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1 The construction of binary products

We will show that LH, the category of topological spaces with local homeomorphisms, has binary
products (in fact, it has arbitrary nonempty limits; see 2.3 below). This has been previously believed
to be false, see e.g. [1, p. 50]. In the first definition we fix some notation:

Definition For an element x of a topological space X, we will write U, for the set of all open
neigborhoods of x. f: X — Y is a local homeomorphism if for every x € X there exists a U € U,
such that f|y is a homeomorphism onto an open subset of Y. Denote by int A the interior of A C X.
For any pair of maps ¢ : U = Y, ¢ : V — Y defined on open subsets U,V C X, define the (set)
equalizer

eq(¢,¢') :={zx e UNV | ¢(z) = ¢/(2)}.

In the following, we will only consider open equalizers int eq(¢, ¢').

We will now construct the categorical product B of two spaces X,Y € LH. The basic idea is to
consider triples (U, V, ¢) consisting of two open sets U C X, V C Y together with a homeomorphism
¢ : U — V. These will be the prototypes for open sets in B. The elements of B will arise as
equivalence classes of quintuples (x,y,U,V, ¢) with U, V and ¢ as before and x € U, y € V such
that ¢(z) = y. Let therefore

A={(z,y,U,V,¢) | UCX open
V CY open
¢ : U — V a homeomorphism
zelUyeV, ox)=y}.

Strictly speaking, the tuple (z,y,U,V, ) is completely determined by x, U and ¢, but it is more
convenient for us to write all the components. On A define (x,y,U,V,¢) ~ (z,y,U’, V', ¢') if there
exists U € U, with U C U NU’ and

¢lg = ¢l

Note that in this case, U C inteq(¢, ¢'), hence without loss of generality U = int eq(¢, ¢'), or
(x7y’ U’ V’ ¢) ~ (I’ y7 U/7 V/’¢/) iH X 6 inteq(qs’ ¢/).

~ is an equivalence relation on A: reflexivity and symmetry are obvious; for transitivity no-
tice that if ¢|5 = ¢'|5 and ¢'|75 = ¢"|7,, then ¢|5,5 = ¢"|gng- Define B = A/~ and write
[x,y,U,V, ¢] for the ~-class of (z,y,U,V, ¢).



Now consider a topology on B: for any open sets O C X, P C Y and any homeomorphism
1 : O — P, define
(O, Pp) :={lz,y,0,PY] [z €O,y € P, ¢(x) = y}.

Note that (O, P,v) C B and that [z,y,U,V,¢] € (O, P,v) iff x € O and ¢|5 = 9| for some Uel,.
Let the topology on B be generated by the sets (O, P, 1)).

Lemma 1 The intersection of (O, P,%) and (O, P', ') is again of the form (O", P" "), with

0" = inteq(,v)
V" = Plor =Y |on
P// — 1/}// (O//).

In particular, the sets (O, P, 1) form a basis, and not just a subbasis, of the topology on B, i.e. every
open set is a union of basis sets.

Proof:~ [;{,y, U, V,¢] € (O,P,) N (O, P',¢)) iff x € ONO" and ¢l = E[J|ﬁ and |z = ¢'|g for
some U,U" € U, if z € ONO" and @z, = |5, = ¢'|g, for some U” € U,, or equivalently
z e U” Cinteq(ih, ') =: O and Gl = ¥"|z,. This finally is the case if and only if [z,y, U, V, ¢] €
<O// pr ¢/I>- O

We now consider the projection maps
m:B—=>X : [x,y,UV,¢]—=x
m:B =Y : [x,y,UV,¢]—y.

Lemma 2 m and 7o are local homeomorphisms. More specifically w1 and 7o map (U, V, ) homeo-
morphically onto U and V', respectively.

Proof: We consider only m;; the proof for my is entirely symmetric. Take an arbitrary point
b= [z,y,UV,¢] € B. Then (U,V,¢) is a neighborhood of b and 71|y, v,4) is a one-to-one map
onto U, with inverse

(milwvey) U= (UV,@) 2w [2,6(x),U,V, ]

71|, v,) is continuous: for open U’ C U we let V' = ¢(U’) and have

Tl iy @) = {[2.9,0,V,¢] |z €U}
= {lz,y, UV, v | €U}
= <[]/,‘/I,(]5|U/>7

which is open.
71 (and hence m1[(y,v,¢y) is an open map: by Lemma 1 it suffices to show this for basic open
sets, and in fact we have m1 ((O, P,v¢)) = O. O

Lemma 2 establishes the existence of the diagram

AN

X Y.



We will now show that this is in fact a product diagram. Given local homeomorphisms

we construct f : Z — B as follows: for any z € Z consider an open neighborhood W € U, on which
both p; and ps are homeomorphisms.! Let

= p
= pafz
(
(

= p2(W)
p2o(plw)™! : U=V

o < T e =5
Il
=

Then [z,y,U,V, ¢] € B. Moreover, [x,y,U,V, ¢] is independent of the particular choice of W, for if
we choose, say, W' C W and we construct [2/,y',U", V', @] from W' then x =2', y =4, U' C U,
V' CV and ¢’ = ¢|w- follow directly from the definition. Hence

f(z) = [2,y9,U,V, 9]
is well-defined in this way for any z € Z. We clearly have p; =710 f, po =m20 f.

Lemma 3 f: Z — B is a local homeomorphism.
Proof: Starting with a z € Z, choose a neigborhood W € U, on which f is a homeomorphism.
Then the image f(W) is contained in (U, V, ¢}, with U = p1 (W), V = pa(W), ¢ = pa o (p1|lw) ! as
before.

