Simplicial Tree Computations
Extended Abstract

Massimo Caboara* Sara Faridif Peter Selinger?
May 29, 2005

Abstract

We present an algorithm that checks in polynomial time whether a simplicial
complex is a tree. We also present an efficient algorithm for checking whether a
simplicial complex is grafted. These properties have strong algebraic implications
for their corresponding facet ideals.

1 Introduction

The main goal of this paper is to demonstrate that it is possible to check, in polynomial
time, if a monomial ideal is the facet ideal of a simplicial tree.

Facet ideals were introduced in [6] (generalizing [11] and [10]) as a method to
study square-free monomial ideals. The idea is to associate a simplicial complex to
a square-free monomial ideal, where each facet (maximal face) of the complex is the
collection of variables that appear in a monomial in the minimal generating set of
the ideal (see Definition 2.4). The ideal will then be called the “facet ideal” of this
simplicial complex. Special simplicial complexes are called “simplicial trees” (Defi-
nition 2.9). Facet ideals of trees have many properties; for example, they have normal
and Cohen-Macaulay Rees rings [6]. Finding such classes of ideals is in general a very
difficult problem. Simplicial trees also have very strong Cohen-Macaulay properties:
their facet ideals are always sequentially Cohen-Macaulay [8], and one can determine
under precisely what combinatorial conditions on the simplicial tree the facet ideal is
Cohen-Macaulay [7]. In [9] it is shown that the theory is not restricted to square-free
monomial ideals; via polarization, one can extend many properties of facet ideals to
all monomial ideals. All these properties, and many others, make simplicial trees ex-
tremely useful from an algebraic point of view.

But how does one determine if a given square-free monomial ideal is the facet ideal
of a simplicial tree? In Section 3, we show that this can be decided in polynomial time.

*Department of Mathematics, University of Pisa, caboara@dm.unipi.it.

T Department of Mathematics, University of Ottawa, faridi@uottawa.ca. Research supported by NSERC.

T Department of Mathematics, University of Ottawa, selinger@mathstat.uottawa.ca. Research supported
by NSERC.

This extended abstract is organized as follows: in Section 2 we introduce the notion
of a simplicial complex, a facet complex, a tree, and a cycle. Section 3 contains the
main theoretical result that enables us to produce a polynomial time algorithm to decide
whether a given simplicial complex is a tree. The algorithm itself is introduced in Sec-
tion 3.1, and the complexity and optimizations are discussed in Sections 3.2 and 3.3.
Section 4 focuses on the algebraic properties of facet ideals: in Section 4.1 we discuss
a method of adding generators to a square-free monomial ideal (or facets to the corre-
sponding complex) so that the resulting facet ideal is Cohen-Macaulay. This method
is called “grafting” a simplicial complex. For simplicial trees, being grafted and being
Cohen-Macaulay are equivalent conditions [7]. We then introduce an algorithm that
checks whether or not a given simplicial complex is grafted in Section 4.2, and discuss
its complexity in Section 4.3.

Some proofs have been sketched or omitted in this extended abstract. Full proofs
will appear in the forthcoming paper [3].

Implementations. The algorithms described in this paper have first been coded in
CoCaAL, the program language of the CoCoA system [4]. These prototypical implemen-
tations can be downloaded from [2]. Much more efficient (but not so user friendly)
C++ implementations are being developed using the cocoalib framework [5]. The C++
code will be available in the full paper according to the specifications of AJCA [1].

2 Simplicial complexesand trees

2.1 Definitions and notation

We define the basic notions related to facet ideals. More details and examples can be
found in [6] and [7].

Definition 2.1 (Simplicial complex, facet). A simplicial complex A over a set of
vertices V = {v1,...,v,} isacollection of subsets of V', with the property that {v;} €
A forall 4, and if F' € A then all subsets of F' are also in A (including the empty set).
An element of A is called a face of A, and the maximal faces are called facets of A.

