
Undecidability of the Free Adjoint Construction

R. J. MacG. Dawson ∗

Saint Mary’s University
email: rdawson@stmarys.ca

R. Paré
Dalhousie University

email: pare@mscs.dal.ca

D.A. Pronk
Dalhousie University

email: pronk@mscs.dal.ca

August 1, 2002

Abstract

In this paper we discuss some aspects of categories obtained by freely
adding right adjoints to all arrows in a category. We will give a description
of the arrows and 2-cells in such a category and show how the equivalence
relation on the 2-cells for an appropriately chosen category CA can be
used to simulate a 2-register abacus A, so that deciding whether two 2-
cells with different representatives are equal becomes equivalent to solving
the halting problem for the abacus. In particular, this implies that (in
general) equality of 2-cells in such categories is undecidable.

Keywords: free adjoint construction, 2-category, undecidability, abacus

AMS classification: 18A40, 18D05

∗All three authors are suppported by NSERC grants.

1

1 Introduction

In the 2-category Cat, an arrow (that is, a functor) f : A → B is said to have
a right adjoint u : B → A if there exist 2-cells ε : f ◦ u⇒ iB and η : iA ⇒ u ◦ f ,

such that the composite f
f◦η
⇒ f ◦ (u ◦ f) = (f ◦ u) ◦ f

ε◦f
⇒ f is equal to if , and

the composite u
η◦u
⇒ (u ◦ f) ◦ u = u ◦ (f ◦ u)

u◦ε
⇒ u is equal to iu. This definition

can obviously be extended to any 2-category; in most cases, as in Cat itself,
not all arrows have adjoints.

There will always be some adjunctions, however. Identity arrows are self-
adjoint, and more generally any inverse pair f, f−1 constitutes an adjunction
with identity 2-cells as unit and counit. Another special class of adjunctions,
more general than inverse pairs, are the equivalences, pairs for which the unit
and counit are isomorphisms.

If a 2-category does not have a certain type of adjunction, there may be a
construction that adds these. Some examples are:

• Any semigroup may be turned into a group in a canonical way by adding
inverses. The constructions of the integers from the natural numbers, and
of the nonzero rationals from the nonzero integers, are familiar examples.

• Gabriel and Zisman’s category of fractions [6] adds inverses to a class of
arrows satisfying certain conditions. (This construction is not explicitly
2-categorical, because the units and counits are identities; however, as
shown in [9], it is useful to consider it in this context.)

• Quillen’s homotopy categories [10] add inverses to the weak equivalences
of a model category.

• Pronk’s bicategory of fractions [9] add equivalences to a suitable class of
arrows, thereby transforming the original arrows into equivalences as well.

• In [11] Schanuel and Street add a right adjoint to the single nonidentity
arrow of 2 The structure of the resulting 2-category is surprisingly rich;
it contains both ∆ and ∆op as hom-categories.

• In [3], the authors develop a construction Π2(C) which adds general ad-
joints to all arrows in any category.

• In [5], it is shown that if the original category has pullbacks, and adjoints
are added subject to the Beck-Chevalley condition, the 2-category Span(C)
is obtained.

In all of the above examples, there are equivalence relations on the resulting
structures; the basic principle is illustrated by the equation 2 − 4 = 3 − 5 in
the first example above. In most of these cases, it is fairly straightforward
(if we know the structure of the original category) to determine whether two
compositions of arrows or 2-cells are equal. In this paper, however, we show

2

that the equality of 2-cells in Π2(C) is undecidable for some choices of C, even
when C is presented in such a fashion that all compositions can be evaluated.

It should be noted that in general there is more than one way to add adjoints.

For instance consider the category 2 = (0
f
→ 1). To give f a right adjoint, we

must add an arrow u : 1 → 0, and 2-cells ε and η. However, the requirement
that f ⊣ u does not fully define the new bicategory. For instance, it does not
tell us whether ufuf = uf . In the construction of Schanuel and Street, this
identity - and any other not required by the adjunction - does not hold, making
Adj initial among all 2-categories extending 2 in which f has an adjoint, or,
equivalently, the free construction of this type.

In [3] we extend this construction, adding right adjoints to an arbitrary
category C to obtain a 2-category Π2(C). The adjoint arrows correspond to
arrows of Cop; thus, a general arrow of Π2(C) corresponds to a zigzag of arrows
of C. The 2-cells of Π2(C) are generated by the identity cells on the arrows of
C and their adjoints, and by the units and counits. Every composition of these
2-cells corresponds to a planar diagram of a special type, called a fence (these
are described below); vertical and horizontal composition of fences are defined.
These compositions do not satisfy the middle-four interchange law; to obtain a 2-
category we must identify all “vertical-first” compositions of fences (α∗β)◦(γ∗δ)
with the corresponding “horizontal-first” compositions (α ◦ γ) ∗ (β ◦ δ). The
resulting 2-category is Π2(C).

