UNIVERSAL COVERING CATEGORIES (*)

by ROBERT PARE (in Halifax)(**)

SOMMARIO. - La teoria dei limiti semplicemente connessi ¢ ulteriormente svilup-
pata introducendo 'analogo categoriale dello spazio di ricoprimento univer-
sale. Questa categoria del ricoprimento universale é utilizzata per dare una
dimostrazione concettuale del fatto che i limiti connesst possono essere cal-
colati utilizzando prodotti fibrati ed equalizzatori. Si dimostra anche una pro-
prieta fondamentale di esattezza della riflessione di gruppoidi per categorie:
che essa preserva certi oggetti comma.

SUMMARY. - The theory of simply connected limits is further developed by the
introduction of the categorical analogue of the universal covering space. This
universal covering category is used to give a conceptual proof that connected
limits can be computed using fibred products and equalizers. Along the way
we prove a fundamental exactness property of the groupoid reflection for cal-
egories: that it preserves certain comma objects.

Introduction.

Category theory was issued from the marriage of algebra and topology,
and it bears a strong resemblance to each of its parents. A category with
one object is a monoid and a category may be thought of as a monoid with
several identities. There is in fact a precise sense in which this 1s so. A
groupoid is a category in which each morphism is an isomorphism, and a
groupoid with one object is a group. Functors between such categories are
exactly group homomorphisms. A functor from a group into the category
of sets i1s a G-set and the Yoneda lemma becomes Cayley’s representation
theorem.
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But one of the important features of category theory is the ability to
represent equations as (commutative) diagrams, giving shape to long strings
of calculations. Thus topology enters; objects are represented as points,
morphisms as arrows (directed line segments or paths), and equations as
two-dimensional entities. Thus we can talk of connected categories, simply
connected categories, fibrations and so on. In fact, a category gives rise
to a simplicial set as suggested above, its nerve, which has a geometric
realization. Thus to each category we can associate a topological space,
and the above analogies have a precise mathematical meaning.

What is even more important is the interplay between the algebraic
and the topological sides of category theory. It is in this direction that this
paper is directed. We will present an application of topological ideas to
pure category theory, namely to the theory of limits.

The concept of limit in a category A has been around since the begin-
ning of the subject (see Notes on p. 76 of [5]). One of the basic facts is
that the limit of an arbitrary diagram I' : I — A can be computed as an
equalizer of products (assuming that these exist)

liml — HH:: H rr .
T I—TI

By a connected limit we mean the limit of a diagram I' : I — A where
the category I is connected, i.e. for any two objects I and I’ there is a path
of arrows, back and forth joining them

[ — ] T —> . — I
Barr asked if every connected limit could be constructed using equalizers
and fibered products, i.e. limits of diagrams of the form
[

Ve

The answer is yes but not as straightforward as with products. An ad
hoc construction was published by Cockett in [3]. We propose to give the
problem a conceptual solution inspired by ideas from topology. In fact the
problem is merely an excuse to study the concept of universal covering
category whose theory provides a nice blend of topology and algebra.
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1. Simply Connected Categories.

In this section we give a brief review of simply connected categories and
their relation to limits, as exposed in [6].

Let Cat be the category of small categories and Set the category of
sets. There is a forgetful functor Ob : Cat — Set which remembers only
the set of objects of a category. Ob has right and left adjoints C' and D
respectively. C'is the chaotic or indiscrete category on a set of objects, i.e.
there 1s exactly one morphism between any pair of objects. D is the discrete
category on a set of objects, i.e. the only morphisms are identities. Set is
often viewed as a full subcategory of Cat via D. D itself has a left adjoint
mo : Cat — Set, the set of connected components of a category. mo(I)
is the set of equivalence classes of objects where two objects are related
if there is a path of morphisms, back and forth joining them. This is the
equivalence relation generated by I ~ I’ if I(I,I') # (. We say that I is
connected if mo(I) = 1.

Let Gpd be the category of small groupoids. It is a full subcategory of
Cat. The inclusion has right and left adjoints, 7so and m1. Iso(I) is the
subcategory of I consisting of all isomorphisms. On the other hand, the left
adjoint, m1(I), is obtained by formally adding inverses for all morphisms
of I. More precisely, we first construct a graph with the objects of I as
nodes and with I(7,7') + I(I',T) as edges from T to I'. We denote the
edge corresponding to a : I — I’ by o' and the one corresponding to
B :I' — I by p~'. We now take the free category on this graph and
then the quotient by the congruence generated by the relations

i) ajaj ~ (ara)!
ii) 1} ~ 1; (empty word)

111) ala=l ~ 15

-1

iv) a"tal ~1;.

