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Abstract

The search for a semantics for higher-order quantum coripotieads naturally
to the study of categories of normed cones. In the first pahisfpaper, we develop the
theory of continuous normed cones, and prove some of thsic peoperties, including
a Hahn-Banach style theorem. We then describe two diffe@mtretex-autonomous
categories of normed cones. The first of these categoriesilisftom completely
positive maps as in the author's semantics of first-ordentyuma computation. The
second category is a reformulation of Girard’s quantum caftespaces. We also point
out why ultimately, neither of these categories is a satiefg model of higher-order
guantum computation.

1 Introduction

In quantum computation, one often considers programs wihéglend parametrically on
a so-calledblack box which is typically a quantum circuit that computes somengvin
function. The black box is considered to be part of the indguhe program, but it dif-
fers from ordinary data, such as qubits, in that it can onlytdsted via observing its
input/output behavior. In the terminology of functionabgramming, programming with
black boxes is a special case of what is knowtigher-order functional programming
which means, programming with functions whose input andiput may consist of other
functions.

Recently, there have been some proposals for higher-oudetam programming lan-
guages, based on linear versions of the lambda calculuslPL110]. These languages
have been given meaning syntactically, in terms of theierationalbehavior; however,
there is currently no satisfactodenotationalsemantics of such higher-order quantum
programming languages. This is in contrast to the first4ocdse, where a complete de-
notational description of the quantum computable function finite data types, based on
superoperators, has been given [8].

*This is a corrected version of an article which appeareBrateedings of the 2nd International Workshop
on Quantum Programming Languagdsirku Centre for Computer Science General Publication BlpB. 127-
143, June 2004. Example 2.11 has been corrected. An expaadgdn with full proofs is also available.
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In trying to extend this work to the higher-order case, onledsto search for a sym-
metric monoidal closed category which contains the categbsuperoperators from [8]
as a full, symmetric monoidal subcategory. This leads @adliuto the study of categories
of normed cones, as pioneered by Girard in his study of quactherent spaces [5].

In the first part of the present paper, we attempt to develogsgesatic account of
normed cones and their basic properties. The study of noooees is similar, in many
respects, to the study of normed vector spaces, but thesoare important differences,
notably the presence of a partial order, the so-catiede order This order allows us
to use techniques from domain theory [2], and to work witheotitheoretic notions of
convergence and continuity which are rather stronger tharérresponding notions that
are usually available in normed vector spaces such as Bapaces.

In the second part of this paper, we report on two instrudiied ultimately failed)
attempts at constructing a model of higher-order quantumpedation based on normed
cone techniques. We describe two concrete categories wigtbcones. The first such cat-
egory is a direct generalizations of the category of supsnatprs from the author’s work
on first-order quantum computation [8]. The second catepopased on a reformulation
of Girard’s quantum coherent spaces. Both categories tuirtoobe x-autonomous, and
thus possess all the structure required to model highesrdircear language features (and
more). However, neither of these categories yields theecbanswer at base types, and
thus they are not correct models of quantum computation. athieor believes that the
techniques used here are nevertheless interesting and teniglout to be building blocks
in the construction of a model of higher-order quantum cotaien in the future.

Acknowledgments and Errata. | am grateful to Andrea Schalk for many useful discus-
sions on the topics of this paper, and to Vincent Danos fareotions. The current version
of this paper differs from the published version. | have ected errors in Lemma 2.10
and Example 2.11, as well as some minor typos.

2 Cones

In this section, we develop the basic theory of continuousyead cones. The techniques
used are similar to those employed in the study of normedvegtaces, except that we
also make extensive use of domain-theoretic methods t@#stpe partial order which
naturally exists on cones. Another domain-theoretic tneatt of cones was given by Tix
[9], but the present work differs in many key details, suctha&spresence of a norm, and
the consequently modified notion of completeness.

2.1 Abstract cones

Let R, be the set of non-negative real numbers. ghstract conés analogous to a real
vector space, except that we tdRe as the set of scalars. SinBe. is not a field, we have
to replace the vector space law+ (—v) = 0 by acancellation lawv + © = w + v =

v = w. We also requirstrictnesswhich means, no non-zero element has a negative.
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Definition (Abstract cone) An abstract conds a setV/, together with two operations
+:VxV —=Vand :R; xV — V and a distinguished elemet V, satisfying the
following laws for allv, w,uw € V and\, p € Ry:

O+v=w lv=wv

vt (wtu) = (vtw) +u (Ao =A(p)

v+w=w+0v A+ p)v= v+ v
Av+w) = v+ dw,

v+tu=w+u = wv=w (cancellation)
v+w=0 = wv=w=0 (strictness)

Example2.1 R, is an abstract cone. The set
Ri = (,{1,’17...71’n) | T1y.--,Tn €R+}

is an abstract cone, with the coordinate-wise operationsreNgenerally, ifi;, ..., V,
are abstract cones, then solis x ... x V,,. The set of all complex hermitian positive
n X nm-matrices,

P,={AeC"™" | A= A* andVv € C".v*Av > 0}
is an abstract cone.