The equivalence relation mentioned above is shown in [3] to be generated by
a class of local substitutions based upon compositions and factorizations within
C. Fences that can be obtained from each other by a single such operation will
be called directly equivalent. Both the definition of a fence, and the equivalence
relation, will be given in detail in Section 2 below; for proofs, the reader is
referred to the paper cited.

In this paper, we show that the equivalence relation on fences that yields
Π2(C) is undecidable for certain choices of C. To do this, we follow the usual
strategy of modelling a known undecidable problem within the one we wish
to prove undecidable. Common choices for the known undecidable problem
are the word problem for groups and the halting problem for Turing machines.
Both of these involve structures (strings of generators in one case, the “tape”
of the Turing machine in the other) that can grow without bound. As will be
shown below, any two equivalent fences in Π2(C) must have the same number of
arrows. We will therefore use a different (though related) undecidable problem,
the halting problem for abacuses.

Abacuses, introduced by Lambek [7] and (under the name “register ma-
chines”) by Minsky [8], are universal models for computation similar to Turing
machines. Like Turing machines, they have a finite number of internal program
states, a halting state, and change state in a deterministic manner, branching
on some instructions based upon the contents of a specified memory location.
However, where the Turing machine has infinitely many registers, each able to
take a finite number of values, the abacus has finitely many registers, each able
to hold an arbitrarily large natural number. It was shown by Minsky (op. cit.)

3

that any abacus, and any Turing machine, may be simulated by an appropri-
ate 2-register abacus; in particular, there exist universal 2-register abacuses, for
which the halting problem is undecidable.

Undecidability occurs in several places in higher-dimensional category the-
ory. For instance, in [1] it was shown that the word problem for a free double
category could be undecidable. In [4] the authors show that various free exten-
sions of double categories and 2-categories involve an undecidable word problem
for composable arrangements of 2-cells.

2 Freely Adding Adjoints

In [3] we have studied the structure of a 2-category Π2(C) obtained by freely
adding adjoints to all arrows in a category C. We start by summarizing the
results of [3] for this special case.

2.1 The 2-category Π2(C).

Let C be any category. We write Π2(C) for the following 2-category:

1. The objects of Π2(C) are the same as the objects of C, so Π2(C)0 = C0.

2. The arrows in Π2(C) are zig-zags in C, i.e. an arrow in C(A,B) is of the
form

A = C1
f1✲D1

g1✛ C2
f2✲D2

✛ · · · ✲Dn−1

gn−1✛ Cn
fn✲Dn = B.

We denote such an arrow by

(g1, · · · , gn−1; f1, · · · , fn).

3. A 2-cell

(g1, · · · , gn−1; f1, · · · , fn) ⇒ (g′1, · · · , g
′

m−1; f
′

1, · · · , f
′

m)

is an equivalence class of a special kind of diagrams, called fences.

An example of a fence is

A = C1
f1✲ D1

g1✛ C2
f2✲D2

g2✛ C3
f3✲D3 = B

h2

❍❍❍❍❍❍❍❥

k1

❍❍❍❍❍❍❍❥

k2

❄

h3

❄

h4

❍❍❍❍❍❍❍❥

❍❍❍❍❍❍

❍❍❍❍❍❍
A = C′

1 f ′

1

✲ D′

1 g′
1

✛ C′

2 f ′

2

✲D′

2 g′
2

✛ C′

3 f ′

3

✲D′

3 g′
3

✛ C′

4 f ′

4

✲ D′

4 = B

4

Specifically, fences are determined by an adjoint pair of order-preserving
index functions

φ : {1, · · · ,m} → {1, · · · , n} and ψ : {1, · · · , n} → {1, · · · ,m}

such that ψφ(i) ≥ i and φψ(j) ≤ j, together with families of arrows

kj : Dj → D′

ψ(j) and hi : Cφ(i) → C′

i,

such that all resulting squares commute, i.e.

1. For every 1 ≤ i < n

f ′

ihi =

{

g′ihi+1 if ϕ(i) = ϕ(i + 1)
kϕ(i)+1fϕ(i) otherwise

2. For every 1 ≤ j < m

kjgj =

{

kj+1fj+1 ifψ(j) = ψ(j + 1)
g′ψ(j)hψ(j)+1 otherwise

Finally we require that h1 = idA and kn = idB. We denote such a representative
for a 2-cell by (φ;ψ; k1, . . . , kn−1;h2, . . . , hm). Note that in the example above,
ψ(1) = 2, ψ(2) = 2 and ψ(3) = 4, and φ(1) = 1, φ(2) = 1, φ(3) = 3, and
φ(4) = 3.