The quotient is the category 7 (I). Thus the objects of 1 (I) are the same as
those of I, and the morphisms are equivalence classes of words aj,a,_1---ay
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1 1

where a; is either an a or a™". Of course in such a word, the domains
and codomains must match in the usual sense. Thus a morphism I — I

in 71 (I) can be represented as an equivalence class of paths
I:IO<—>11<—>[2... <—>[n:Il

where <— represents either —— or <— . Informally, two paths are
equivalent if one can be deformed into the other by using commutative
triangles.

In view of this discussion it seems fair to denote this category by m(I)
and call it fundamental groupoid of 1.

Because the equivalence relation is a bit unwieldy, it is best to avoid
it when possible and rely on the universal property, i.e. that m is left
adjoint to the inclusion Gpd > Cat. We shall denote the unit for the
adjunction by

Q1 — m(I).

It is the identity on objects and @(a) = a'! on morphisms.

A category I is called simply connected if m1(I) is equivalent to the
terminal category 1, m1(I) ~ 1. In elementary terms, 71 (I) has exactly one
morphism between each pair of objects.

By a fibered product (sometimes called wide pullback or infinite pullback)
we mean the limit of a diagram of the form

A
Az

\J

A;

There can be any number of A;, finite, infinite or even none. We reserve
the term pullback for the case when there are two.

The main result of [6] is that I limits can be computed using fibered
products if and only if I is simply connected.

REMARK 1. Carboni and Johnstone point out in [1] that if a functor
on a category with terminal object preserves fibered products (pullbacks),
then it preserves all (finite) connected limits. This is because a diagram
T':I — A with acocone v : ' — A can be lifted to a simply connected
diagram I't : IT — A by adding a terminal object co to I and defining
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['*(oc) = A. If I is connected then liLIlF-}_ & liLnF and a functor preserv-
ing fibered products will preserve the limit of I't as well as the cocone.
This gives rise to the following curiosity. A category with pullbacks and
coequalizers also has equalizers and any functor preserving pullbacks will
also preserve the equalizers.

ExXAMPLE 1. The categories represented by

L —> @ —> ¢ —> @

and

> @9 —— @ —> @ —— @ —> @ — ...

are both simply connected. So is the monoid {1, ele? = e}. It is an amusing
exercise to give a construction of limits of these types using fibered prod-
ucts. On the other hand, for the category E = ¢ — e, it is easily seen
that 7 (E) ~ Z, so E is not simply connected.

2. The Universal Covering Category.

Barr’s problem, to construct all connected limits from fibered products
and equalizers, suggests the following approach. From a connected category
construct a simply connected one which has the given one as a quotient in
some sense, 1.e. construct a universal covering category. The topological
construction is to take homotopy classes of paths starting at some base
point. This suggests a well-known construction from category theory, the
comma category construction.

The comma category was introduced by Lawvere in his thesis [4] in order
to express adjointness F 4 U : B — A as an isomorphism of categories
(F,B) = (A,U), thus giving a precise meaning to the statement “a mor-
phism FA — B is the same as a morphism A — UB”. The construc-
tion has since proved to be central. Given functors ® : A — C and ¥ :
B — C, the comma category comes with projections P; : (®,¥) — A
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and Py : (®,¥) — B and a natural transformation =y

P
(®, ) A
Py U [0}
B C
|\

and is the universal such. This means that for any 77 : X — A, T :
X — B and natural transformation 7 : ®77 — W75, there exists a
unique functor = : X — (&, ¥) such that P\E = T}, P.E = T» and
¥E = 7. There is an elementary description of (®, ¥). Its objects are
triples (A,¢: ®A — B, B) and a morphism (A, ¢, B) — (A', ¢, B') is
a pair (a,b) of morphisms @ : A — A’ and b: B — B’ such that

da
oA oA
[ C/
UB UB .

Let I be a connected category and choose an object Iy of I which will
remain fixed throughout this section. We define the unwwersal covering
category UI of I by the comma category construction
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Thus an object of UI is a morphism p : Iy — I in m1(I); a morphism
i:p — ¢ in Ul is a morphism ¢ of I such that

Q1

Our first objective is to show that UI is simply connected, and to this
end we have the following result.

