
ar
X

iv
:1

60
4.

01
64

6v
1 

 [
cs

.E
T

] 
 6

 A
pr

 2
01

6

Reversible k-valued logic circuits are finitely

generated for odd k

Peter Selinger

Dalhousie University

1 Introduction

Let Zk = {0, . . . , k − 1}, and let S[k] be the monoidal groupoid whose objects
are natural numbers n, and whose morphisms f : k → k are invertible functions
f : Z

n

k
→ Z

n

k
. In his 2003 paper “Towards an algebraic theory of Boolean

circuits” [1, p. 298], Lafont notes that, although S[k] is not finitely generated
when k is even, it is finitely generated when k is odd. For the proof, he cites
a private communication by me. The purpose of this short note is to make the
content of that unpublished communication available.

Since the proof referred to in Lafont’s paper was never published, others
have proved the result independently. The earliest such published proof that I
am aware of is due to Boykett [2].

2 Background: linear and affine invertible func-

tions

Let GL(Zk) and GA(Zk) be the monoidal subgroupoids of S[k] consisting of
invertible linear functions and invertible affine functions, respectively. Here,
we regard Zk as a ring with addition and multiplication. As usual, a function
f : Zn

k
→ Z

n

k
is linear if f(v + w) = f(v) + f(w) and f(av) = af(v) for all

v, w ∈ Z
n

k
and a ∈ Zk, and f is affine if there exists some u ∈ Z

n

k
and a linear

function g such that f(v) = u+ g(v), for all v. It is well-known from the theory
of integer matrices that GL(Zk) is finitely generated by the gates D,U : 2 → 2,
given by D(x, y) = (x, x + y) and U(x, y) = (x + y, y), together with a gate
Ha : 1 → 1 for each invertible element a ∈ Zk, given by Ha(x) = ax. If we
moreover add a gate v : 1 → 1 defined by v(x) = x+1, we obtain a finite set of
generators for GA(Zk). Lafont’s notation for these gates is shown in Figure 1.

Note that the single transposition (0, . . . , 0, 0) ↔ (0, . . . , 0, 1) of Z
n

k
, to-

gether with all invertible affine transformations, suffices to generate the group
of invertible functions on Z

n

k
. This is because by taking affine conjugates,

we can get all transpositions of the form (x1, x2, . . . , xk−1, xk, xk+1, . . . , xn) ↔
(x1, x2, . . . , xk−1, xk + 1, xk+1, . . . , xn). These generate all invertible functions
because the permutation group S(X) on any set X is generated by any set of
transpositions (ab) that form the edges of a connected graph on X .
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Figure 1: Affine gates
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Figure 2: The controlled negation gate Sn+1

3 The result

Proposition 1. If k > 3 is odd, then S[k] is finitely generated. In fact, it is

generated by gates of arity 2 and less.

Proof. Let S : 1 → 1 be the “generalized negation” gate defined by S(0) = 1,
S(1) = 0, and S(x) = x otherwise. Consider the “controlled negation” gate,
defined by

Sn+1(x1, . . . , xn, z) = (x1, . . . , xn, z
′),

where z′ = S(z) if x1, . . . , xn = 0, and z′ = z otherwise. Figure 2 shows the
notation we use for the controlled negation gate. The gate Sn corresponds to a
single transposition of Zn

k
, exchanging (0, . . . , 0, 0) and (0, . . . , 0, 1). Therefore,

the family of gates Sn for n > 1, together with the affine transformations,
generates S[k].

Now consider the circuits T and U defined in Figure 3. This circuit T
performs two transpositions (0, 0, 0) ↔ (0, 0, 1) and (0, 1, 0) ↔ (0, 1, 1) and is
the identity elsewhere. The circuit U uses (k − 1)/2 affine conjugates of T to
perform the k− 1 transpositions (0, x, 0) ↔ (0, x, 1), for x = 1, . . . , k− 1, and is
the identity elsewhere.

Finally, if we compose U with S2 as shown in Figure 4, we obtain a single
transposition (0, 0, 0) ↔ (0, 0, 1), or in other words, S3. Therefore, S3 is defin-
able from S2 in the presence of affine gates. By adding n additional controls
to every S-gate, it follows that Sn+3 is definable from Sn+2, for all n > 0. By
induction, all Sn for n > 3 are definable from S2, and therefore S[k] is finitely
generated when k is odd and k > 3.
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Figure 3: The circuits T and U . Here, U contains k−1

2
occurrences of T and k

occurrences of the affine v-gate.
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Figure 4: Expressing S3 in terms of S2 and affine gates
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