2.2 Composition

Composition of arrows in Π2(C) is defined by concatenating of the zig-zags and
composing the two composable morphisms:

(g1, · · · , gn−1, f1, · · · , fn) ◦ (h1, · · · , hm−1, k1, · · · , kn) =

(h1, · · · , hm−1, g1, · · · , gn−1, k1, · · · , kn−1, f1 ◦ kn, f2, · · · , fn)

Vertical composition of fences can be calculated by drawing the diagrams
above one another and constructing the compositions of the arrows when that
is possible. For example, composing

A = C1
f1✲ D1

g1✛ C2
f2✲D2

g2✛ C3
f3✲D3 = B

h2

❍❍❍❍❍❍❍❥

k1

❍❍❍❍❍❍❍❥

k2

❄

h3

❄

h4

❍❍❍❍❍❍❍❥

❍❍❍❍❍❍

❍❍❍❍❍❍
A = C′

1 f ′

1

✲ D′

1 g′
1

✛ C′

2 f ′

2

✲D′

2 g′
2

✛ C′

3 f ′

3

✲D′

3 g′
3

✛ C′

4 f ′

4

✲ D′

4 = B

with

A = C′

1

f ′

1✲ D′

1

g′
1✛

❄
k′
1

C′

2

f ′

2✲D′

2

g′
2✛

k′
2

✟✟✟✟✟✟✙

C′

3

f ′

3✲

h′

2

✟✟✟✟✟✟✙

D′

3

g′
3✛

❄
k′
3

C′

4

f ′

4✲

❄
h′

4

D′

4 = B

h′

3

❄
A = C′′

1 f ′′

1

✲ D′′

1 g′′
1

✛ C′′

2 f ′′

2

✲D′′

2 g′′
2

✛ C′′

3 f ′′

3

✲D′′

3 g′′
3

✛ C′′

4 f ′′

4

✲D′′

4 = B

5

gives

A = C′

1

f ′

1✲ D′

1

g′
1✛

❄
k′
2
k1

C′

2

f ′

2✲D′

2

g′
2✛

k′
2
k2

✟✟✟✟✟✟✙

C′

3

f ′

3✲

h′

2
h3

✟✟✟✟✟✟✙
h′

3

❄
A = C′′

1 f ′′

1

✲ D′′

1 g′′
1

✛ C′′

2 f ′′

2

✲D′′

2 g′′
2

✛ C′′

3 f ′′

3

✲D′′

3 g′′
3

✛ C′′

4 f ′′

4

✲

h′

4
h4

❍❍❍❍❍❍❍❥

D3 = B
❍❍❍❍❍❍

❍❍❍❍❍❍
D′′

4 = B

To be precise, the index functions of the new 2-cell are the compositions of the
index functions of the original 2-cells, and the arrows in the diagrams are the
compositions of the corresponding arrows:

[φ′, ψ′, (k′j), (h
′

i)] · [φ, ψ, (kj), (hi)] =

= [φ ◦ φ′, ψ′ ◦ ψ, (kj), (hi)],

where kj = kψ(j)kj and hi = hih
′

φ′(i).
Horizontal composition of fences is defined by concatenation, together with

some compositions in the category C. This is a tensor-like construction over C.
For example, horizontal composition of

A = C1
f1✲ D1

g1✛ C2
f2✲ D2 = B

h2

❍❍❍❍❍❍❍❥

k1

❍❍❍❍❍❍❍❥
A = C′

1 f ′

1

✲ D′

1 g′
1

✛ C′

2 f ′

2

✲ D′

2 = B

with

B = E1
p1✲ F1

q1✛ E2
p2✲ F2 = C

l2

❍❍❍❍❍❍❍❥

m1

❍❍❍❍❍❍❍❥
B = E′

1 p′
1

✲ F ′

1 q′
1

✛ E′

2 p′
2

✲ F ′

2 = C

gives

A = C1
f1✲ D1

g1✛ C2
p1f2✲ F1

q1✛ E2
p2✲F2 = C

h2

❍❍❍❍❍❍❍❥

p′
1
k1

❍❍❍❍❍❍❍❥

l2f2

❍❍❍❍❍❍❍❥

m1

❍❍❍❍❍❍❍❥
A = C′

1 f ′

1

✲ D′

1 g′
1

✛ C′

2 p′
1
f ′

2

✲ F ′

1 q′
1

✛ E′

2 p′
2

✲F ′

2 = C

To be precise, if

[φ;ψ; k1, . . . , kn−1;h2, . . . , hm] :

(g1, . . . , gn−1; f1, . . . , fn) ⇒ (g′1, . . . , g
′

m−1; f
′

1, . . . , f
′

m)

and

[φ̃; ψ̃; k̃1, . . . , k̃p−1; h̃2, . . . , h̃q] :

(u1, . . . , up−1; v1, . . . , vp) ⇒ (u′1, . . . , u
′

q−1; v
′

1, . . . , v
′

q)