THEOREM 1. m; preserves comma objects of the form

where G is a groupoid.

Proof. There is a canonical functor © : 71 (®, ¥) — (m®, m ¥) in-
duced by the universal property of the commaobject. Since G is a groupoid,
G — 1 G, and if we make the identification, the objects of 71(®, ¥) and
(m1®, m¥) are the same. © is the identity on objects. A morphism from
(A, g, B) to (A', ¢, B') in m1(®, ¥) is an equivalence class of words

(@n, bp)™ - - - (a2, b2)®* (a1, b1)"
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where
da; da;
DA D A; DA, D A;
gi—1 9i or gi—1 gi
UB;,_,; v B; UB;,_,; U B;
Wb, Wb,

depending on whether ¢; = +1 or —1. In either case, g;(®a;)* = (¥bh;)g;_1.
We also require that (A, g, B) = (Ao, go, Bo) and (A’, ¢', B") = (An, gn, Bn)-

On the other hand, a morphism in (7 ®, 71 ¥) is a pair (a,b) of equiv-
alence classes of words @ = af" - - -a5?aj*, b = b= - - b22b7" such that

71'1(1)(6)
®A DA
g g
VB -~ YR
qul(b)

ie. g'®(an) - P(ag)2®(a) = W(by)"™ - W(by)"2W(by) M g.
The effect of © on morphisms is now clear:

O((an,by)™ -+ (ag,b2) (a1, b)) = (a ---aS2ast, bir - - - b2b3Y).

n 17Yn

It is not necessary to check that © is well defined; it is by virtue of the
universal property of comma objects.

O has an inverse A which is necessarily the identity on objects. On
morphisms

A(ﬁ,b) = (an, lB/)En B
...(CLQ,131)62(611,13/)61(1A,bm)nm~~~(1A,62)n2(1A,b1)m.

The domain of (a;41,1p/)¢*+" which is the codomain of (a;, 1p/)¢ is
g = g'(®ap) - - (Pajy1)+', 0 < i < n. The domain of (14,b;41) which
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is the codomain of (14,5;) is g; = (¥b;)" --- (Uby1)"g, 0 < j < m. The
only compatibility which must be checked is that the domain of (a1, 15/)¢
is the same as the codomain of (14,b,,)"™, and this follows because (a, b)
is a morphism (4, ¢, B) — (4',¢', B').

That A is well defined is easily checked by observing that it respects
the basic instances (i)-(iv) of the congruence given in section 1. For ex-
ample, if (a,b) and (a’,b’) differ only in that a}ail+1 in a is replaced by
(aia;41)" in @', then A(a,b) and A(a’,b’) differ only in that the first has
factors (a;, 1p/)'(ait1, 1p/)" whereas the second has (a;a;41,15/)! so that
A(@,b) ~ A(a’,b"). The other instances are equally straightforward.

Because a°1¢ ~ a¢ it follows that @A = I(m1®,m,9). To see that A© =
Iz, (@,), observe that

(1,b)(a, 1) = (a,b) = (a, 1)(1,b).

These equalities are not as innocent as they look. In order to factor (a,b)
as (1,b)(a, 1) one uses the fact that G is a groupoid. The other relations
hold quite generally in any comma category.

This completes the proof: it is not necessary to check functoriality of A
as it 1s inverse to the functor ©. &

REMARK 2. We have given the proof in such detail because we consider
this to be the main result of the paper. We were not able to get a proof
based on the universal property of m;. Rather, we consider the result as
a basic extra property of m, to be used in conjunction with the universal

property.

REMARK 3. The condition that G be a groupoid is necessary. Indeed
if G and G’ are two objects of G, the comma category

G(G,G) —— 1
1 —— G
W

is the discrete category on the hom set G(G,G’). Applying 7 leaves this
unchanged but the new comma category is the hom set (71 G)(G, G'). Thus
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if 1 preserves all comma objects of functors into G, G must be 1Isomorphic
to m1 G, i.e. it must be a groupoid.

