Superspans

Robert Paré

Octoberfest, Ottawa, 2015

Introduction

- Non-trivial intercategories?
- ullet Intercategories \sim duoidal categories with several objects
- ullet Intercategories \sim laxified double categories
- Quintessential double category is Span
- Taking spans in a double category produced interesting intercategories
- Identities are "too nice"
- Combine the span construction with the comma category construction
- Gives interesting and tractable examples of double categories

Superspans

- A *supercategory* is $\Phi : \mathbf{A} \longrightarrow \mathbf{A}^{\vee}$ where \mathbf{A}^{\vee} has a choice of pullbacks
- A superspan (or Φ -span) is $\Phi A \longleftarrow B \longrightarrow \Phi \bar{A}$
- ullet The double category $\mathbb{S}\mathsf{pan}_\Phi \mathbf{A}$

- ullet Vertical composition is pullback $ar{B} \otimes_{\mathcal{A}} B := ar{B} imes_{\Phi \mathcal{A}} B$
- Vertical identities are $id_A = (\Phi A \longrightarrow \Phi A \longrightarrow \Phi A) = \Phi A$

Superspans (continued)

Remark

The definition only uses a choice of superpullbacks (or Φ -pullbacks), i.e.

but we need others later

Examples

- (1) If $\Phi = 1_A$ we get usual \mathbb{S} pan A
- (2) If **B** has a terminal object \top , we can take $\mathbf{1} \xrightarrow{\top} \mathbf{B}$, $\mathbb{S}\mathsf{pan}_{\top} \mathbf{1}$ is the monoidal category $(\mathbf{B}, \times, \top, \dots)$
- (3) $\Phi:$ **Set** \longrightarrow **Cat** the "discrete functor", monads in $\mathbb{S}\mathsf{pan}_{\Phi}$ **Set** are 2-categories

Colax morphisms

A colax morphism $(F, \phi) : \Phi \longrightarrow \Psi$ is

Theorem

- (1) (F, ϕ) induces a colax double functor $\mathbb{S}\mathsf{pan}^{\phi} F : \mathbb{S}\mathsf{pan}_{\Phi} \mathbf{A} \longrightarrow \mathbb{S}\mathsf{pan}_{\Psi} \mathbf{C}$
- (2) $\mathbb{S}\mathsf{pan}^{\phi} F$ is normal if and only if ϕ is iso
- (3) $\mathbb{S}\mathsf{pan}^{\phi} F$ is multiplicative if and only if
 - (a) ϕ is monic
 - (b) F^{\vee} preserves Φ -pullbacks (in usual sense)
- (4) \mathbb{S} pan $^{\phi}$ F is strict if and only if
 - (a) ϕ is an identity
 - (b) F^{\vee} preserves the choice of Φ -pullbacks

"Proof"

Conditions 3a and 3b can be reformulated in a more suggestive way as follows

Proposition

(a) ϕ monic, and (b) F^{\vee} preserves Φ -pullbacks if and only if

i.e.
$$F^{\vee}(B_1 \otimes_A B_2) \xrightarrow{\cong} F^{\vee}B_1 \otimes_{FA} F^{\vee}B_2$$

Lax morphisms

A *lax morphism* $(F, \psi) : \Phi \longrightarrow \Psi$ is

where F^{\vee} preserves pullbacks

Theorem

- (1) (F, ψ) induces a lax double functor $\mathbb{S}\mathsf{pan}_{\psi} F : \mathbb{S}\mathsf{pan}_{\Phi} \mathbf{A} \longrightarrow \mathbb{S}\mathsf{pan}_{\Psi} \mathbf{C}$
- (2) $\mathbb{S}\mathsf{pan}_{\psi}\mathsf{F}$ is normal if and only if ψ is monic
- (3) $\mathbb{S}\mathsf{pan}_{\psi}\mathsf{F}$ is multiplicative if and only if ψ is supercartesian
- (4) If ψ is the identity, then $\mathbb{S}\mathsf{pan}_{\psi} F$ is strict if and only if F^{\vee} preserves the choice of Φ -pullbacks

Construction

Identities

The unit comparison is the diagonal $\delta: \Psi FA \longrightarrow \ker \psi A$ It is an isomorphism if and only if ψA is monic