6

are 2-cells such that cod(fn) = dom(v1) (i.e., that are composable), then the
horizontal composition is defined as

[φ̃; ψ̃; k̃1, . . . , k̃p−1; h̃2, . . . , h̃q] ◦ [φ;ψ; k1, . . . , kn−1;h2, . . . , hm] =

[φ;ψ; k1, . . . , kn−1;h2, . . . , hm],

where the index functions

ψ : {1 . . . , n+ p− 1} → {1, . . . ,m+ q − 1}

φ : {1, . . . ,m+ q − 1} → {1, . . . , n+ p− 1}

are

φ(i) =

{

φ(i) for i ≤ m

φ̃(i−m+ 1) + n− 1 for i > m

ψ(j) =

{

ψ(j) for j ≤ n− 1

ψ̃(j − n+ 1) +m− 1 for j ≥ n

and

kj =







kj if j < n and ψ(j) < m

v′1kj if j < n and ψ(j) = m

k̃j−n+1 if j ≥ n

hi =







hi if i ≤ m

h̃i−m+1fn if i > m and φ̃(i−m+ 1) = 1

h̃i−m+1 if i > m and φ̃(i−m+ 1) > 1

2.3 The equivalence relation

The pair of composition operations given above does not have the middle-four
exchange property ([3], Example 1). If we identify every composition (α◦β)∗(γ◦
δ) with the corresponding composition (α∗γ)◦(β∗δ), we obtain (op. cit., section
3) the equivalence relation generated (through symmetry and transitivity) by
the following relationship: Two diagrams θ and ω representing 2-cells in C∗ are
called directly equivalent if they are everywhere the same except for two parts
of the following shapes: the cell ω contains

Ci
fi ✲

hj

❅
❅
❅❘

Di

l

❄
ki

❅
❅
❅❘

gi✛ Ci+1

D′

j−1 g′j−1

✛ C′

j f ′

j

✲D′

j

and the cell θ contains

Ci
fi ✲

k̃i �
��✠

Di

l

❄ h̃j

�
��✠

gi✛ Ci+1

D′

j−1 g′j−1

✛ C′

j f ′

j

✲D′

j

7

and there exists an arrow l : Di → C′

j which factors both diagrams.
Both vertical and horizontal composition are well-defined on equivalence

classes of 2-cells ([3], section 2), and together they have the middle-four property.
The resulting 2-category is given the name Π2C. The reader is referred to section
4 of [3] for a description of the universal properties of this construction.

3 From abacus to category

In this section we will construct a category, presented in such a way that any
composition may be computed trivially, but such that the equivalence relation
on fences models an undecidable problem in the theory of computation. There
are various undecidable problems that could be used; as the length of fences does
not vary within an equivalence class, the abacus (which has a fixed number of
registers) is a more convenient model than the Turing machine (the tape of
which must be capable of indefinite extension) or the word problem for groups
(which again may involve intermediate words of arbitrarily great length). As
Minsky has shown that a universal abacus may have as few as two registers, we
shall restrict our attention to such a machine.

We shall construct, for any 2-register abacus A, a category CA, containing
three sets of arrows which are indexed by the program state, X register, and
Y register of A respectively. We then exhibit a family of fences over CA, each
containing one arrow from each of these three sets, and therefore indexed by
the complete internal state of the abacus. Finally, we show that two such fences
are directly equivalent if and only if the abacus passes directly from the state
corresponding to one fence to that corresponding to the other. It follows that,
if A is a universal 2-register abacus, any algorithm to determine the equivalence
of fences over CA would also solve the halting problem for A; the equivalence
relation is therefore undecidable.

3.1 Definition of an abacus

Definition 1 An (n-register) abacus consists of
(i) A finite set of states S;
(ii) Variables X1, · · · , Xnin N which are considered as the contents of the reg-
isters;
(iii) A function Inst : S → {INCX, INCY, DECX, DECY, HALT};
(iv) A starting state s0 ∈ S;
(v) Transition functions σ : S → S and σ′ : S → S.

In this paper we will only be interested in the notion of a 2-register abacus,
so from now on we will take n = 2 in the definition above, and use X and Y
as variables for the registers. The behaviour of the abacus is a partial function
S × N× N → S × N× N

S = (s,X, Y)
Σ
7→ S

′ = (s′, X ′, Y ′)

8

defined as follows

(s′, X ′, Y ′) =







































(σ(s), X + 1, Y) if Inst(s) = INCX

(σ(s), X, Y + 1) if Inst(s) = INCY

(σ(s), X − 1, Y) if Inst(s) = DECX and X > 0
(σ′(s), X, Y) if Inst(s) = DECX and X = 0
(σ(s), X, Y − 1) if Inst(s) = DECY and Y > 0
(σ′(s), X, Y) if Inst(s) = DECY and Y = 0
undefined if Inst(s) = HALT.