Definition (Linear function) A linear functionof abstract cones is a functigh: V- — W
such thatf (v +w) = f(v) + f(w) andf(Av) = Af(v), forallv,w € V andX € Ry.

Remark.Every abstract cong can be completed to a real vector spaee(V), which we
call theenveloping spacef V. The elements afnv (V') are pairv, w), wherev,w € V,
modulo the equivalence relatidm, w) ~ (v/,w’) if v + w' = v + w. Addition and
multiplication by non-negative scalars are defined poiséwiand we define-(v, w) =
(w,v). We say that an abstract condiisite dimensionaif its enveloping space is a finite
dimensional vector space.

Definition (Convexity) A subsetD of an abstract con¥ is said to beconvexf for all
u,v € DandX € [0,1], Au + (1 — M\)v € D. Theconvex closuref a setD is defined to
be the smallest convex set containifg

2.2 The cone order

Definition (Cone order) Let V' be an abstract cone. Tlkene ordeiis defined byv C w
if there existsu € V such that + « = w. Note that the cone order is a partial order. If
v C w, then we sometimes also write— v for the unique element such that + u = w.

Remark.Note that every linear function of abstract corfesV — W is alsomonotone
i.e.,v C v implies f(v) C f(v’). Also, addition and scalar multiplication are monotone
operations.

Example2.2 OnR,, the cone order is just the usual ordeof the reals. OMR", itis the
pointwise order. OrP,,, it is the so-called.dwner partial order{7].
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Definition (Down-closure) Let D C V be a subset of an abstract cone.désvn-closure
1D is the set{fu € V|Fv € D.u C v}. We say thatD is down-closedf D = |D.
The concept ofip-closures defined dually. Note that the down-closure of a convexsset i
convex.

2.3 Normed cones

Definition (Norm). LetV be an abstract cone. #ormonV is a function||—|| : V — Ry
satisfying the following conditions for all, w € V andX € R;.:

[o+wl < [lvff + [[wl]
[Av] = Aol

lo| =0=v=0
vEw = [loff < flw]|

A normed cond” = (V. ||—||) is an abstract cone equipped with a norm.

Remark. The first three conditions of a norm are just the usual coomtior a norm on a
vector space, except of course that the scalar propertgtisated to non-negative scalars.
The last condition ensures that the nornmisnotone

Definition (Unitideal) Theunitidealof a normed con&’ is the set
Dy ={veV||v| <1}

It is akin to the unit ball in a normed vector space.

2.4 Complete normed cones

We recall the definition of a directed complete partial ofdem domain theory [2].

Definition (Directed complete partial order (dcpo)) partially ordered setd is called
directedif for all a,b € A, there existg € A with a,b C c. A partially ordered setD, C)
is called adirected complete partial order (dcpdf)every directed subset of D has a
least upper bound i. The least upper bound of a directed subsés denoted by/4,
and it is also called thdirected supremupor sometimes thémit, of A.

If Iis a directed poset anb is a dcpo, then a monotone map I — D is called
andirected net(or simplynef). As usual, we write a net d%;);c;. The image of a net
is a directed subset dp, and its directed supremum is written #s- ;a;. Note that an
increasing sequence is a particular kind of directed net.

Definition (Complete normed coneA normed cond/ is calledcompletdf its unit ideal
is a directed complete partial order.

Remark.A normed coné/ is complete if and only if the following two conditions hold,
for all directed net§a;);cr in V:

o if \/,a; exists, then|\/,a;|| = \f;||a:||, and
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e if {||a;|| | 7 € I'} is bounded, thely,a; exists.

The first of these condition states that the norns@®tt-continuous.e., it preserves di-
rected suprema. The second conditioné®@mpletenessondition; it is akin to the require-
ment, in complete normed vector spaces, that every Caudugsee has a limit. However,
unlike in normed vector spaces, we require convergenceredjirect to therder, not with
respect to th@orm The norm merely serves to rule out unbounded sequences.

2.5 Examples

We write z Ll y for the maximum of two numbers,y € R,. Note that this operation
is commutative and associative, has upitand is distributive with respect to addition:
(FUy)+z=(z+2)U(y+2).

Example2.3. R, is a complete normed cone withx|| = x. The sefR"} is a complete
normed cone with thé-norm

(z1,. .. x| i=21 + ..o 4 2.
The sefR’} is also a complete normed cone with tkenorm
(@1, oy zn)]|oo =21 U U Xy

More generally, ifVy,...,V, are complete normed cones, then each of the following
formulas makd/, x ... x V,, into a complete normed cone:

[(or, o)1= o]y + -+ [lonllv,,,
|(v1, ... 00)]loo = lJv1]lvs U ... U |on]lv;,-

We write Vi @ ... @ V,, for the normed conéV; x ...
Vi&...&V, forthe normed conéVy x ... x Vp, | —[loo)-

The setP,, of complex hermitian positive x n-matrices is a complete normed cone
with the 1-norm(or trace norm)

X Vo, |I—1l1), and we write

AL = [[Alle =tr A= Zan‘-

Itis also a complete normed cone with tikenorm (or operator norm)
[Alloo = supf|Av| | v € C*, v <1},

where|v| = v/v*v denotes the usual norm of a complex vector. Note fAgl; is the sum
of the eigenvalues ofl (counted according to multiplicity), anf4|| « is the maximum of
the eigenvalues.