REMARK 4. Since we assume that G is a groupoid, any natural transfor-
mation between functors into it is a natural isomorphism. Thus the comma
category is also the pseudo-pullback. The pseudo-pullback is similar to the
comma category described at the beginning of the section, except that the
natural transformations v and 7 are required to be natural isomorphisms.
Tts objects are triples (A, ¢, B) where ¢ is an isomorphism. The rest is the
same. But the result is not true for general pseudo-pullbacks either. It
is again necessary that G be a groupoid. To see this, one must consider
pseudo-pullbacks of diagrams of the form

We leave details to the sceptical reader.

REMARK 5. Properties similar to this result have been considered in
the literature for mp. See [2] and references there.

REMARK 6. This is a nice example of how category theory combines
the topological and the algebraic. It is not clear what condition should
replace that of being a groupoid if one wished to prove a similar result for
pullbacks or homotopy pullbacks of spaces.

ProprosITION 1. A pseudo-pullback of an equivalence of categories s
again an equivalence.
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Proof: Let

be a pseudo-pullback and ® an equivalence functor.
For objects (A, ¢, B) and (A’, ¢, B') of P, the hom set can be described
as a pullback in Set

P((A, ¢, B), (A", ¢, B")) A(A A

B(B, B') C(PA,UB) .

The map on the right is a composite

> C(DA, ¢')
A(A, A') — C(DA, A

C(®A, VB,

and the bottom map is similar. Since ¢ is an isomorphism, C(®A4,¢) is a
bijection, and since ® is full and faithful, the first map (also called ®) is a
bijection. Thus the composite is a bijection, so its pullback is also one and
therefore © 1s full and faithful.

Since @ is essentially surjective on objects, for any B in B there exist
A in A and an isomorphism ¢ : ®4 — ¥B in C. Then (A, ¢, B) is an
object of P and ©(A, ¢, B) = B, i.e. © is surjective on objects. Thus O is
an equivalence. &

COROLLARY 1. The unmwersal covering category, Ul, of a connected
category I 1s stmply connected.

Proof. Recall that UT is defined as the comma category
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vy —— 1

I — ml.

By theorem 1,

7T1UI —— ’/T11

7T11 E—— 7T11

mQ

is also a comma square, and since w11 is a groupoid, it is a pseudo-pullback.
m1 () 1s an isomorphism and so an equivalence. Thus by proposition 1,
mUI — m1 = 1 is an equivalence of categories, i.e. UI is simply con-

nected. &
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ExAMPLE 2. Let G be a group considered as a one-object category.
Then 7 G =2 G so the universal covering category is

+/G —— 1

P

ll, \ I—*—l

G —_— G .
lg

* /G is the chaotic category with the elements of G as objects. The functor

1

P takes the unique morphism ¢ — h to hg~™" : ¥ — % in G. So we see

here very clearly that UG is simply connected and covers G.

ExXAMPLE 3. Let D be a connected graph and F'D the free category
generated by D. The morphisms of FD are paths

Dy —= Dy —> Dy —> ... —» D, .
The morphisms of 71 FD can be represented by reduced paths
D0<—>D1<—>D2<—> <—>Dn

where <— means an edge —> or <— , where there are no occurrences
of

T ; ; T
D—>D <D nor D < DD

Choose a base object Dg. Then U FD has as objects all such reduced paths
p: Do — D. There is at most one morphism p — ¢ between any two
paths and there is one if and only if gp~! € FD, i.c. if and only if, except
for a common initial part, ¢ consists of forward arrows and p of backward
arrows.

E.g. Let D = QQ. Then FD = N the monoid, m FD = Z the group,
and U FD = 7Z the poset.

The standard example of the circle covered by a helix also has an ana-
logue here. Let D = {o, : 0 == 1}. Then FD = D (with identities
adjoined). In m; FD the reduced paths from 0 to itself are {(8~'a)"|n € Z}
and from 0 to 1 they are {a(3~'a)"|n € Z}, and so on. In any case we see
that 7 F'D ~ Z as mentioned before. If we choose 0 as base object, U FD
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has as objects (37 1a)™ and a(B~1a)", i.e. two copies of Z. There is a mor-
phism over a, (71a)® — a(f~!a)™ and a morphism over 3, (3~ 1a)"*!
— a7 'a)". Thus we have the picture of U FD — FD:

./.
~
./.
~
./.
\.
i

3. Connected Limits.

Let I be a connected category and I a fixed object of I. Let G be the
group of endomorphisms of Iy in mI, G = (mI)(lo, Iy). Let UI be the
universal covering category of I, based at Iy. There is a right action of G
on UL For each g € G we have a functor

Rg
UL — UI

R4(p) = pg on objects, and for i : p — ¢ in UL, Ry(i) = i : pg —> qg.