We can represent this by a graph whose nodes are the elements of S and whose
edges are of the form

?>=<89:;s INCX // ONMLHIJKσ(s) ?>=<89:;s INCY // ONMLHIJKσ(s)

ONMLHIJKσ(s) ONMLHIJKσ(s)

?>=<89:;s
DECX

88qqqqqqq

X=0 &&▼
▼▼

▼▼
▼▼

?>=<89:;s
DECY

88qqqqqqq

Y=0 &&▼
▼▼

▼▼
▼▼

ONMLHIJKσ′(s) ONMLHIJKσ′(s)

So the σ and σ′ permit branching at nodes s with Inst(s) ∈ {DECX, DECY}.
Here is a simple example which adds the contents of the X-register and the
Y -register and puts the sum in the X-register and 0 in the Y -register.

start��?>=<89:;s0
Y=0

{{✈✈
✈✈
✈✈
✈✈

DECY ##❍
❍❍

❍❍
❍❍

❍

?>=<89:;s1 ?>=<89:;s2

INCX
cc❍❍❍❍❍❍❍❍

If one starts with X = 4 and Y = 3, this abacus would go through the following
states: (s0, 4, 3) 7→ (s2, 4, 2) 7→ (s0, 5, 2) 7→ (s2, 5, 1) 7→ (s0, 6, 1) 7→ (s2, 6, 0) 7→
(s0, 7, 0) 7→ (s1, 7, 0) at which point it halts.

3.2 A graph representation for CA

Let A be a 2-register abacus. The category CA is generated by a graph of the
following form:

A X
g2oo

xm

��

···

��

f1 // C

yyss
ss
ss
ss
ss
s

···

yyss
ss
ss
ss
ss
s

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

···

%%❑
❑❑

❑❑
❑❑

❑❑
❑❑

cs
��

···

��

Y
g1oo

f1 //

��

··· yn

��

B

A X ′

g′
2

oo

f ′

1

// C′ Y ′

g′
1

oo

f ′

2

// B

(1)

9

So the set of objects of the category CA is

C0 = {A,X,X ′, C, C′, Y, Y ′, B},

and the horizontal arrows shown in (1) are the only arrows in their hom-sets.
The diagonal and vertical arrows in (1) represent hom-sets containing more than
one element. These hom-sets are symmetric in the sense that the right side of
the diagram is a mirror image of the left side.

The hom-sets that are indicated by vertical arrows in the diagram (1) are:

Hom(C,C′) = {cs|s ∈ S}
Hom(X,X ′) = {xm|m ∈ N}
Hom(Y, Y ′) = {yn|n ∈ N}

These satisfy the following relations:

g′2xm = g2 for all m ∈ N,

csf1 = f ′

1xm for all s ∈ S and m ∈ N,

f ′

2yn = f2 for all n ∈ N.

The hom-sets indicated by the diagonal arrows in the diagram (1) are

Hom(C,X ′) = {αm,s, βm,s|m ∈ N, s ∈ S with Inst(s) ∈ {INCX, DECX}}
Hom(C, Y ′) = {γn,s, δn,s|n ∈ N, s ∈ S with Inst(s) ∈ {INCY, DECY}}.

The arrow αm,s makes the following diagram commute

X
f1 //

xm

��

C
αm,s

zztt
tt
tt
t

cs
��

X ′

f ′

1

// C′,

i.e.,

xm = αm,s ◦ f1 and f ′

1 ◦ αm,s = cs. (2)

We also require that in the diagram

X
f1 //

xm

��

C

αm,s
||②②
②②
②②
②②
②βm,s

||②②
②②
②②
②②
②

cs

��

Y
g1oo

A X ′

g′
2

oo

f ′

1

// C′

we have

αm,s ◦ g1 = βm,s ◦ g1 and g′2 ◦ αm,s = g′2 ◦ βm,s. (3)

10

The βm,s need to satisfy the following equations:

βm,s ◦ f1 =







xm+1 if Inst(s) = INCX

xm−1 if Inst(s) = DECX and m > 0
x0 if Inst(s) = DECX and m = 0

(4)

and

f ′

1 ◦ βm,s =







cσ(s) if Inst(s) = INCX

cσ(s) if Inst(s) = DECX and m > 0
cσ′(s) if Inst(s) = DECX and m = 0

(5)

We also write

κ(xm, cs) := βm,s ◦ f1 and λ(xm, cs) := f ′

1 ◦ βm,s. (6)

Dually, the arrow γn,s makes the following diagram commute

C

cs
��

γn,s

$$■
■■

■■
■■

Y
g1oo

yn
��

C′ Y ′

g′
1

oo

i.e.,

yn = γn,s ◦ g1 and g′1 ◦ γm,s = cs. (7)