Since we are usually only interested in the facets, rather than all faces, of a simpli-
cial complex, it will be convenient to work with the following definition:

Definition 2.2 (Facet complex). A facet complex is a finite set A of finite sets, such
that forall F,G € A, FF G. Each F' € A is called a facet of A, and each v € F'is
called a vertex of F' and of A.

Remark 2.3 (Equivalence of simplicial complexes and facet complexes). The set of
facets of a simplicial complex forms a facet complex. Conversely, the set of subsets
of the facets of a facet complex is a simplicial complex. Therefore, every property of
simplicial complexes corresponds to a property of facet complexes and vice versa. In
this paper, we will work with facet complexes, but the results of course equally apply
to simplicial complexes.

We define facet ideals as follows, giving a one-to-one correspondence between
facet complexes (or, equivalently, simplicial complexes) and square-free monomial ide-
als.

Definition 2.4 (Facet ideal of a facet complex, facet complex of an ideal).

e Let A be a facet complex whose vertices are contained in {v1,...,v,}. Letk
be afield, and let R = k[x1, ..., x,] be the polynomial ring with indeterminates
x1,...,T,. The facet ideal of A is defined to be the ideal of R generated by all
the square-free monomials z;, ... z;_, where {v;,,...,v; } is a facet of A. We
denote the facet ideal of A by F(A).

o LetI = (M,..., M,) beanideal in the polynomial ring k[z1, . .., z,], where
kisafieldand My, ..., M, are square-free monomialsin z1, . . ., x,, that form a
minimal set of generators for I. The facet complex of I is definedto be 6 (1) =
{Fi,...,F,} whereforeach s, F; = {v; | z;|M;, 1 < j <n}

From now on, we often use z1,...,x, to denote both the vertices of A and the
variables appearing in F(A). We also sometimes ease the notation by denoting facets
by their corresponding monomials; for example, we write 2y for the facet {z, y, z}.

We now generalize some notions from graph theory to facet complexes. Note that
a graph can be regarded as a special kind of facet complex, namely one in which each
facet has cardinality 2.

2.2 Simplicial trees

Simplicial trees are a generalization of graph-theoretic trees, in light of the fact that a
graph can be regarded as a special kind of facet complex, where the facets are the edges
of the graph.

Definition 2.5 (Path, connected facet complex). Let A be a facet complex. A se-
quence of facets Fy,..., F,iscalledapathifforalli =1,...,n—1, F; N F; 1 # 0.
We say that two facets F' and G are connected in A if there exists a path Iy, ..., F,
with F}, = F and F;,, = G. Finally, we say that A is connected if every pair of facets
is connected.

Notation 2.6. If F/, G and H are facets of A, H <p G meansthat HNF C GNF,
i.e. H is asubset of G “inside” F'. The relation < defines a preorder (reflexive and
transitive relation) on the facet set of A.

Definition 2.7 (Leaf, joint). Let F' be a facet of a facet complex A. Then F'is called
a leaf of A if either F is the only facet of A, or else there exists some G € A\ {F}
suchthat forall H € A\ {F'},we have H <p G. If F NG # (, the facet G above is
called a joint of the leaf F.

Example 2.8. In the facet complex A = {zyz, yzu,uv}, zyz and uv are leaves, but
yzu is not a leaf. Similarly, in A’ = {zyu, zyz, xzv}, the only leaves are xyu and

Definition 2.9 (Forest, tree). A facet complex A is a forest if every nonempty subset
of A has a leaf. A connected forest is called a tree (or sometimes a simplicial tree to
distinguish it from a tree in the graph-theoretic sense).

When A is a graph, the notion of a simplicial tree coincides with that of a graph-
theoretic tree.

Example 2.10. The facet complexes in Example 2.8 are trees. The facet complex A =
{zyu, xyz, x2v,yzw} pictured below has three leaves xyu, xvz and yzw; however, it
is not a tree, because if one removes the facet xyz, the remaining facet complex has no
leaf.