Example2.4. Consider the seV = {(z,y) | x =y =0o0rz,y > 0} C R? with the
norm||(z,y)|| = = + y. Clearly,V is a normed cone. However, it is not complete: the
increasing sequencg = (2 — 1/i,2 — 1/i) has many upper bounds, none of which is
least. For exampl€?2,2) and(2, 3) are two incomparable minimal upper bounds.
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Example2.5. Let ¢, be the set of sequencesin of bounded sum, together with the sum
norm||(x;):|[1 = >, zs. Letl be the set of bounded sequenceRin together with the
supremum nornfj (z; )|/ = Sup z;. Then both’; and/,, are complete normed cones.
Least upper bounds are given pointwise.

Example2.6. Let P be any partially ordered set, and Rt be the set of bounded mono-
tone mapsf : P — R.. LetRY be equipped with the pointwise operations of addition
and scalar multiplication, and with the supremum ndjtffi = sup{f(¢) | ¢ € P}. Then
RY is a complete normed cone. Least upper bounds of directscanegiven pointwise.
However, note that the cone orderon Ri does not in general coincide with the point-
wise order, because fgrC g, we must have that — f is not only non-negative, but also
monotone.

2.6 Continuous normed cones
We recall some additional concepts from domain theory [2].

Definition (Continuous dcpo) If w, v are elements of a dcpb, we say thatw is way
beloww, or in symbolsw < v, if for any directed setl with v C \/‘A, there exists some
a € A such thatw C a. We write v = {w | w < v} and$v = {w | v < w}. A dcpo
D is calledcontinuousf for everyv € D, the setlv is directed and = \/‘W-

Definition (Continuous normed coneA continuous normed corie a complete normed
cone whose unit ideal is a continuous dcpo.

Remark.If V' is a complete normed cone, th&his continuous iff for every € V, the
setlv is directed and = \fLv in V. In particular, continuity, as a property of complete
normed cones, is independent of the norm; it only dependseorder.

2.7 Examples

Example2.7. The complete coneB, R", Py, £, and/; from Examples 2.3 and 2.5
are all continuous. IR, we havez <« y iff x = 0 orz < y. InR7}, we have
(1,0 y2n) < (Y1,...,yn) iffforall ¢, z; = 0orz; < y,. InP,, we haved <« B iff
forallv € C*, v*Av = 0 orv* Av < v*Bv. In{,, and/, we haver < yiff Z is finitely
supported and for all z; = 0 orz; < y;. Moreover, ifV, ..., V,, are continuous normed
cones, thenso arg @ ... ® V, andV; & ... & V,, and the way-below relation is given
pointwise in this case.

Example2.8 Let I = [0, 1] be the unit interval with the natural order. Consider the
complete con®’_ of monotone functiong : I — R (see Example 2.6). We claim that
R! is nota continuous cone. Indeed, consider the pfap = =, and suppose thgt < g.

We will show thatf = 0. We first show that for any € I, there exists a neighborhood of
x on which f is constant. Fix: € I. For anye > 0, defineg. by

Yy fy<z—e
r—e frz—e<y<a+te
y—2¢ ifrt+e<y.

ge(y) =
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Then the netg.).~o converges tg. Hencef C g. for somee > 0. Sinceg, is constant
on a neighborhood aof, and bothf andg. — f are monotone, it follows thaf is also
constant on a neighborhoodef As = was arbitrary, and is connected, it follows thaft

is a constant function, hence necessafily- 0. As there is only one element way below
g, it follows thatR is not a continuous cone.

Open Problem. Characterize the partially ordered sétfor whichR%’ is a continuous
normed cone.

2.8 Order convergence and norm convergence

We have already remarked that, in the theory of normed comesyormally consider
convergence with respect to the order, and not with respeittet norm. However, it is
sometimes useful to know more about the relationship betwestwo concepts.

Remark.Order-convergence does not in general imply norm-convesrgdor instance, in
¢, the increasing sequeneg = (1,1,...,1,0,0,...) has least upper bourid, 1, . . .),
but it does not converge in norm.

On the other hand, norm-convergence of increasing seqsémgdies order-conver-
gence, as shown in the following lemma:

Lemma 2.9. Let V be a complete normed congy;); an increasing sequence (or a di-
rected net), and let be an upper bound such thia — v; | — 0. Thenv = \£,v;.