We also require that in the diagram

X
f1 // C

cs

��

γn,s

""❊
❊❊

❊❊
❊❊

❊❊

δn,s
""❊

❊❊
❊❊

❊❊
❊❊

Y
g1oo

yn

��

C′ Y ′

g′
1

oo

f ′

2

// B

we have that

γn,s ◦ f1 = δn,s ◦ f1 and f ′

2 ◦ γn,s = f ′

2 ◦ δn,s. (8)

The δm,s need to satisfy the following equations:

δn,s ◦ g1 =







yn+1 if Inst(s) = INCY

yn−1 if Inst(s) = DECY and n > 0
y0 if Inst(s) = DECY and n = 0

(9)

and

g′1 ◦ δn,s =







cσ(s) if Inst(s) = INCY

cσ(s) if Inst(s) = DECY and n > 0
cσ′(s) if Inst(s) = DECY and n = 0

(10)

We also write

κ(cs, yn) := g′1 ◦ δn,s and λ(cs, yn) := δn,s ◦ g1. (11)

11

3.3 The equivalence relation on Π2(CA)2

In this section we will discuss the equivalence relation for representatives of
2-cells in Π2(CA)2 of the form

(φ, ψ, (kj), (hi)) : (g2, g1; IA, f1, f2) ⇒ (g′2, g
′

1; IA, f
′

1, f
′

2)

with φ = ψ = id and k1 = idA. Since this implies that the leftmost square of
the diagram for this 2-cell only consists of identities, we will not draw it:

A

A

g2✛ X

h2
❄✛ X ′

g′2

f1✲C

k2
❄✲C′

f ′

1

g1✛ Y

h3
❄✛ Y ′

g′1

f2✲B

✲B
f ′

2

Note: For the rest of this paper we will denote such a representative by an
ordered list

(h2, k2, h3)

of its vertical arrows, and we will call such a diagram rectangular.
If for any consecutive pair of vertical arrows, i.e. h2, k2 or k2, h3, the functions

γ, δ, κ, and λ from the previous subsection are defined, the equations (2) to (3),
(6) to (8), and (11) imply that

(h2, k2, h3) ∼ (κ(h2, k2), λ(h2, k2), h3)

and
(h2, k2, h3) ∼ (h2, κ(k2, h3), λ(k2, h3)).

For this particular instance of the equivalence relation, we say that (κ(h2, k2), λ(h2, k2), h3)
and (h2, κ(k2, h3), λ(k2, h3)) are successor equivalent to, or are successors of
(h2, k2, h3). We will also say that a diagram D follows from a diagram D′ if it
can be obtained from D by repeatedly taking successors. This yields a rewrite
system with certain restrictions: all rewrite rules replace one adjacent pair of
letters by another pair.

Note that all vertical diagrams are of the form (xm, cs, yn). We write DS =
(xm, cs, yn) when S = (s,m, n). It follows directly from equations (4), (5), (9),
and (10), that

Lemma 1 The diagram DS′ is a successor of DS if and only if S′ = Σ(S).
In particular, any diagram of the form (xm, cs, yn) has a unique successor if
Inst(s) 6= HALT, and it has no successors if Inst(s) = HALT.

Definition 2 We call a diagram D′ a predecessor of a diagram D when D is
a successor of D′. Predecessors of a diagram (xm, cs, yn) correspond to internal
states S such that Σ(S) = (s,m, n).

12

4 Properties of the Simulation

In this section we show that the halting problem for the abacus A is equivalent
to determining whether there exist natural numbers n and m and a state s
with Inst(s) = HALT, such that the diagrams DS1

and (xm, cs, yn) represent
the same 2-cell in Π2(CA).

This quantification over the natural numbers is not actually necessary. Given
an abacus A that can halt in a state (h,m, n) with m or n nonzero, it is always
possible to modify it to obtain a new abacus A◦ that ‘clears the registers’ before
halting but otherwise behaves identically. We create two new ‘pre-halt’ states
p1 and p2 with the following properties:

Inst(p1) = DECX, σ(p1) = p1, σ′(p1) = p2
Inst(p2) = DECY, σ(p2) = p2, σ′(p2) = h

Whenever σ(s) = h or σ′(s) = h in A, the corresponding successor in A◦

is p1; otherwise A and A◦ are identical. Thus, the halting problem for the
original abacus A is equivalent to determining whether there is a state s with
Inst(s) = HALT such that the diagrams DS1

and D(xm,cs,yn) represent the same
2-cell in Π2(CA◦).

Theorem 1 Let A be an abacus and CA the category described in the previous
section. There exist natural numbers n and m and a state s with Inst(s) = HALT

such that the diagrams DS1
and (xm, cs, yn) are equivalent as 2-cells in Π2(CA)

if and only if the abacus is able to reach a halting state.

