for every A € |4}
there exist / €|/| and a : 4 > &I a morphism of 4. This is equivalent to saying that
the canonical morphism 7y (--. ®) - 1 is an epimorphism. By Corollary 3.6, this is
equivalent to the condition that for every I : A ~ B for which lim '® and lim I’
exist. the induced morphism lim I'é - flim I' be an epinorphism.

Example 4.2. Let P : A X [ = A be the projection onto the first factor. By Corollary
211, 7my(~. P) = ng(l) which is isomorphic to my(J)* 1 (the coproduct of m,(f)
copies of 1). Therefore n(-. P) = mg(f)*ng(—, A), and by Theorem 3.5 this implies
that for every I' : A — B for which lim T exists, lim I'P =~ m()-lim I".

Example 4.3. Let & : |£i ~ I be the inclusion and let Dy, D, : i12| = |/| be the func-
tors which send a morphism to its domain and codomain, respcuvely.

Aol—, Py=Hl, (~. 7). thus 75/, P) is the set of all morphisms of f with domain /.
mo(-, ®Dy)y =1, . (~. 1) thus my(l, ®Dy) is the set of all composable pairs of mor-
phisms of / such that the domain of the first is /.
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We have two natural transformations my(--, D) 3 my(--, ). One sends the
~ovemnacahla nair ’L .—g-.n e ty tha manrmhicm '_9..5 a and ;r‘;nrlllnnr' he tha macsenhioma
'\.Uulyuaauuu pait 1 N g A AR A R LR I L 4 Gl D HHUULLU Uy Ui iiorpinsn
of diagrams

(4]
[P}——— 1|

¢Do\ \ //d’
'L
The other sends the composable pair 1% Lot io the morphism 2% ¢ andis in-
duced by the morphism of diagrams

12| |

N S
®Dy == ®
\\n/

where ¢ : @D, -+ ®D, is the canonical natural transformation.

The coequalizer of these two natural transformations is easily seen to be °
1 =~ ag( -, D). Therefore, by Theorem 3.5, for any I' : 1 - B for which L; I'(/) and
IL;.. I'(D) exist, lim I is isomorphic to the coequalizer of the two induced maps

L ray =z L ron.

[ I
This is the well-known construction for colimits. This construction is absolute in the
sense that any functor which preserves the two coproducts in question will preserve
the colimit if and only if it preserves the coequ=iizer.

Example 4.4. If we assume that [ has binary products, we obtain the following variant
of Example 4.3. Let & : || = I be the inclusion as before. Let I : |1] X |I| = I be
the functor which sends a pair of objects to their product in /.

mo(/, M) is the set of pairs of maps with domain /, i.e., mo(/, 1) ~ (1, PIXmy (1. P).
We havg the two projections

To(-, ®) X my(-, ®) I 7y(—, D)
whose coequalizer is quite obviously 1 > my(--,1).

Therefore, for any I' : I - B for which LI; I'(/) and LI, ,» F(IXT') exist, limIis
isomorphic to the coequalizer of

Hraxry 2L r.
Ll I

This construction is also absolute in the above sense.
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The dual situation shows that the sheaf axiom says that certain limits are pre-
served (see [6]).

Example 4.5. Another variant of Example 4.3 is the following: Let us say thata
category I is finitely generated if it has finitely many objects and if there is a finite
set X of morphisms of [ such that any morphism of [ is a composition of morphisms
from X.

Then if we let ® be the same as before but replace W by its restriction to X, the
argument of Example 4.3 goes through and we see that the colimit of any diagram
I : I - B can be computed as the coequalizer of

LI vy 2 L ray

{—~e X i
Baoth coproducts are finite, so if a category B has all finite colimits, then it has all
finitely generated colimits. Also, if a functor preserves these finite colimits, then it
prescrves finitely generated colimits.

Any diagram is a filtered colimit of its finitely generated subdiagrams in (Cat, A),
therefore we conclude that all colimits can be constructed from finite colimits and
filtered colimits.

5. The relative theory

In practice. we are not concerned with all functors I' : 4 -+ B but often with a
restricted class of functors. In this section, we consider those functors" : 4 = B
which send a given set of cocones in 4 to colimit diagrams in B. Thus we want to
know which diagrams are essentially the same as far as colimits are concerned if we
force certain cocones to be colimit diagrams. If the cocones we are given are already
colimits, then the absolute colimits are intuitively those colimits that can be “func-
torially constructed” from the given ones.