Proof. By completeness, a least upper bound exists, so let\/,v;. Sincev is an upper
bound, we havev C v. Now for all 7, we havev; C w, hencev — w C v — v;, hence
lv —w|| < |lv—w;]|. As the latter quantity converges@pwe must havdlv — w|| = 0,
hencev = w. a

2.9 Bounded and non-expanding functions

Definition (Bounded and non-expanding linear functiohmet V' and W be complete
normed cones. A linear function of congs: V' — W is boundedif there exists a
constantc € Ry such that foralb € V, || f(v)|| < c|lv]|. Itis non-expandingf for all
veV, [If)] <.

Perhaps surprisingly, the definition of boundedness isnédnt, as the following
lemma shows:

Lemma 2.10. Any monotone function satisfyiffg\v) = A f(v) (and therefore any linear
function) between complete normed cones is bounded.

Proof. Supposef : V' — W is monotone but unbounded. For eackhoose an element
v; € V such thatv;|| = 1 but||f(v;)|| > 4 - 2°. Now consider the sequence whatie

elementis
1 1 1
u; :’UO+§U1+ZU2+...+§’UZ'.

Then (u,); is an increasing sequence ¥ with ||u;|| < 2 for all i. By completeness,
this sequence has a least upper bound \f;u; with ||u|| < 2. On the other hand, by
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construction, we hav&f (u;)| > |f(v:)]|/2° > i. Now for all i, we haveu; C u, thus
f(u;) C f(u), thusi < ||f(ui)]| < ||f(w)||. This contradicts the fact the(u) has finite
norm. O

2.10 Continuous linear functions

Definition (Continous linear function)Let V- andW be complete normed cones. A func-
tion of conesf : V' — W is calledScott-continuouéor simply continuouif it preserves
directed suprema, i.e., ff(\f;a;) = \/; f(a;) for all bounded directed neta;);.

Example2.11 Consider/., as in Example 2.5, and Iéf be an ultrafilter onN. For
any sequence = (z;); € ¢, definelimy z to be the supremum of all € R, such
that{i | z; > a} € U. Then the functionf(z) = limy Z is linear (and thus bounded
by Lemma 2.10), but not continuous: it maps each member oinitreasing sequence
v; =(1,1,...,1,0,0,...) to 0, but maps its least upper boundito

Lemma 2.12. In a complete normed cone, addition and scalar multiplicatare contin-
uous.

Proof. Note that for any fixed, the functionf (v) = a + v is an order isomorphism from
Vito{u € V | a C u}; hence, it preserves least upper bounds of non-empty setse S
Scott continuity is pointwise, addition as a function of tasguments is also continuous.
Similarly, for any non-zero scalax, the functiong(v) = Av is an order isomorphism
from V to itself, thus preserving least upper bounds. In case 0, there is nothing to
show. Thus\v is continuous as a function ef Finally, the fact that\v is continuous
as a function of\ follows from Lemma 2.9, because = \/;\; implies | \v — \jv|| =

|A = Aill[o] = 0. U

2.11 A separation theorem

Definition (Generating set)Let V' be an abstract cone, and BtC V' be a down-closed,
convex subset. We say thBtgenerated/ if for all v € V, there exists somg > 0 such
that\v € B.

Recall that a subséf of a dcpoD is calledScott-openor simplyopen if it is up-
closed and for any directed satwith \fA € U, there exists some € AN U. A setis
Scott-closedr closedif its complement is open.

Theorem 2.13(Separation) Let V' be a continuous normed cone, and Btand U be
convex sets such thatis down-closed]/ is up-closed and open, adéinU = (. Further,
assume thaB generated/. Then there exists a continuous linear functipn V" — R
such thatf(v) < 1forallv € Bandf(u) > 1forall u € U. d

2.12 A Hahn-Banach style theorem

An important application of the separation theorem is tHWng Hahn-Banach style
theorem for continuous normed cones:
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Theorem 2.14. Let V' be a continuous normed cone, anddet V with ||a|| > 1. Then
there exists a continuous linear functign: V' — R, with f(v) < ||v||, forallv € V,
such thatf(a) > 1.

Proof. Since the norm is continuous, we can find sarhe< « such thaf|a’|| > 1. Now
apply the separation theorem to the sBts- {v € V' | ||v|| < 1} andU = $d'. (

Remark. One might ask whether the functighin Theorem 2.14 can be chosen so that
f(a) = |la]|. Contrary to basic intuitions, this is not in general polesibinless one gives
up the continuity off. Consider the following counterexample. Uét= /., the set of
bounded sequences R, with the supremum norm (see Examples 2.5 and 2.7). Note
that every sequende:;); € V is a directed supremum of finitely supported sequences
therefore, every continuous linear function is uniquelyedmined by its action on the
standard basis vectors = (9;;); € V. Now leta = (a;); wherea; = 2 — Z%
Then|la|]| = sup a; = 2. However, we claim that there exists no continuous function
f:V = Ry with f(v) < [jv]|, forallv € V, such thatf(a) = 2. For assume that there
was such a functioifi. For everyi, letv, = a + i%ei e V. Thenf(v;) = f(a) = 2, but
alsof(v;) < ||(Jlv;) = 2, hencef (v;) = f(a) + H%f(ei) = 2. Butalsof(a) = 2, which
implies thatf (e;) = 0 for all 7. Sincef is uniquely determined by all th&(e;), it follows
that f = 0, a contradiction.

