What is a doubly involutive monoidal category?
(notes on a talk given at Dalhousie on 3 March 2015)

JME
March 5, 2015

1 Recap of Joyal & Street

Let £ = (K,®,T) be a monoidal category. A monoidal functor 1 — K is the same thing as a monoid in
K. In particular, the trivial monoid defines a monoidal functor T = (T,¢,%) : L — K, which happens to be
strong. (In general, our notation for monoidal functors follows a similar pattern: M = (M, pu, 1) : J — K.)
In fact, T is the only strong monoidal functor 1 — K, up to isomorphism, of course.

Now suppose that X = (X, x, x) is a strong monoidal functor K x K — K, and that A, p are monoidal
natural isomorphisms of the form below.
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Writing pX ¢ in place of X(p, ¢), this means we have arrows

qu’l" S )2

PXq) @ (rXs) ——————— (p@nr)X(¢®s) I———TXT
A
IXp P p pXILM)

satisfying the diagrams below.
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(and the same again for p).
One obtains natural isomorphisms
Pyt @A Xp,I,T,s ~ X~
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—which we denote o, s and 3y, respectively. Then the composite
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defines a braid on ®. Furthermore,
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—s0 « defines a monoidal natural isomorphism ® — X, where ® is the monoidal functor K x L — I com-
prising the functor @ : K x K — K together with the braid-induced interchange and canonical isomorphism,
as above.

Hence there is no “essential” loss of generality in assuming « to be the identity. Thus, in this case: ( is
the braid, y is the braid-induced interchange, and x is the canonical isomorphism.



Indeed, in general,

I®p4>IXp p®I4>pXI
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s0 « is even an isomorphism between the ensemble (®, ~,~) and (X, A, p).

2 Monoidal MCs

For definitions of all things involutive monoidal: see On involutive monoidal categories.

Let K = (K,®,( ), I) be an involutive monoidal category. An involutive monoidal functor 1 — K is the
same thing as a dagger monoid in K. There is a trivial dagger monoid which defines a strong involutive
monoidal functor T = (T,¢,¢,Z) : 1 — K. (In general, our notation for involutive monoidal functors follows
this pattern: M = (M, p, [, 1) :+ J — K.) I believe that this is the only strong involutive monoidal functor
1 — K, up to isomorphism, of course.

As in the previous section, almost all canonical isomorphisms, including now p® ¢ — ¢ ® p, p — p, and
T — T, will be denoted simply ~; the occasional exceptions are ¢, i, and i, all of which are all canonical.

Suppose that X = (X, x, x, x) is a strong involutive monoidal functor I x £ — K, and that A, p are
involutive monoidal natural isomorphisms of the form below.
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Again writing pX ¢ in place of X (p, ¢), this means we have arrows
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—in addition to those encountered in the previous section; moreover, they satisfy the diagrams

pXqg®rXs — (rXs)® (pXq)
Xp,q ® XT)SJ lxr,smyq
(pX7) ® (TX53) repX(s®q)

an,r,{ lx (r®p),(s®q)
POTX@®s) — 2 T EpXE]

Xpyql

pXq

Xp,ql

IZ?XELWXQ


http://www.tac.mta.ca/tac/volumes/25/14/25-14abs.html

IXp IXPp IXp

<
>
3|

| ¢—

Pp

—_— s ——
=

|
— Xp, T _ pXi
pXT 2 PXT — 2 PXT

—in addition to those encountered in the previous section.
As before, one obtains natural isomorphisms

-1 -1
P ®/\s Xp,I,I,s ~X~
p@s—2 7 L (pXT) @ (TXs) —2E L (e T)X(T®s) — X 4 pXs
/\q_l b2 p;1 XTI,q,r,T

q®r—>(IXq)@(rXI)—)(I@r)X(q@I)Lﬂ“Xq

—which we continue to denote «, s and 3y, respectively.
Now it is natural to conjecture that x is somehow related to the braid, and this is indeed true.
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can be summarised as

—so0 x is related to the braid by isomorphisms which can be assumed to be identities without “essential”
loss of generality.



But are there any restrictions on the braid?

PR3 S®p
T T
E@MS @0

PRSP, @A pXI®IXs—> IXs®pXI <—S®p
® A l Xp,T ® XI,S XTI,s,p, T lﬂs P
(PXi)® (iXs) v X
(PXT) ® (IX35) +—— (pX 1) ® (T X3) (I@p)X(s®@IL)——pXs
Xp,I,T sl XETTE X(I@p) (s®T) lXp,s
PRHX(I®73) — ~X ~ ~
PRIDX(IR3)¢+—(P® X(I@s)—>I®st®I—>st
p® L ( zi(_%
X(I ®3) ~ X pX3
can be summarised as
PRT——— 35®p
O@,gl l@jp
pXs pXs
\ lXp,s
pXS

—which, when combined with the previous characterisation of x, results in the “anti-real” axiom of Beggs
and Majid.
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Is this all? I think so.

Summary Given an involutive monoidal category K = (K, ®, U, T), and a braid for ® which satisfies the
“anti-real” axiom above, we can make ® into a strong involutive monoidal functor K x  — K, by equipping
it with: the braid-induced interchange (p ® ¢) ® (r® s) — (p® 1) ® (¢ ® s), the braid-induced involution

— ~Tl - braid _
pP®q qdp P®q

and the canonical isomorphism T — T ® I. Moreover, the canonical isomorphisms T®p — pand p® T — T
are involutive monoidal, wrt @ and L.

Conversely, given a strong involutive monoidal functor X : £ x L — K, and involutive monoidal natural
isomorphisms A, p of the relevant type, we can induce a braid on ®, and an involutive monoidal natural
isomorphism ® — X.



3 Involutive monoidal iMmcs—take 1

Now suppose that—in addition to the data given above:
1. an involutive monoidal category K = (K, ®,U, 1),
2. a strong involutive monoidal functor X = (X, x, x, %) : K x K —= K

3. involutive monoidal natural isomorphisms

IxK KxZI
1xK KExK Kx1

4. an involutive monoidal functor T = (T, 7,7,7) : K = K

we also have

5. an involutive monoidal natural isomorphism

symmetry TxT
KxK KxK KxK
x| . L
K K
T
6. an involutive monoidal natural isomorphism
K
T T
Je
K K

satisfying various expected equations.

What then? As before, one can induce a natural isomorphism ® — X, but one cannot induce an

analogous natural isomorphism ( ) — T, as we shall see in the next talk.

However, in the case where T'= ( ), one can derive a further structure on /C, namely a balance £ for the

previously constructed braid, which also satisfies an “anti-real” axiom
-1
&=6

and I claim that that is all.

In other words, I claim that, given an involutive monoidal category K, and a braid 3 for ®, and a balance
¢ for f3, each satisfying the corresponding “anti-real” axiom, we can construct data as above with T' = ().
But it now seems to me that the general case is of more interest than I originally thought, and I intend

to explore it in my next talk.
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