A cocone in A is a natural transformation u : @ - 4 where © is a diagram in A
and A is an object of A. Let C be a set of cocones in 4. A functor I : 4 — B will be
called a C-functor if it transforms the cocones of C to colimits in B. In general, a
prefix *C" will mean that we are considering only C-functors rather than all functors,
e.g., C-final, C-absolute, etc.

Let S4°P denote the full subcategory of SA°P consisting of those functors
AP — § which convert the cocones of C to limits in §. Let i¢ : SA°7 - $4°P be the
inclusion. Gabriel and Ulmer |3}, Popescu [13], Freyd and Kelly, and others have
shown that ip has a left adjoint Re.

Some examples of reflective subcategories of functor categories obtained in this
way are the following:

(a). Sheaves on a Grothendieck topology.

(b). Algebras over a theory in the sense of Lawvere |8].
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(c). Cat—>SA°P where A is the category of finite ordinals with order preserving
maps.

(¢'). Monoids>» Cat— SA°P,

(c”). §> Cat>»SADP,

(d). All functors A°P — § which invert a given set of maps of A4 (F converts

4
2454 toan equalizer < Fx is invertible).
A

(e). All functors A"P ->S which identify certain maps in the same hom sets

(F converts 4 “-t A 4 A’ to an equalizer ¢ Fx = Fy). Thus we can choose
all functors which make certain diagrams commute.

More details on this subject may be found in the recent paper of Gabriel and
Ulmer [3].

Lemma 5.1. The functor
. R
ALl saon S O
sends the conones of C to colimit diagrams in S‘é*’p.
Proof. Let u : © > 4 be a cocone in C where © : I~ A is a diagram in A. We want to
show that
ReYu :ReY®—+ReYA

is a colimit diagram in S@ P Let A ES’i , then the result foliows from the following
sequence of natural bijections:

cocones A : RCYB =+ Ain Sé P
Lindexed compauble families (A, R CY@I = A)in S‘"op

I-mdexed ;ompatible famlhcs (A, Yel -+ Adin s p

I mdexed compauble families (e ASI yin S
e hm A®in S
IEAdinS

Y4~ Ain S‘“p
RCYA - A ms’é

PR — -

Theorem 5.2. Let ® : I+ Aand ¥ : J - A be diagrams in A. Then hm e = llm rvy
Jor every category B end every C-functorT" : A = B if and only if R C"o( tb)
=Rcmg(—, ).
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Proof. Assume that Rmg(—, ®) = Remg(—, W) and let I' : 4 ~ B be a C-functor.
First we show that there exists a functor ¥ making the following diagram com-

mute:

S“éﬂp ic §4oP
B L §EP

Since S" is a full subcategory of $A°P it is sufficient to see that the values of
Srop. Y lie in SA°P.

sToP. -Y(B)=(I" -, B) and since T sends cocones in C to columt diagrams in B and
(- . B) transforms colimits in B to limits in §,(I'-, B) is in S‘ . and the existence of
V follows.

Let R : SBP » B F: SA°P = B and G : S4° - B be the partially defined left
adjoints of Y, ST°P-Y =icV, and V, respectively. By Proposition 3.1,
hm I'd = R my(—.I'd) which is = RT! n(— ) by Theorem 2.7. By Proposition
TILRIM mo(—.®) = Fny(—.®) which by using Proposition 1.1 again is >
GReny (- ). Similarly, hm ¥ = GReny(-,¥). Therefore lim re =limry.

Conversely, assume that lim I'® = hm 'y for all C- functors I. Lemma 5.1 says
that, except for the fact that t$4% is not naesszmly small, 4 !*S““p EQSé Pisa
C-functor. Let B be the full subcategory of S" determined by the objects
Renp!- @), Remg(—, W), and B( -, A) for every A€ |Al,and letT" : A - Bbe
R (Y with restricted codomain. Then I is a C-functor.

imReYd ~ R lim Y® = Rong(—, ) by Theorem 2.1, and similarly
Him R oYW > Reng(—. ). Therefore, lim ' ~ Remy¢--, ®) and lim ' ~
Remg(-. W). Since I' is a C-functor, we conclude that Romg( - by~ Remg( -, W)

Let us say that a diagram & : I = A has a C-absolute colimit if there is a cocone
in A, u : ¢ - 4 such that for every C-functorI": 4 -» B, I'u : ' -+ I'4 is a colimit
diagram in B.

This terminology may be slightly misleading if C does not consist of colimit dia-
grams. In that case, a C-absolute colimit is not necessarily a colimit in A. If, how-
ever, C consists entirely of colimit diagrams (this is usually the case), then the iden-
tity 4 : 4 = A is a C-functor and therefore a C-absolute colimit is indeed a colimit
in A.