3 Completely positive maps and superoperators

Categories of completely positive maps and superoperatas naturally in the seman-
tics of quantum programming languages, see [8]. In thisiaectve briefly recall the

definition of these concepts. The category of superoperg®ymmetric monoidal, but
it lacks closed structure. Thus, it forms a useful semamtidgst-order, but not higher-
order quantum programming languages. In Sections 4 and &jlhaiscuss two different

x-autonomous categories derived from the category of speeators.

3.1 Signatures, linear maps, and the category V

Definition (Signature, matrix tuple)A signatureis a finite sequence = n4,...,ns of
positive natural numbers, whese> 0. If n is a positive natural number, [8}, = C"*" be
the set of complex x n-matrices, regarded as a complex vector space. More ggneral
if o = ny,...,n,is asignature, let, = V,,, x ... x V,,_ be the set ofnatrix tuples
(A1,...,As), whereA; € Cixmi,

Definition (The category/). The category has signatures as objects, and a morphism
from o to 7 is a complex linear functiotf : V, — V..

Note that the category is equivalent to the category of finite dimensional complex
vector spaces; we have defined the objects in a special wayubeave will equip them
with additional structure later.

Let 0 @ ¢’ denote concatenation of signatures. Them ¢’ is a biproduct in the
categoryV, with the obvious projection and injection maps. The ndwutbgect for this
biproduct is the empty signature, which we denoté.as
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The tensor product of two signatures= n, ..
as

.,ngandr = mgq, ..., my is defined

OCRQT =N1M1, ..., N1My, ...y NgM1,...,NgMy.

Note that there is a canonical isomorphisiy, - = V, ® V;, whereV, ® V, denotes the
usual tensor product of vector spaces. With this identificathe operatiom® is seen to
give rise to a symmetric monoidal structure \dn The unit for this tensor product is the
signaturd = 1.

Moreover, there is a canonical natural isomorphismV (o ® 7,p) = V(0,7 ® p)
[8]. Therefore, the categoly, just like the category of finite dimensional vector spaces,
is compact closed with —o 7 = ¢ ® 7 and L = | = 1. As a matter of fact, the category
V is even strongly compact closed in the sense of Abramsky aedke [1].

3.2 Completely positive maps and the category CPM

For a positive natural number, let P,, C V,, be the set of hermitian positive x n-
matrices as in Example 2.1. More generally, for any sigeedue ni, ..., ng, let P, =
Pny X ... X Pp, C V, be the set of hermitian positive matrix tuples.

Definition (Completely positive map)Let o, o’ be signatures. A linear functigh: V,, —
V, is positiveif for all A € P,, one hasf(A) € P,. Further, we say that is completely
positiveif id , ® F : V., — V;g IS positive for all signatures.

Example3.1 The linear functionf : Vo — V5, defined byf(i Z) = (Z ccl is
positive, but not completely positive. To see this, note thanaps hermitian positive

matrices to hermitian positive matrices, buf &l f does not; for instance,

10‘01 10‘00
. 0000 00[1 0
e fl5o100 | = |0 1[0 0

10|01 0 0/0 1

cd 0d

Definition (The categorfCPM). The categoryCPM of completely positive maps has the
same objects &g, and has the completely positive maps as morphisms.

On the other hand, the functi@< ab ) = ( a0 > is completely positive.

Lemma 3.2. CPMis a subcategory of/, and it inherits the biproducts and (strongly)
compact closed structure from O

Remark.The categorfCPM was calledV in [8].

3.3 Superoperators and the category Q

Leto = n4,...,ns be asignature, and let = (44, ..., A;) € V, be a tuple of matrices.
We define theraceof A to the sum of the traces ofy, ..., As:

trA:ZtrAi.
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Definition (Superoperator)Let o, ¢’ be signatures. A linear functiof: V, — V. is
called asuperoperatoif f is completely positive and for ald € P,,, tr f(A) < tr A.

Definition (The category). The category of superoperators has the same object¢ as
andCPM, and has the superoperators as morphisms.

Lemma 3.3. Qis a subcategory o€PM. It inherits coproducts and the symmetric
monoidal structure fronCPM, but it fails to have products and it is not monoidal closed.
O

The reason the categoyfails to inherit the products frol@PM is that the diagonal
mapf : o — o ® o with f(A) = (4, A) is trace increasing, and thus not a superoperator
The fact thaQQ is not monoidal closed follows from the characterizatioswberoperators
in [8, Thm. 6.7]; it is easily seen that the hom-¥r, 7) is not in one-to-one correspon-
dence withQ(l, p) for any p.