PropPoSITION 2. The quotient of UI by this action (i.e. the colimit in
Cat)is P: Ul — L.

Proof. Since P selects the codomain of a path, we see that PR, = P
for all g.

Let F : UL — A be such that FR;, = F for all g € G. We must
show that there is a unique H : I — A such that HP = F. Since I is
connected, for every I there is a morphism p : Iy — I in mI, i.e. an
object p in UI such that P(p) = I. Thus P is onto on objects. P is
also onto on morphisms (but not full!) since for i : I — I’ in I, we also
have i : p — ip in UI and P(i : p — ip) = i. Thus if H exists it is
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necessarily unique. H(7) must be F(p) and H (i) must be F(i : p — ip).
If ¢ : Iy — I is another morphism in I, then p~l¢q : Iy — I is an
element of G and R,-1,(p) = g so F(p) = F(q) and F(i: p —> ip) = F(i:
q — iq). Thus H is well defined, and is now easily seen to be functorial.

&

Such colimit formulas in Cat correspond to general constructions of
limits and colimits in category theory. To see how this comes about, let A
be a category and let Cat/A be the category of categories over A. There
is a functor A : A — Cat/A which takes A to the slice category

A(A) = (A/A o, A).

For a diagram I' : I — A, a morphism

I —— A/A

N/

A
is exactly the same as a cocone
v: T — A

Thus the partial left adjoint to A exists at ' if and only if " has a colimit,
and the value of the partial left adjoint 1s that colimit.

Partial left adjoints are part of the categorical folklore. A functor U :
B — A has a left adjoint at A if the functor A(A,U—) : B — Set is
representable. If we choose a representing object F'A for each such A, F
extends uniquely to a functor on a full subcategory Ay of A. F preserves
colimits in the following sense: if I' : I — Aj has a colimit A in A, then
F' A is defined if and only if FT has a colimit in B and then

iIllFr ~ Firllf.

Thus if we have a colimit in Cat, say EIPJ(I)(J) ~Jfor®:J — Cat,
then for any A and any diagram ' : I — A we get a diagram of diagrams
Ty :®(J) — A by composition with the injections, and T is the colimit of
the 'y in Cat/A. Since lim is a partial left adjoint to A : A — Cat/A,
we see that

I_HEIIF(I) = I_IIEJI_IIEKFJ(I{)
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and provided each EIEKFJ(K) exists, the left side exists if and only if the
right side does.

Of course this discussion can be dualized. Colimit formulas in Cat also
give rise to general constructions of limits. So ifﬁrlu(I)(J) = T then

lim T(7) = lim; lim Ty (K).
Perhaps the simplest example of such a formula 1s
AxBx(C=Z(Ax B)xC
which comes from the formula
3=2+1

in Cat, where 3, 2, 1 represent discrete categories with 3, 2, 1 objects
respectively.

As the whole paper is stated in terms of limits it is this last version
which we use.

THEOREM 2. A connected limit can be computed as a simply connected
limit followed by the fized object of a group action (the limit of a diagram
indezxed by a group).

Proof. Apply the above discussion to the result of Proposition 2.
&

COROLLARY 2. Connected limits can be computed using fibered products
and fized objects of group actions. &

ProPOSITION 3. If a category I has a weak initial object, then I limits
can be computed using equalizers and intersections.

Proof. Let W be a weak initial object for I, i.e. I(W, I) # @ forall I € I.
Let I' : I — A where A has equalizers and intersections. For every pair
of arrows o, 3 : W === I'in I, let

Aagp > T(W) = T()

be an equalizer, and let A = (A, g. Then A is the limit of I'. For
any I there is at least one morphism a : W — [ so we have ~/[ :
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A >— T(W) — T'(I). 4! is independent of the choice of @ as A C A, g
for all o, 8 : W — I. 1t follows that v is a cone A — I'. For any other
cone k: B — T, T'(a)k(W) = k(I) = T(B)x(W) for all a, § as above, so
k(W) factors through each A, s and thus through A, as k(W) = y(W)a.
Then

k(1) = T(@)x(W) = N(a)y(W)a = 4(I)a.

Finally a is unique as y(W) is monic. &

COROLLARY 3. Connected limits can be computed using fibered products
and equalizers.

