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What is an endofunctor of Set like?

 Polynomials F(X) = ZXA" (Kock 2009, Spivak et al. — see [3, 5])
iel

n
o Analytic functors F(X) :f X" xCp (Joyal 1981 [2])

» Monads (Manes 2002 [4], Szawiel Zawadowski 2015 [7])

+ Reduced powers F(X) = X7, & filter (Blass 1976 [1])
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The structure of endofunctors of Set

o We study F: Set—Set by perturbing X and measuring the change in F(X).

Example

FX=X3

An element of F(X+1) = (X + {x})3
(xlrx2vx3) ~ X3
(xlrxzr*)
(xl,*,x3)} ~  3X2
(%, X2, x3)
(X1, %, %)
(*,xz,*)} ~ 33X
(*, %, x3)
(*, *, %) ~1

« Going from X to X +1, F gains 3X2+3X +1 elements.
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Tautness

Definition (Manes 2002 [4])
A functor is taut if it preserves inverse images

Ag>— A FAg —= FA
foj lf _ Ffol lFf
By>——B FBy — FB.

A natural transformation t: F—G is taut if the naturality squares for
monomorphisms are pullbacks

FAy —> FA

Ag>>A = tAoj lm

GAy —= GA .
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The plenitude of tautness

There are plenty of taut functors:
e Polynomial functors
 Analytic functors
e Reduced powers
o Left exact functors

e Functors Set—=Set that preserve binary coproducts

They are closed under a variety of operations.

We get a sub-2-category Jaut of 6at, whose objects are categories with inverse
images, 1-cells are taut functors, 2-cells taut natural transformations.
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Limits

Proposition
Assume that B has I-limits and let T': I—%at(A,B) be a diagram.
(1) If T'1is taut for all 1, then lim T'T is taut.

(2) If, furthermore, I is non-empty and connected and I'(i) is a taut
transformation for all i: I—1I' then liglll"(l) is the limit in Jaut(A,B),
i.e., the inclusion Jaut(A,B) >>%at(A,B) creates connected limits.

Example
If £,G: A—=B are taut and B has finite products, then F x G is taut, but the
projections are not.

The constant functor 1 is taut but not terminal in Jaut(A,B).
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Confluence

Definition
1 is confluent if every span in I can be completed to a commutative square

2t N

v o Ip Bray = Paaz.

N o,

Theorem
I-colimits commute with inverse images in Set if and only if 1 is confluent.

Remark
This means lim: Setl—Set is taut.
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Colimits

Theorem
(1) Confluent colimits of taut functors in €at(A,Set) are taut.
(2) The inclusion Jaut(A,Set) >—>6at(A,Set) creates confluent colimits.

Example

Coproducts, filtered colimits, quotients by a group action, are all confluent.
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Polynomials

PX) =Y x4 is taut.
iel

A morphism of polynomials is a natural transformation ¢(X): P(X)—Q(X).

If QX) =Y xBi, morphisms P(X)—=Q(X) correspond to
jeJ

a: I—=], (fi: Bqiy—=Ap);
fis vertical if @ is an identity,
cartesian if all the f; are isomorphisms.
Proposition

t is taut if and only if all the f; are epimorphisms.
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Analytic functors

e Species F: Bij—Set
e Analytic functor

Bij >— Set
=
F F
Set

(Left Kan extension)

F(X)

neN
f X" x F(n)

=  lim X"

ae?(bn)
= ) (X"xF(m)/Sp
neN
Proposition
F is taut.
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Reduced powers

o Filter F <24 —  closed under finite intersections
— upclosed

o Reduced power X7
XA/ ~ (f~gelacAl fla)=ga)}eF)
= lim x”

Be&F

Proposition
X7 s taut.

Note: X7 is not an analytic functor, unless & is principal (X¢40) = x40y,
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Monads

e The free monoid monad 1+ X + X2 +... is taut.

o The free commutative monoid monad 1+ X + X2/Ss + X3/S3 +... is taut.
o Manes (2002 [4]) Collection monads are finitary taut monads.

e The free abelian group monad is not taut.

[ — 1—7x7Z (m,n)

EISEN

1 Z—7ZxZ (0,m+n)
pH— (p,0)

« Ptonka (1967) [6] - Balanced equations (same variables on both sides).

* Szawiel/Zawadowski (2015) [7] - A finitary monad is taut if and only if it can
be defined by balanced equations.
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The difference operator

For F: Set—s=Set define A[F]: Set—=Set by A[F](X) = F(X+ 1)\ F(X).

Example
A[CI=0 A[X]=1

Proposition
If F is taut, then A[F)(X) is a taut subfunctor of F(X +1).

Everything hinges on the following fact:

For a diagram of sets and functions

Ag> A

fol () lf

By>—B

f restricts to the complements A6 and B(’] iff () is a pullback.
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Colimits

Let Taut = Jaut(Set, Set).
Proposition
A is a functor, the difference operator,
A: Taut—Taut.