However, the categor) also has some additional structure which is not present ir
CPM: it is dcpo-enriched, and consequently, it possesses adramnoidal structure
for the coproductsp (see [6, Ch. 7]). This structure can be used to interpretdcom
recursion in first-order functional quantum programmingglaages; for details, see [8,
Thm. 6.7].

4 Normed matrix spaces

Our goal is to find anonoidal closedategory which contains the categ@y preferably

as a full subcategory. In this section, we will describe oppraach to defining such a
category, which we cal)’. The idea is very simple: in the definition of a superoperator
replace the “trace” on each object by an arbitrary norm.

4.1 The category Q

Definition (Normed matrix space)A normed matrix space a pairV = (o, ||—|v),
whereo is a signature and—||, is a norm on the con®,. We sometimes also call
a normed matrix space @ncrete congand we often identify it with the “underlying”
normed coné?P,, ||—||v). We also often writéPy for P,,, and similarlyD for the unit
ideal.

Definition (The categornyQ’). The categoryQ’ has as its objects normed matrix spaces
V = (o, ]|—|lv). A morphism fromV' = (o, ||—||v) to W = (7, ||—|lw) is a completely
positive mapf : V,, — V; which is norm-non-increasing, i.e., which satisfigg A) | <
||A]|v forall A € P,.

Remark. SinceP, is a finite dimensional cone (i.e., embeddable in a finite disianal
vector space) and satisfies certain other regularity cimmditone can show thahy norm
|I—|| in the sense of Section 2.3 is automatically Scott-contisuend make®, into a
continuous normed cone. Similarly, any linear map of cghe®, — P is automatically
continuous. Thus, the results of Section 2, and in partidhie Hahn-Banach theorem,
apply in this setting, even though continuity need not béesdt&xplicitly as an axiom.
These observations tend to simplify proofs in the finite disienal case.
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4.2 Properties of the category Q

The categon®’ containsQ as a full subcategory. Indeed, to each objedf Q, we can
associate an objeét, |||} of Q', where||A||y = tr A is thetrace norm It is then clear
that the morphisms between these objects are precisely ¢i6x

The categoryQ’ also inherits products, coproducts, and a symmetric maholdsed
structure from the categoyPM, as we will now show. The structure is preserved by the
forgetful functorQ’ — CPM.

4.2.1 Coproducts and products.

Given two normed matrix spac&s= (o, ||—||v) andW = (7, ||—|lw ), we define

Voew
V&W =

<U DT, H_HVEBW>7
(car|-llvew)

where|[(A, B)lvew = [|Allv + |Bllw and||(A, B)llvew = [[Allv U [|B|lw as in
Example 2.3. Recall that}” denotes the binary “maximum” operation on real numbers.
It is easy to verify that with these normig, @ W is a coproduct and” & W is a product

in the categonyQ’. Further, the objedd, with the empty signature and the unique norm,
serves as the neutral object for the coproducts and praducts

Remark. Just like the categor, the categoryQ’ is also dcpo-enriched, and hence the
coproduct operatiom possesses a traced structure.

4.2.2 Symmetric monoidal structure.

Given normed matrix spacds = (o, ||—||v) andW = (7,]|—|lw), we would like to
define their tensor product

VoW = (oo |-lvew).

The question is how to define the nofim ||y w . By analogy with normed vector spaces,
it would seem that the following definition is an obvious calade, forC' € Py gw:

ICllvew =inf{> _|4illvIBilw | C = Ai ® Bi, where4, € Py, B; € Pw}.
@

However, there is a problem with this definition: the set avbich the infimum is taken
may in general be empty. In other words, not every elemeRt afir can be written of the
form )", A; ® B;, whered; € Py andB; € Py . Thisis best illustrated in an example,
whereo = 7 = 2.

Example4.1 The matrix

Q

I
— o o
(sl en N enNan)
(el en i en N an)
_o o
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cannot be written in the forfy_, A; ® B;, for positive2 x 2-matricesA;, B;. To see why
this is not possible, suppose it could be written in this vildyen the blockwise transpose

SO O
o= OO
[ NaN T Na]
— o oo

would also have to be positive, which it is not. |

Remark. The phenomenon described in the previous example is wellvkrin physics.

A density matrixC' € Pygw of a bipartite quantum system can be written in the form
>, A;® B; if and only if it is entanglement freavhich means that there are ormlassical
probabilisticcorrelations between the two parts. Such a state can berptepsing only
classical communication.