Proof. This follows immediately from Corollary 1 and Proposition 3 as
a group has a weak initial object, and an intersection is a fibered product.

&

The fact that we chose a base object in order to construct the universal
covering category, on which everything else depends, is somewhat unsatis-
factory. To be sure, any other choice would give an isomorphic category,
but the isomorphism is not unique. The methodology of category theory
suggests that we search for a choice-free construction. This is what led
to the fundamental groupoid rather than fundamental group. The solution
lies in Kan extensions and the fact that, in some sense, @ : I — mI 1s
the family of all universal covering categories with the action of 711 built
in. We end this section with a theorem which gives a precise formulation
of such a base free theory.

THEOREM 3. Let I be any category and A a category with fibered prod-
ucts. Then A has right Kan extensions along Q : I — w1, 1.e. the
functor *

A7r11 g’ AI
obtained by composition with Q, has a right adjoint, Rang.
Proof. For T : I — A, RangT'(Iy) is given by the limit of the diagram
P r
(Q.I)) — T — A

if these limits exist. These limits do exist as (@, Ip) is simply connected; it
is the universal covering category of the component of Iy in I. &
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The relation to limits is the following. We have a commutative diagram

Q*

— A7r11

\ /4

A

which gives, on passing to right adjoints

Rang

_ A7r11

hm \ / lim

A

If I is connected, m I has a weak initial object and limr, 1 can be computed
using equalizers and fibered products (Proposition 3).

4. Direct Constructions.

Lest someone think that we have obscured matters with our “slick”
conceptual proof, we give a direct construction of connected limits from
equalizers and fibered products. The direct approach has the added advan-
tage of working also for finite limits, which our method does not.

Let ® : J — I be a functor. We construct a new category 1 +4 I by
adding to I a cone on ®:

—ee| o

We add a new object —co, and for every J in J we add a new morphism ¢ :
—o0o — ®J and then we impose the equations (®7)e; = 5 for each j :
J — J'in J. What we have described is a cocomma category construction
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1 — 1451

It has a universal property dual to that of comma category. This means
that for any category A,

T*
A1+<I>I _— AI

Al —— A

is a comma square. In concrete terms, a diagram 1+ I — A is the same
as a diagram I' : I — A together with a cone o : A — ['®.

ProprosiTION 4. If A has J limits, then A has right Kan extensions
along Y, i.e. T* : Attel — Al has a right adjoint, Ranv.

Proof. If we view Altel as the comma category, then its objects are
pairs (T', @) and T*(T', @) = T. Tt is an easy calculation to see that Rany(T)
is given by ([',y: limI'® — I'®). &

In view of the discussion at the end of section 3, we can compute I
limits, by first taking Rany, and then a 1 44 I limit (assuming Rany
exists).

Let I be connected. Choose some base object Iy and for every other
object I choose a path

Ip~— 6 —> ¢ «— o--.0 — ],
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Construct a graph by joining disjoint copies of each of these paths at the
common node [

e e
~ 0

O+— 0 —> 0 «—0—> 0

and let J be the free category generated by the graph (as there are no
composable pairs, it suffices to add the identities). There is an obvious
functor @ : J — I which is onto on objects. Thus the category 144 I has
a weak 1nitial object. Furthermore J is easily seen to be simply connected;
any path of arrows starting at Iy must retrace its steps in order to return
to [0.

Let A be a category with fibered products and equalizers. Then, by
proposition 4, A has right Kan extensions along T : 1441 — I as simply
connected limits exist in A. So I limits can be constructed as 1+ I limits
of a Ranvy. Since 1+4 I has a weak initial object, limits of that sort can be
constructed in A using equalizers and fibered products. Each of these steps
can be effectively carried out and in the case where I is finite or finitely
generated all limits are finite.

Putting all this together we can give an explicit construction for the
limit of a (finite) connected diagram.

1) Choose a vertex of the diagram, and for each other vertex choose
a path of edges joining it to the first one.

2) Using (pullbacks, or in the infinite case) fibered products, take
step by step the limit of the star-shaped diagram so obtained.
This gives something like a cone for the original diagram except
that it may have several arrows into some vertices and some of
the triangles which should commute, don’t.

3) Take the equalizer of each pair of maps corresponding to multiple
edges or defective triangles.

4)  Take the intersection of all these equalizers.
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