Corollary 5.3. A diagram & : I = A has a C-absolute colimit if and only if
Remy(~, @) = R(~, A) for some A € |A].

Proof. Let A : 1 -+ A4 be the diagram with value A. For every C-functor I', lim '4
=['4. Therefore ¢ has a C-absolute colimite 4 if and only if le e~ Ii_:p "4 for every
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C-functor I'. Theorem 5.2 says that this is equivalent to the condition Rom{--, ®)
>Re(-.4)

More precisely, if u : & -> A4 is a cocone then it is a C-absolute colimit if and only
if Remg(—.u) : Remg(-, @) = R(—, A) is an isomorphism.

If C consists entirely of colimit diagrams, then (-, 4) sends these colimits to limits
in §, so R(~, 4) = (~, A). In this case, Corollary 5.3 can be restated as follows.

Corollary 5.3". ® has a C-absolute colimit if and only if R Co(~., P) is representable.

A functor @ : I - A4 is said to be C-final if for every C-functorI" : 4 - B,
Eml’(b > Iim r.

Corollary 5.4. ® is C-final if and only if Rpng(—, ) ~ 1.

Proof. Clearly. | ~ R¢1, and by Proposition 2.5. 1 = ny(~, A). Thus Remy( - #)= 1

if and only if Rpmg(~, ¢) ~ Remy(—, A) and the result is immediate by Theo-
rem 5.2,

Theorem $.5. Let A : L — SA° be as in Theorem 3.5. Then limI'd = lim; (lim ')
forall C-functors T : A - B for which limI'®; exists for every L € |L| if and only
FRCmg(-. ®) > Relimy mo(—, @) ~ limy Remp(-, @y ).

Proof. limy; (. ;) > my(--, W) for some W (Theorem 2.12), and by Theorem
3.15.imTI'Y = lim, (lim P, ) for all functors T' © 4 -+ B. The result then follows
from Theorem 5.2.

Corollary 5.6. A natural transformation Rong (-, ®) ~ Remg (-, W) is an epimorphism
in SAX if and only if for every Cfunctor T': 4 = 3 for which lim I'b and lim "W

. . . . - - . - =
exist, the canonical map lim e - ll_g\ 'V is an epimorphism in B.

The preceding results suggest that we consider lim I'® for all C-functors as stalks
for the functor my(~, ®). This point of view has been used in certain computations
involving R » which do not appear in this paper. However. we have not sy stematically
investigated this aspect of the theory presented here.

We end this section with some results on weak colimits analogous to those at the
end of Section 3.

Proposition 5.7. Every weak colimit of I'd is a weak colimit of U'W for all C-functors
IF:A-Bifandonly if Remg(—, W) isaretract of Remy(--. ).

Corollary 5§.8. d : I = A is weakly C-final if and only if there exists a natural transfor-
mation 1 = Reng(—-, D).
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Corollacy 5.9. Assume that C consists of colimit diagrams. Then® : 1+ A has a
C-absolute weak colimit if and only if R ong(~, ®) is a retract of a representable.

6. Examples

In general, the reflector R ¢ is difficult to describe explicitly. In this section, we
develop some theory which gives us sufficient conditions and then show that in the
case where C is obtained by considering all finite coproducts, these conditions are
also necessary. We investigate this situation in more detail.

Let I be 2 category and D a set of diagrams in /. We want to add the colimits of
the diagrams in D toIin a free manner. This we do as follows:

Let I be the full subcategory of $7°P whose objects are the representables and
the functors of the form (-, D) for every D € D. The Yoneda functor gives us a
full embedding H : I +1 .

H has the following characteristic properties:

(i). Forevery D€ D, HD has a colimitin [ .

(). Every tum.mr ¢ I -+ A such th.n ®D has a colimit in 4 for every D € D,
extends to a functor & : I - A such that d preserves the colimit of D for every
D€ Dand DH ~ .

(iii). If©: T =Ais any functor, then a J!atura! transformation ¢ : ® - GH ex-
tends uniquely to a natural transtormation ¢ : & - O such that OoH = 0.

In particular, condition (iii) implies that the & of (ii) is unique up to isomorph-
ism.

Theorem 6.1. Let C be a set of cocones in A and let ® : 1 -+ A be such that for every
De D, ®D ha: a colimit and the cocone thus obtained is in C. Then
Remg(-. @)= Remg(—. ).

Proof. Let " : A~ Bbe a C-functor. Then ré preserves the colimit of HD for every
DED. and I'$H = I'd. Since the extension of I'b to 7 is unique up to isomorphism,
I'® ~ I'd. If B € |BI, then we have the following sequence of natural bijections

cocones I'd —+ B

N
cocones b —+ B

cocones I'd - B.