In order to arrive at a useful definition of the tensor nornyatpn (1) must be mod-
ified in some suitable way. One natural modification, whichdi to ax-autonomous
structure, is to replace=" by “C” in the right-hand-side of the equation. We obtain the
following:

Definition (Tensor product, tensor normfiven normed matrix spacés = (o, ||—||v)
andW = (r,||—||lw), their tensor product is defined 8 W = (o @ 7, ||—|lvew),
where for allC € P, g,

IClvew =inf{> | Ailv|Billw | C £ > A; ® B;, whered; € Py, B; € Pw}.
)

The definition of the tensor norm in terms of equation (2) telwimpractical to work
with. The following is a more practical characterizatiortloé tensor norm in terms of its
unit ideal.

Lemma 4.2. The unitidealDy gy of V ® W is the smallest Scott-closed, down-closed,
convex set containingy ® Dw = {A® B | A€ Dy,B € Dw}. O

With this characterization, it is easy to prove tlratdefines a symmetric monoidal
structure on the categofy’.

4.2.3 Monoidal closed structure

Recall from Section 3.2 that the categ@®M is compact closed with o7 = c®7. We
can lift this to a monoidal closed structure @. In the following definition, we identify
a completely positive map : V, — V.. with an element 0¥/, in the standard way, see
[8, Sec. 6.7].

Definition (Monoidal closure) Given normed matrix spacés = (o, ||—||v) andW =
(7, [|=|lw), their function space is defined &&—o W = (¢ @ 7, ||—|lv—w ), Where for
al f € Pogr,

Ifllv-ow = sue[lf(A)llw | [IAllv < 1}. @)
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This is the usual definition of an operator norm; note thatgleaness (Lemma 2.10)
guarantees that the supremum in equation (3) always eXistsproperties of a norm are
easily verified, so that” —o W is a well-defined space. To prove that this indeed yields
the correct monoidal closed structure corresponding téethgor produci, it suffices to
prove the following, which is a consequence of Lemma 4.2:

Lemma 4.3. For normed matrix space®, W, andU, a completely positive map :
V ® W — U is norm-non-increasing if and only if its adjoirf : V. — W —o U is
norm-non-increasing. a

4.2.4 Thex-autonomous structure

A x-autonomous category is a symmetric monoidal closed cetegjth an objectl, such
that the canonical natural morphismh— (V' — 1) —o L is an isomorphism [3, 4]. The
object L is called adualizing objectIt is common to write/+ =V —o L.

Lemma 4.4. In the categonyQ’, the objectL := | is a dualizing object.

Proof. LetV = (o, ||—||v) be a normed matrix space. We already know that the canonical
morphismy : V — (V—o_1)—o L is anisomorphism in the category of completely positive
maps. It remains to be shown that its inverse is norm-noreasing, or equivalently, that

0 is norm-non-decreasing. So ldt € P, with ||A]y > 1. It suffices to show that
lo(A4)]| > 1. By the Hahn-Banach theorem (Theorem 2.14) there existseariifunction
f:V = R, with f(B) < ||B||v for all B, and such thaf(A) > 1. Thenf € V —o L
and|| f|lv—1 < 1, hence|6(A)|| = [15(A)(/)]|L = IIf (AL = F(4) > 1. =

Thus, we have:

Proposition 4.5. The categoryQ’ of normed matrix spaces isautonomous with finite
products and coproducts and a zero object.

4.3 Why Q is not a model of higher-order quantum computation

The construction of the catego®/ was motivated by the search for a semantics of higher-
order quantum computation, extending the semantics ofdid#r quantum computation
given in [8]. It almost seems like this goal has been accashplil: we have obtained a
categoryQ’ which is x-autonomous and which also contains the cate@of first-order
gquantum computations as a full subcategory. However, tiseadatal problem: The full
embedding ofQ in Q" does not preserve the tensor product. We illustrate thelgmoin

an example:

Example4.6. Consider the normed matrix spae= W = (2, ||—||i) of 2 x 2-matrices
with the trace norm. This space lies within the image of théeading ofQ in Q'.
Consider the spac€é @ W with the norm||—||vgw, as defined by equation (2). We claim
that the norm ot/ @ W is not the trace norm, and th’s® W does not lie within the
image ofQ in Q'. Let

Q

Il
— oo
(sl en N anNan)
[enlen i en N an)
_o o
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as in Example 4.1. We claim tha€'||v¢w = 4. Indeed, it is easy to see that

c=(38)s(A0)+(08)e (2 1),

hence||C|lvew < 4 by definition. To see thatC||vew > 4, consider the dual space
VL, fora2 x 2-matrix B, || B||y . is the maximal eigenvalue @. Since this is bounded
by the trace of3, the “identity” functionf : V' — V= is norm-non-increasing. Therefore,
by Lemma 4.3, its adjoing : V ® V' — _L is also horm-non-increasing; it mapd & 4-
matrix (aij) to apo + aos + aso + ass. It follows that|\C||V®W > Hg(C)Hl = g(C) =4,
as claimed. On the other hand, the trace norm’afiould be2, and thereford|C||¢  «r
and||C||y do not coincide.