2.3 Cycles

Definition 2.11 (Cycle). A nonempty facet complex is a cycle if it has no leaf. A cycle
is minimal if none of its proper subsets are cycles.

Remark 2.12. Clearly a facet complex is a tree if and only if it does not have a subset
which is a cycle.

The main tool used in the paper to prove Theorem 3.7 is the structure of cycles.

Definition 2.13 (Strong neighbor). Let A be a facet complexand F, G € A. We say
that F' and G are strong neighbors, written F' ~ G, if forall H € A, FNG C H
implies H = For H=G.

The relation ~ is symmetric, i.e. F' ~ G ifand only if G ~ F', and reflexive, i.e.
F~F.

It turns out that a cycle can be described as a sequence of strong neighbors. The
following lemma follows directly from Definition 2.13.

Lemma 2.14. If A is a facet complex with distinct facets F, G1, G2 suchthat F' ~ G,
and F' ~ (9, then Fis not a leaf of A.

Corollary 2.15. Let A be a facet complex, and let F, ..., F,, be distinct facets with
n > 3,suchthatforalli =1,...,n -1, F; ~ F;y; and F,, ~ F; in A. Then
{Fy,...,F,}isacycle.

Lemma 2.16. Suppose A is a minimal cycle, and let n = |A|. Then n > 3, and the
facets of A can be enumerated in such a way that A = {F},..., F,}, and for all ¢,
F; ~ Fiyq, as well as F,, ~ Fy. Moreover, in all other cases, F; 4 Fj; (so that each
facet is a strong neighbor of precisely two other facets).

The proof of this last lemma is based on the observation that every non-trivial tree
has at least two leaves [6]. Further, if F' is not a leaf of A, but is a leaf of A \ {G} for
some facet G, then F' and G must be strong neighbors in A.

3 Characterization of trees

As mentioned earlier, facet ideals of simplicial trees have strong algebraic properties.
For example, they have normal and Cohen-Macaulay Rees rings. One would therefore
like to be able to decide whether a given facet complex is a tree or not. We refer to this
problem as the decision problem for simplicial trees.

Note that the naive algorithm (namely, checking whether every non-empty subset
has a leaf) is extremely inefficient: for a facet complex of n facets, there are 2™ — 1
subsets to check. Also note that the definition of a tree is not inductive in any obvious
way: for instance, attaching a single leaf to a tree need not yield a tree, as Example 2.10
shows. This seems to rule out an easy recursive algorithm.

We now demonstrate that the decision problem for simplicial trees can in fact be
solved in polynomial time.

Definition 3.1. A precomplex is a finite multiset (a set in which repeated elements are
allowed) II of finite sets. Just like for facet complexes, an element F' € 11 is called a
facet and an element v € F is called a vertex.

Remark 3.2. Trivially, any facet complex is also a precomplex. On the other hand,
IT = {xyz,xyz, xz} is an example of a precomplex which is not a facet complex. It
fails to be a facet complex because (a) the facet xyz occurs more than once, and (b) the
facet zz is a subset of the facet xyz.

Definition 3.3 (Reduction). Let A = {F,..., F,,} be a facet complex, and let V' be
a set of vertices. We define the reduction of A along V' to be the precomplex

ANV :={F\V,...,E,\V}.
Note that in general, A\ V is not a facet complex.

Definition 3.4 (Residue). Let A be a facet complex, and let F', G, G be three distinct
facets. Let
1rG:={HeA|G, <pHand H #G, }.

Let S = r G1UTr G2 and define the (F, G1, G2)-residue of A to be the following
precomplex:
AGHE = (A\S)\ F,

Remark 3.5. Note that in the expression (A\ S) \\ F, the set S is a set of facets, while
Fis a set of vertices. Also note that F' € S. Further, if G; €r G2 and G> £r G,
then G1, G2 € S.