Supercartesian

Definition

 ψ is supercartesian if (a) ψ is monic, and (b) for every $b: B \longrightarrow \Phi A$, $(F^{\vee}b)^{-1}(\Psi FA) \longrightarrow F^{\vee}B$ is independent of A and b, i.e. for any other $\bar{b}: B \longrightarrow \Phi \bar{A}$ we have an isomorphism

Proposition

- (1) ψ iso $\Rightarrow \psi$ supercartesian $\Rightarrow \psi$ cartesian
- (2) If Φ is final then ψ supercartesian $\Leftrightarrow \psi$ cartesian

Colax choice of colimits

- A double category $\mathbb D$ has a *colax choice of* **I**-colimits if the diagonal double functor $\Delta: \mathbb D \longrightarrow \mathbb D^I$ has a left adjoint **I**-colim in $\mathcal Dbl_{Clx}$
- If $\mathbb{D}=(\mathbf{D}_2 \xrightarrow{\longrightarrow} \mathbf{D}_1 \xrightarrow{\longleftarrow} \mathbf{D}_0)$ then it has a colax choice of I-colimits if and only if \mathbf{D}_0 and \mathbf{D}_1 have a choice of I-colimits, this choice preserved by the domain and codomain functors

Example

$$D_{i} \xrightarrow{inj_{i}} \sum D_{i}$$

$$x_{i} \downarrow \qquad \qquad \downarrow \sum x_{i}$$

$$\bar{D}_{i} \xrightarrow{inj_{i}} \sum \bar{D}_{i}$$

- ullet has a *normal choice* of **I**-colimits if **I**-colim is normal, i.e. if **I**-colimits of vertical identities are isomorphic to identities
- ullet has a *strong choice* of colimits of **I**-colimits if **I**-colim is strong, i.e. the vertical composite of injection cells is again an injection cell

Colimits in Span_{Φ} A

Proposition

Let $\Phi : \mathbf{A} \longrightarrow \mathbf{A}^{\vee}$ be a supercategory

- (1) If **A** and \mathbf{A}^{\vee} have **I**-colimits, then $\mathbb{S}pan_{\Phi}\mathbf{A}$ has a colax choice of **I**-colimits
- (2) I-colimits are normal if and only if Φ preserves I-colimits
- (3) I-colimits are strong if and only if
 - (a) Φ preserves I-colimits, and
 - (b) I-colimits commute with Φ-pullbacks
- "PROOF": We have a colax morphism

Limits in Span_Φ **A**

Proposition

- (1) If \mathbf{A} and \mathbf{A}^{\vee} have \mathbf{I} -limits, then $\mathbb{S}\mathsf{pan}_{\Phi}\mathbf{A}$ has a lax choice of \mathbf{I} -limits
- (2) **I**-limits are normal if and only if Φ takes **I**-limit cones to jointly monic families
- (3) If Φ preserves I-limits, then the I-limits in $\mathbb{S}\mathsf{pan}_{\Phi}\mathbf{A}$ are strong

"PROOF": We have a lax morphism

Limits are not pointwise

E.g.

The double category of supercategories

Objects are supercategories $\Phi: \mathbf{A} \longrightarrow \mathbf{A}^{\vee}$

Horizontal arrows are lax morphisms

Vertical arrows are colax morphisms

Double cells are commutative cubes

The double category of supercategories

Objects are supercategories $\Phi: \mathbf{A} \longrightarrow \mathbf{A}^{\vee}$

Horizontal arrows are lax morphisms

Vertical arrows are colax morphisms

Double cells are commutative cubes

Proposition

Horizontal and vertical composition give a strict double category Super

The double category of double categories Dbl

- Objects are weak double categories
- Horizontal arrows are lax double functors
- Vertical arrows are colax double functors
- Cells

$$\pi A: VFA \longrightarrow GUA$$

$$VFA \xrightarrow{\pi A} GUA$$

$$VFV \downarrow \qquad \qquad \downarrow GUV$$

$$VF\bar{A} \xrightarrow{\pi \bar{A}} GU\bar{A}$$

The double functor Span

Theorem

The above constructions extend to a double functor

 \mathbb{S} pan : \mathbb{S} uper $\longrightarrow \mathbb{D}$ bl

strict in the vertical direction and strong in the horizontal