5 Quantum coherent spaces

Girard introduced quantum coherent spaces as a new modelkeaf llogic, inspired by
quantum theory [5]. Quantum coherent spaces are closajeckto spaces of density

matrices, and they also formxaautonomous category. Thus, one might ask whether they

are suitable as a model for higher-order quantum computatitle will briefly sketch

the definition of a version of quantum coherent spaces, addptthe terminology of the
present paper. We will also point out why they do not form a eiddr higher-order
guantum computation.

The definitions given here differ from those of [5] in sevedatails. For instance,
we view guantum coherent spaces as certain normed conesagh@irard axiomatizes
them directly in terms of their unitideals. Also, we work vitrict cones, whereas Girard
allows non-strict cones, where the cone order is only a ples@nd its induced equivalence
relation must be factored out. Finally, we work with spacésnatrix tuples whereas
Girard works with spaces of matrices only (expressing matmples, in effect, as block
diagonal matrices). A formal proof of the equivalence of definitions with Girard’s is
not within the scope of this paper, and will be given elsewher

5.1 Tensor product, revisited

To motivate the definition of quantum coherent spaces, denthe problem from Sec-
tion 4.3: if V, W are spaces i, then the norm oV ® W in the categorie® andQ’
does not coincide. Just like the problem with equation ¢ii¥ problem can be attributed
to the presence of elementslih® W which are not of the forn}, A; ® B;; indeed, it is
easy to check that for elements of the latter form, the twaonsato indeed coincide.

It therefore seems natural to change the definition of theaeproduct by simply
removing the troublesome elements. This is precisely whantym coherent spaces
achieve. Informally, the tensor product®f and?P; is not taken to bé&, 5, but only a
certainsubsetR C P,g,, namely, the subset consisting precisely of the elementiseof

form . A; ® B;. The setsk propagate to higher types. Thus, a quantum coherent spac

is a triple(o, R, ||—||) of a signature, a conB C V,, and a norm which makeR into a
continuous normed cone. The formal definition follows in tiest subsection.
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One important feature of the category of quantum cohereattespis that, unlike the
categoryQ’ of the previous section, it is not based on completely pasithaps, but on
all positivemaps. Informally speaking, this is because one has “redubedsize of the
tensor product, and thus one has to “increase” the size diitietion spaces to keep the
symmetric monoidal closed structure.

5.2 The category QCS

Definition (Quantum coherent space (adapted from [5P)quantum coherent spaiea
triple V. = (o, Rv,||—|lv), whereo is a signatureRy C V, is a cone, and—||v is a
norm makingRy into a continuous normed cone.

Definition (The categorfQCS). The categonfQCS has quantum coherent spaces as ob-
jects. A morphism fromVV = (o, Ry, ||—|lv) to W = (r, Rw, ||—|lw) is any linear,
norm-non-increasing map of congs Ry — Ry .

The category of quantum coherent spaces possessesiBnomous structure with

finite coproducts and products, given as follows: For= (o, Ry, |—|v) andW =
(7, Rw, [|=[lw),

VeW = <0'@7—7RVXRW»”_”V€BW>7

V&Ew = <O’@T,Rv><Rw,||—||V&W>,

VoW = (c&71, Ry ®Rw,|—|vew),

VoW = (0®7,Ry — Rw,|~llv_ow).

Here,||—|lvew and||—|v ¢ w are defined as in Section 4.2.1. The tensor cone is defined
asR, ® Rw = {>_,c; A ® B; | A; € Ry, B; € Rw}, wherel ranges over possibly
infinite index sets such that the given sum converges. Theterorm||—|| v ow is defined

as in equation (2), except of course that we Bseand Ry in place of Py andPy,. The
function space con®&y — Ry is the set of all continuous linear functions fraRy, to

Ry, and||—||v—w is the operator norm. The dualizing object is again R .

Remark.Note that a morphism between quantum coherent spaces isglyeg morphism
between normed coné®Ry , |—||v) and(Rw, ||—|lw); thus, the forgetful functor from
QCSto the category of normed cones is full and faithful. On theeothand, every finite
dimensional cone can be embedded in sdpgethus, the category of quantum coherent
spaces is equivalent to a suitable category of finite dinoegicontinuous normed cones.

5.3 Why QCS is not a model of higher-order quantum computatio

Like the categor®)’, the categor®)CS of quantum coherent spaces#sutonomous, and
therefore it has the required structure for modeling higdreler linear functions. There is
also a canonical embedding@finsideQCS, mapping each signatuseto (o, Py, || —||ir)-
However, this embedding is not full, because of the presehpesitive, non-completely
positive maps iMQCS. Since it was shown in [8] that the categdpycaptures precisely
the feasible quantum functions at first-order types, itefae follows thaQQCS contains
some ground type morphisms, such as the morplfisnam Example 3.1, which do not
correspond to physically computable functions. On the roltaad, there are physically
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feasible density matrices, such as the mafrifrom Example 4.1, which do not have a
valid denotation in the categofyCS due to the restricted nature of its tensor cone.
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