Definition 3.6 (Triple condition). Let A be a facet complex. We say a triple of facets
(F, Gy, G) satisfies the triple condition if G; £ G2 and G2 €5 Gy, and if G1 \ F
and G, \ F are connected in AS¢2,

Our central claim is the following:

Theorem 3.7 (Main Theorem). Let A be a facet complex. Then A is a tree if and
only if no triple of facets in A satisfies the triple condition.

Sketch of the proof. “=-": Suppose there is a triple of facets (F, G, G2) satisfying the
triple condition. Let {Hy, ..., H,} be a minimal path connecting G; \ F and G2 \ F'
in A9“>, Choose K; € A suchthat H; = K; \ F forall i, and such that K, = G,
and K,, = G2. Using Corollary 2.15, one can show that { F, K1, ..., K, } isacyclein
A.

*<": Suppose that A is not a tree. Then A has some minimal cycle, which can be
written as { 1, . . ., F, } satisfying the condition of Lemma 2.16. Then it can be shown
that the triple (F}, F», F,,) satisfies the triple condition. O

Corollary 3.8. If F'is part of a minimal cycle, then there exist some G1, G, € A such
that (F, G1, G2) satisfies the triple condition. O

3.1 A polynomial-time tree decision algorithm

By Theorem 3.7, to check if a facet complex A = {G1, ..., G;} is atree, we only need
to check the triple condition for all triples of elements of A. The checks themselves
are straightforward. Since the triple condition for (F,G,G’) is clearly unchanged
if one switches G and G’, we can limit triple checking to the elements of the set
{{F,G;,Gj) € A3 | G; # F # G,,i < j}. The procedures for the basic steps
follow immediately from the earlier definitions.

Algorithm 3.9 (Tree decision algorithm).
Input: a facet complex A = {G1, ..., G} with n vertices.
Output: True if A is a tree, False otherwise.
1. Foreachtriple (F,G,G’) € {{F,G;,G,) € A3 | G; # F # G,,i < j}
@) IfG <p G'or G’ <g G, continue with the next triple.
(b) LetTl = AGC,
() f G\ Fand G\ F are connected in II, return False.
2. Return True.

The algorithm uses very little memory; A and II require nl bits each, and the
memory required to perform the connectedness check and to store the various counters
is negligible. Thus, the total memory usage is roughly twice the amount necessary for
A; memory locality is hence quite good, and computation can generally take place in
the cache. We will hence only deal with time complexity.

3.2 Complexity

In the worst case we have to check 3- (é) =1(l—-1)(1—2)/2triples. For each triple, the
cost of step (a) is O(n), the cost of step (b) is O(nl) and the cost of step (c) is O(nl).
The total time complexity of the algorithm is therefore O(ni*).

Example 3.10. Consider the facet complex A = {zy,xz,yz,yu, 2t}. We have to
check 3 - (3) = 30 triples. We start with the triple (zy, 2z, yz).

o vz Ly yzsincezy Nz = €y = xy Nyz Similarly yz £, zz.

e zz\ zy = zand yz \ xy = z are connected (they are equal) in the precomplex
ATV = {z,2,u, 2t}

We have hence discovered that A is not a tree. A more unlucky choice of facets could
have brought about the checking of 27 useless triples before the discovery that A is not
a tree, the other two useful triples being (yz, zy, zz) and (xz, zy, yz).

Example 3.11. Some statistics for a bigger random example. Consider the facet com-
plex A = {lka, qik, tykj, wuv, rjb, eioad, gdc, zv, rtj, grom, gzm, tgzb, rgvm,
qlav, geocn, ik faz, bn, ekjs, pfon, wtodv}. We discover that it is not a tree after
checking 4 facets; we performed the connectedness check only once. If one checks all
3- (230) = 3420 triples, one finds that 445 of them require a connectedness check, and
418 of them reveal that A is not a tree.

Example 3.12. The facet complex {x;z; 112,12 | = 1,...,400} is trivially a tree.
Checking this by a direct application of Algorithm 3.9 requires dealing with 3 - (4(3)0)
31,760,400 triples, and takes about 24.6 seconds on an Athlon 2600+ machine for
our C++ implementation. All the timings in the remainder of this paper refer to this

machine.