Proof: Suppose that the abacus is able to reach the halting state s, say
Σn(S1) = (s,m, n) with Inst(s) = HALT. Then it follows immediately from
Lemma 1 that diagram DS1

is equivalent to diagram (xm, cs, yn).
Conversely, suppose that there exist natural numbers n and m and a state s

with Inst(s) = HALT such that the diagramsDS1
and (xm, cs, yn) are equivalent.

We will first show that in this case diagram DH := (xm, cs, yn) follows from
diagram DS1

. Let

DS1
= D0 ∼ · · · ∼ Di ∼ · · · ∼ D2n = DH (12)

be a shortest list of direct equivalences which shows that DS1
∼ DH (i.e., this

is a list so that no sublist would form a sequence of direct equivalences with
the same beginning and ending diagrams). Note that every second diagram in
this sequence is vertical. So for each i ∈ {0, . . . , n}, the diagram D2i is either a
successor or a predecessor of D2i−2. Since DH does not have any successors, it
follows that DH is the successor of D2n−2. Now let D2j be the last diagram after
which this sequence consists only of pairs of direct equivalences which correspond
to successors. Then D2j−2 would have to be a successor of D2j . However, since
successors are unique by Lemma 1, this implies that D2j−2 = D2j+2 and there
exists a shorter list of direct equivalences from DS1

to DH . This contradicts
our assumption that the list (12) is minimal. We conclude that DH follows from
DS1

.

13

Since (12) forms a list of successors, and successors are unique, it follows that
D2i = DΣi(S1). We conclude that the even indexed diagrams in (12) encode the
successive internal states of the abacus as it progresses to the halting state.

5 An Alternative Construction

The construction given in the previous section does not only yield a category for
which the equivalence relation on Π2(C)2 is undecidable, but it shows rather con-
cretely how any computation on an abacus may be translated into an equivalence
problem for fences over an appropriate category. (A Java applet illustrating this
for the Collatz (3n+1)-problem can be found on cs.stmarys.ca/∼dawson/abacus.html.)
In this section, we will examine an alternative construction (first described in
[2]) which, while rather less concrete, is shorter and yields undecidable equiva-
lence problems for fences over some familiar categories such as Set and Grp.
Our first proposition is probably a “folk theorem”.

Proposition 1 There exists a bipartite graph G = (V1, V2, E) with the following
properties:

1. The vertex sets V1 and V2, and the set E of edges, are each indexed by a
subset of F × N × N for a finite set F ; for each of the sets V1, V2, and
E, there is a bounded-time algorithm to determine whether (s, x, y) is an
index of an element of that set.

2. Given any two vertices of G there is a bounded-time algorithm to determine
whether they are connected by an edge; and given any edge and any vertex
there is a bounded-time algorithm to determine whether the edge contains
the vertex.

3. The problem of determining whether two vertices are in the same compo-
nent of G is undecidable.

Proof: We construct G from a universal 2-register abacus A◦, as described
above, that halts only in the state (h, 0, 0). One set of vertices V1 corresponds
to the complete internal states S = (s, x, y) of the abacus; the other set, V2,
corresponds to the legal transitions [S → Σ(S)]. (As there is at most one legal
transition out of any given state, the first claim follows.) There are edges joining
each of the vertices S and Σ(S) to the vertex [S → Σ(S)], and no other edges;
the second claim thus follows trivially. Finally, it is evident that determining
whether (s, x, y) and (h, 0, 0) are in the same component is equivalent to solving
the halting problem for A◦, from which the third claim follows.

Theorem 2 For any bipartite graph G = (V1, V2, E), there exists a family of
fences over Set, all with the same domain and the same codomain and indexed
by the vertices of G, such that two vertices are in the same component of G if
and only if the corresponding fences are equivalent.

14

Proof: For i = 1, 2, let pi : E → Vi be the function that sends an edge to
its endpoint in Vi. Consider the class of fences of the form

∅

∅

✲{∗}

v
❄✲V1

✛ ∅

❄✛ E
p1

✲V2

✲V2p2 (13)

We note that these are in 1-1 correspondence with the functions v : {∗} → V1,
that is, with the elements of V1. The only other fences with this domain and
codomain are of the form

∅
❍❍❍❍❍❍❥

∅

✲{∗}

✲V1

❍❍❍❍❍❍❥
w

✛ ∅

✛ E
p1

✲V2

✲V2p2 (14)

where t(∗) is a transition x→ y in V2.
If two such fences are directly equivalent, there exists a function u : {∗} → E

such that p1u = v and p2u = t. Thus, u(∗) must be of the form (v, t), where
t(∗) = (v → w) or (w → v)). Conversely, a fence of form (14) in which ∗ is
mapped to the transition (x → y) can only be directly equivalent to a fence of
form (13) in which ∗ is mapped to x or y. It follows that two fences of the form
(13), in which ∗ is mapped to v and v′ respectively, are equivalent if and only if
v and v′ are in the same connected component of G.