Therefore im ' = lim I'd for every C-functor I', and by Theorem 5.2 this completes
the proof

Let ¥ : J -+ A be another diagram and let E be a set of diagrams in J such that for
each £ € E, WE has a colimit in 4 and the cocone thus obtained is in C. If J denotes
the E-cocompletion of J in the sense just described and ¥ the extension of W to J
then we have the following consequence of Theorem 6.1.
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Corollary 6.2. If m,(-. &)~ (-, V), then Remp(--. @)= Romg(—, ).

Corollary 6.3. If m,( -, D) is representable, then & has a C-absolute colimit.
Corollary 6.4. If n(—, D)= 1, then b is C-final.

Proposition 6.5. Let 1 have all finite coproducts and let & : I - A preserve them.
Then ny (-, ®) : A = S°P preserves all finite coproducts which exist in A.

Proof. Let llA be a finite LOpl’OdULt in A. The canonical map 7 (L14;, d) > llmy(4;,P)
sends [L14; “"(bl ] to ([4,25 ®I). 1tis e&snly checked that t map

liry(A,. D) - my(11A4;, @) which sends ([4,Z5 D/;]) to [LLA,; 20 L7, = d(LL,)] is
the inverse of the canonical map, as long as it is well defined, and this uses the finite-
ness of the coproduct.

For the remainder of the paper, we will assume that A has finite coproducts, and
FCp will denote the set of cocones in 4 obtained from these coproducts.

Corollary 6.6. If & is the extension of b : I - A to the finite coproduct completion
()j". then RFCp ﬂo( “y q’) > "0‘ - q)).

Proof. By Theorem 6.1, RFCp Tl ) > RECp ol B Since a finite copro-
duct of finite coproducts is again a hmle coproduct, the completion T has all finite
coproducts and @ preserves them. Thus it follows from Proposition 6 5 that
RFCp ol - tb) > Mol <b) and the result follows.

Corollary 6.7. & has an FCp-absolute colimit if and only if my( - &) is representable,
and & is FCp-final if and only if ny(-, ®) = 1.

Corollary 6.8. ¢ hasa FC p-absalute colimit if and only if & has an absolute colimi,
and & is FCp-final if and only if & is final.

I can be described more explicitly. An object of I is a finite (and possibly empty)
scquencc of objects of I. A morphism (/, ...,1,) = (I}, ..., I,,;) consists of a function
[:L2, ..n}={1,2, ....m}and foreachi=1,2,...n,a morphtsm o1~ Iﬂ,,
The functor H sends an ocht 1 to the sequence of length one (/). Coproduats are
formed by concatenation. ® is defined by Cb(l 1o dy)= =)

By using Corollary 6.8 and the characterization of |12] (given in the remark fol-
lowing Corollary 3.3), we obtain the following characterization for FCp-absolute
colimits.
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Theorem 6.9. Let u : & > A be a cocone. p is a FCp-absolute colimit diagram if and
only if there exists a finite number of objects of Ly, 1y, lgpanda morphism

dy + A =@ ;) such that

, d() “‘([(),i )
(a) A"“"lli{b(lo‘i)““""“'*’A=A;
(b} foreverv €|\l thereexistl; ;€1 j=1,...kandi=1.2,...n such that
d
o —EL 4 LN d(ly )
i 1
;i |
H
Y} L, o0y )
|
df s L, )
it
i
i
(b T T I I (bl

commiites, where the horizontal arrows represent morphisms of A and where the
vertical arrows on the right represent .norphisms of the form

inj;
‘b(l/!i) "“‘“"“""""’Ll,' (b(li',')

%,i [ l

1y, s1iy) i Py )

LT

Jor some function f of the indices.

inj;-a (a B
Example 6.10. Afj:t A+B%EL gisan FCp-absolute coequalizer which is not
i

preserved by all functors.

Example 6.11.Ifh: B—>D,f: A->C+B g: A=+ C+Dandg=(C+h) fthen

A+p—L1"2, cup
A+hi C+h
A+D————sC+D
g.injJy)

is an FCp-absolute pushout which is not preserved by all tunctors. This example is
due to Volger [15].
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By using Corollary 6.7 we get the following characterization of FCp-final func-
tors:

Theorem6.12. ¢ : I~ A is FC p-final if and only if for every 4 € |A| there exist
Iy, ....1, €Il and a morphism

a:a~ 11 &

§
and forany 1|15, ..., I,, € \I\and @' : A = 11; I there is a finite chain

!
i
A —Ll e

! |

of the same nature as that of Theorem 6.9.
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