It preserves confluent colimits
AllimI'T] = imA[T'T] .
I I

Corollary
(1) A[CF] = CA[F).
(2) A[F +G] = A[F] +A[G].
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Limits

Proposition

A[F x G] = (A[F] x G) + (F x A[G]) + (A[F] x A[G]).
More generally:

Proposition

Al[TFi1= ) (JTFp < (JT AlFgD.

iel JCI jeJ ke]

Theorem
A preserves non-empty connected limits:

AllimT I} = imA[T ).
1 I
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Polynomials

e AlXAz Y xB
BCA

Proposition

If P(X) is a polynomial functor, then so is A[P(X)]. For P(X) = ZXAZ',
iel

AP =Y. xBi
jeJ

where J={(i,B) | i€ I,BC A;} and for j = (i,B), Bj=B.

n-1
EED (”)Xk

k=o\k

Proposition
o0

If F(X) is a power series functor Z Cn X", then A[F(X)] is also a power series
n=0

x X [n+k

Y DpX"™ where Dy =Y (n )Ck.

n=0 k=1 k
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Analytic functors

Proposition
If F(X) is an analytic functor corresponding to the species F: Bij—>Set, then
A[F(X)] is also analytic, corresponding to the species

keN™t
G :f Fln+ k.

e A G-structure of cardinality n consists of a positive integer k and an
equivalence class of F-structures of cardinality n+ k. Two such structures are
equivalent if one is transformed into the other by a bijection fixing the first n

elements.
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Reduced powers

A filter & on A induces an equivalence relation on subsets of A

B~C < {a€eA|aeBoaceCleZ
< BnNOUB'NnCHeZ.

For every BC A, let Fp={C<B | CUB' € F}.

Proposition

Fp is a filteron B and A[X7]= x5,
(BIZ(A]

(The sum is over all equivalence classes not equal to [A], one summand for
each class.)
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Lax chain rule

Theorem
For taut functors F and G there is a taut natural transformation

YG,F: (AlG]o F) x A[F]—=A[Go F]

which is:

(1) monic,

(2) natural in F and G,
(3) associative

idxyg,r
(A[H]oGoF) x (A[G]oF) x A[F] ———— (A[H]oGo F) x A[Go F]
YH,GoF xid lYH,GOF
(A[HoG]oF) x A[F] A[HoGoF] ,
Y HoG,F
(4) unitary Yo
(A[ld] o F) x A[F] —> AlldoF] (A[F]old) x A[Id] —> A[FoId]
1x A[F] ———= A[F] , A[F]x1 ——— > A[F]
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Newton series

e For f: R—=R its Newton series is

o0 An 0 [ee]
Yy ﬂxln: ZOAn[f](O)(z)_
n=

n=0 n!

— x!" = falling power x(x—1)-+-(x—n+1)

~ (}) = "binomial coefficient” Xx=1:-lx=n+l)

— A™[f] is iterated difference

A[f10) = Fo)
AUflI0) = fFlx+1) - fx)
A%[f1(x) = f(x+2)=2f (x+ 1) + f(x)

A[f1(x) = f(x+3)-3f(x+2) +3f(x+1) - f(x)
etc.
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[terated difference

Proposition
AMFI(X)={a€F(X+n) | a¢ F(X+k) for any proper subset kC n}.

S, acts on A"[F](X) giving a species A*[F](0) and a corresponding analytic
functor

[e.0]

> (X" x AM[F1(0)) /Sy.

n=0

But this won't give F(X), even for polynomials. However A"[F](X) has more
"'symmetries".

Proposition
If e: n—>m is onto, F(X +e): F(X+ n)—=F(X + m) restricts to

A°[FI(X): A"[F)(X)—=A"[F](X).
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Soft species

Definition
Let Surj be the category of finite cardinals and surjections. A soft species is a
functor C: Surj—=Set. It determines a soft analytic functor (semi-analytic in

[7]) by left Kan extension along the inclusion of Surj into Set:

Surj >——— Set
=
C c
Set

- neSurj
C(X):f C(n) x X".

Proposition
Analytic functors are soft analytic. Soft analytic functors are taut.

22/27



Soft analytic functors

For C: Surj—>Set, an element of C(X) is an equivalence class

laeC(n), f: n—=X].

Factor f:
a € Cn n——X
C(k) e
b € C(k) k>——X.

So every equivalence class has a representation with f monic.

- x be
Co0= Y (€ xMono(n, X))/, = Y Cm x
n=0 n=0 n

but only as sets!
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Newton series
For F: Set—=>Set a taut functor, the sets A”[F](0) extend to a soft species
A*[F1(0): Surj—Set.

The corresponding soft analytic functor

— _ neSurj
F(X)=A*[F](0)=f A"[F](0) x X"

is the Newton series of F.

As sets

F(X)= Y (A"[F)(0) x Mono (1, X)) /Sy = Z A"[F](0) x (X)
n=0

Compare with:

$ AMAO) Z AT f](o)( )

n=0 n!
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Fundamental theorem of functorial differences

Let SoftSp be the category SetS™ of soft species and natural transformations.

Theorem
(1) () gives a functor SoftSp—sTaut.

(2) F— (A"[F1(0)),, gives a functor A*: Taut—s-SoftSp.

(3) ) is left adjoint to A*.

(4) The unit is an isomorphism C—E>A*[5] (0).

Corollary

The Newton sum of a soft analytic functor “converges to it".
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Conclusion

We've:

o ldentified taut functors as the context to develop a functorial calculus of
differences.

e Discovered confluent colimits which are central.
o Generalized the sum and product rules to colimits and limits.
o Established a lax chain rule.

o Expressed Newton summation as a left adjoint.

A multivariable version is in preparation.

Thank you!
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