The main theorem of this section follows immediately from this:

Theorem 3 The equivalence of fences over Set is undecidable.

Corollary 1 If Set is a full subcategory of C, then the equivalence of fences
over C is undecidable.

This corollary covers many familiar categories such as topological spaces,
categories, posets, graphs, and several common variants of these (e.g., Hausdorff
spaces and directed graphs). Substituting the one-point set for the empty set in
the construction lets us extend this result to other categories, such as pointed
sets, and pointed topological spaces. A further variation, given in [2], models
the word problem for groups to show that the equivalence of fences over Grp is
also undecidable.

6 Decidability Results

In the previous two sections we have given examples of categories C for which
the equivalence relation on Π2(C)2 is undecidable. But this is not a problem for

15

all categories. In this section we discuss two types of categories for which the
equivalence relation is decidable. We have already observed one condition on
the category C that makes the equality of 2-cells in Π2(C) decidable.

Proposition 2 If the category C is locally finite, equality of 2-cells in Π2(C)
can be decided in bounded time.

The construction in the previous section makes heavy use of the fact that
the arrows in the category C don’t cancel. If a category C satisfies the condition
that for any diagram of the form

• ✲f •
✲✲
g

h

• ✲k •

we have

kg = kh and gf = hf implies g = h (15)

the word problem for 2-cells in Π2(C) becomes decidable in bounded time:

Proposition 3 If the category C satisfies the condition (15), equality of 2-cells
in the category Π2(C) can be determined in bounded time: maximally (m−1)(n−
1) searches for the existence of a factorization and m+n− 2 checks for equality
of two arrows in C are required to determine whether two representatives for a
2-cell (g1, · · · , gn−1; f1, · · · , fn) ⇒ (g′1, · · · , g

′

m−1; f
′

1, · · · , f
′

m) are equivalent.

Proof:Note that in this condition is equivalent to requiring that every square
of the form

C′ D′

C D

✲

✲

❄ ❄✠

has maximally 1 factorization. Consequently, a situation as described in the
previous section can not happen: if two representatives have the same index
functions, they are only equivalent when they are the same. So the only work
that needs to be done in checking whether two 2-cells are equivalent, is to see
whether the appropriate factorizations exist to change the index functions of
one of them into the index functions of the other, and then one needs to check
whether the corresponding arrows in the resulting diagrams are equal. There
exist maximally (m− 1)(n− 1) factorizations for a set of diagrams representing
one 2-cell, and m+ n equality checks are needed.

6.1 Examples

1. If the category C has only monic or only epic maps, C satisfies this condi-
tion.

16

2. If C is a category with only monic maps and D has only epic maps, the
category C × D satisfies this condition.

3. For any category C, the subcategory of the category of arrows C→ consist-
ing of squares where the top arrow is monic and the bottom is epic (or
vice versa) satisfies this condition.

4. The category generated by the following diagram in Set satisfies this con-
dition:

X
f ✲

h×k

❯
X × Y

g✲Y

where f(x) = (x, y0), h is an isomorphism and k is an isomorphism that
keeps y0 fixed, y0 ∈ Y is a chosen fixed point and g(x, y) = y.

References

[1] R. J. MacG. Dawson, R. Paré, What is a double category like?, Jour. Pure
Appl. Alg. 168 (2002), pp. 19-34.

[2] R. J. MacG. Dawson, R. Paré, D. A. Pronk, Undecidability and free
adjoints, in Proceedings of the World Multiconference on Systemics, Cy-
bernetics and Informatics 2001, Volume XIV, N. Callaos, F. G. Tinetti,
J. M. Champarnaud, J. K. Lee (Eds), International Institute of Informat-
ics and Systemics, Orlando, 2001, pp. 156-161

[3] R. J. MacG. Dawson, R. Paré, D. A. Pronk, Adjoining adjoints, to appear
in Adv. in Math.

[4] R. J. MacG. Dawson, R. Paré, D. A. Pronk, Free extensions of double
categories, in preparation.

[5] R. J. MacG. Dawson, R. Paré, D. A. Pronk, Free adjoints and spans, in
preparation.

[6] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory,
Springer-Verlag, New York, 1967.

[7] J. Lambek, How to program an infinite abacus, Canad. Math. Bull. 4
(1961), pp. 295-302.

[8] M. L. Minsky, Recursive unsolvability of Post’s problem of ‘tag’ and other
topics in the theory of Turing machines, Annals of Math. 74 (1961), pp. 437-
455.

[9] D. A. Pronk, Etendues and stacks as bicategories of fractions, Comp. Math.
102 (1996), pp. 243-303.

17

[10] D. Quillen, Homotopical Algebra, LNM 43, Springer Verlag, New York,
1967.

[11] S. Schanuel, R. Street, The free adjunction, Cahier Topologie Géom. Dif-
ferentielle Catégoriques 27 (1986), pp. 81-83.

18