To conclude that f is a homeomorphism, we recall that W is by its choice homeomorphic to
U via p1, while U is the homeomorphic image of (U, V, ¢) under m; (by Lemma 2. Hence f|w =

(m1lw,v,¢)) "' © p1|lw is a homeomorphism as well. g

Lemma 4 f is the unique morphism with

Proof: Suppose g is another map making this diagram commute. Let z € Z be arbitrary and pick

1This is where the construction does not generalize to the case of infinite products. However, infinite products do
in fact exist; see 2.3 below.



W € U, such that p1, po, f, g are all homeomorphisms on W. Moreover, pick W small enough such
that g(W) is a basis open set in B, which can be done by the Lemma 1. Say g(W) = (O, P, ). Then
g9(z) = [2',y',0, P,¢], for some =’ € O, y' € P, while f(2) = [z,y,U,V,¢| and f(W) = (U,V, ¢),
where z, y, U, V, ¢ are as in (1). By commutativity and Lemma 2 we get

r=m(f(2))= pi(2) =mg(2)) =2
y=m(f(2)) = p2(2) _7T2(9(Z)):
U=m(fW))= p(W) =m(gW)) =
V=m(f(W) = p(W) =mrgW)) = (2)

Finally, for any w € W we have g(w) = [p1(w), pa(w), 0, P,t5] and f(w) = [ps (w), p(w), U, V, 6],
establishing
P(p1(w)) = p2(w) = ¢(pr(w)).

But since p1|w is onto O, this yields ¢ = ¢. Together with (2) this yields the uniqueness of f:

9(z) = [y, 0, PY] = [2,y,U,V,¢] = f(2).

So we have established

Theorem 5 LH has binary products. O

2 Remarks

2.1 Subcategories of LH

Since the maps 71, mo are local homeomorphisms, the product X x Y inherits from X and, inde-
pendently, from Y, all local properties (i.e. properties that are reflected by local homeomorphisms).
Among these are e.g. the separation properties Ty and 77, local compactness, local metrizability etc.
(notice, however, that being Hausdorff is not a local property). Hence the respective full subcate-
gories of LH have products as well.

We get for example a nice result for posets by specializing to the full subcategory of LH consisting
of Ty spaces in which arbitrary intersections of opens are open (this is a local property, too). This
category is equivalent [1, 1.372] to the category POS" of posets with local isomorphisms (f : P — Q
is a local isomorphism of posets if for any a € P, f|¢a : la =5 |b). In this category, the product

of two posets P and @ has elements [a,b, f] where a € P, b € Q and f : la — |b, ordered by
(a0, f] < [V, ] iffa<a/ b <V and f = f],.

2.2 Almost a regular category (and more!)

Since LH also has pullbacks, equalizers and images and pullbacks transfer covers, it has all the prop-
erties of a regular category [1, 1.5]—with one important exception: it doesn’t possess a terminator.
Despite the lack of a terminator, certain constuctions can be carried out as in a regular category,
e.g. composition of relations is well-defined and associative, and we have a notion of a graph of a
function as being an entire and simple relation [1, 1.564].



The latter comes out rather naturally in LH: the graph of f : X — Y is given by the subobject
of X xY
graph f = {[z,y,U,V, flu] € X x Y}

Conversely, a subobject G C X x Y is a graph iff all (U, V,¢),(U’', V', ¢') € G satisty ¢lyny =
¢'|lunur (i.e. m simple), and X = 1y 4yeq U (i.e. m1 entire). The function f can then be recovered
by ‘pasting’ all the local ¢’s together.

2.3 LH is “conditionally complete”

As David Feldman has pointed out, the product of X and Y, when regarded as a sheaf over X, is
given by the functor that associates to an open set U of X all local homeomorphisms from U to
Y. While the description of binary products in section 1 avove does not immediately generalize to
infinite products (see the footnote before Lemma 3), the sheaf description does. But unlike in the
finite case, in the general (infinite) case there is no obvious no symmetric description of the product.
One of the factors has to be preferred as the base space of the constructed sheaf. This asymmetry
seems to be the deeper reason for the absence of an empty product, i.e. a terminator.

The presence of equalizers implies that every nonempty diagram in £LH has a limit. Peter Freyd
proposes to call this property “conditional completeness”.

One might hope that LH is also “conditionally exponential”, i.e. that certain exponential objects
exist (clearly BY doesn’t exist for any B, for it would be a terminator). However, upon closer
inspection it turns out that there aren’t any exponentials in LH: given objects A, B, suppose there
exists B4, Now choose a nonempty C' which has no open neighborhood homeomorphic to an open
neighborhood in either A or B4 (e.g. choose C of cardinality bigger than that of A and B4 with
the indiscrete topology). Then both (C, B4) and C x A are empty and (C x A, B) is a singleton.

2.4 The right adjoint of the pullback functor

Instead of exponentials, we get a right adjoint for pullbacks in £LH. This is generally true for
categories whose slices are cartesian closed:

For any category A with pullbacks, and any f: A — B, consider the functor f# : A/B — A/A
defined by pullbacks:

f#x

5

C——

Proposition 6 A/B is cartesian closed iff f* has a right adjoint for all f : A — B.
Proof: This is a consequence of 1.854 in [1] and the fact that A/A ~ (A/B)/(f). O

Since LH/Y = Sh(Y') is cartesian closed, we know that in £H the pullback functor has a right
adjoint. Will it help us if we understand what this adjoint is? ...to be continued ...
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