3.3 Optimization

The runtime of Algorithm 3.9 can be improved by introducing some optimizations.
First, note that if £ is a facet such that no triple (F, G, G’) satisfies the triple condition,
then by Corollary 3.8, F' cannot be part of any minimal cycle of A. Therefore, F' can
be removed from A, reducing the number of subsequent triple checks. We refer to this
optimization as the removal of useless facets.

Example 3.13. We check the tree {x;x; 112,42 | ¢ = 1,...,400} of Example 3.12
with a version of Algorithm 3.9 with removal of useless facets. This requires dealing
with 10, 586, 800 triples and takes about 5.6 seconds.

An important special case of a “useless facet” is a reducible leaf, as captured in the
following definition:

Definition 3.14 (Reducible leaf). A facet F' of a facet complex A is called a reducible
leaf if forall G,G’ € A, either G <p G’ or G’ <p G.

A reducible leaf is called a “good leaf” by Zheng [12].

Remark 3.15. The facet F' is a reducible leaf of A if and only if F' is a leaf of every
A’ C Awith Fe A

The remark immediately implies that a reducible leaf cannot be part of a cycle.
Thus, it can be removed from A, and the algorithm can then be recursively applied to
A" = A\ {F}. In our experience, most simplicial trees possess a reducible leaf; in
fact, Zheng [12] conjectured that this is always the case. Checking whether a given
facet F'is a reducible leaf requires ordering all facets with respect to < g, which takes
O(nllogl) steps. A reducible leaf can thus be found in time O(ni?log!). Therefore,
if Zheng’s conjecture is true, the tree problem can be decided in time O(ni3 log). But
even if the conjecture is not true, removing all reducible leaves at the beginning of
Algorithm 3.9 is still a worthwhile optimization.

Sparse Complexes

Let A be a facet complex with [facets. If every F' € A intersects a substantial (~ 1)
number of facets, then the number of cycles is probably high and our algorithm is
usually able to detect one of them easily. If this does not happen, we can exploit the
facet complex “sparseness™ in our algorithm.

Definition 3.16 (Connectivity bound, sparse complex). Let A be a facet complex
with [facets. We say that A has connectivity bound d if every facet intersects at most
d other facets. Moreover, if d << [then A is called a sparse complex.

Let us suppose that the facet complex A is over n vertices, has [facets, and its con-
nectivity bound is d. To check if A is atree it is sufficient to check the connected triples
only. For each facet F' (I facets): first construct the set of all facets G connected to F'
(called the connection set, at cost O(nl)), then for all G, G’ in the set (d? pairs) perform
the triple check on (F, G, G’) (cost O(nl) per triple). The total cost is O(nl?d?). The
space required to construct the connection sets is O(d), hence negligible. For sparse
examples, this optimization is clearly worthwhile:

Example 3.17. We check the tree {x;2;412:42 | @ = 1,...,400} of Example 3.12
with the algorithm detailed above. We deal with 398 triples and spend 0.2 seconds.

Example 3.18. The facet complex {x;z;+1 - Ti4200 | ¢ = 1,...,3200} is a tree.
Tree checking with the algorithm detailed above requires dealing with 61,013,400
triples, and takes about 190 seconds. Without any optimization, the number of triples
to check is 16, 368, 643, 200 and the time spent by the algorithm is > 2 days.

4 Algebraic properties of facet ideals

We now study facet ideals from a more algebraic point of view. In particular, we are
interested in ways to determine whether a given facet complex A is Cohen-Macaulay,
meaning whether R/F(A) is a Cohen-Macaulay ring. We first need to introduce some
new terminology.

Definition 4.1 (Vertex covering number, unmixed facet complex, independence
number). Let A be a facet complex.

e A vertex cover for A is a set A of vertices of A, such that A N F* #£ () for every
facet F'. The smallest cardinality of a vertex cover of A is called the vertex
covering number of A and is denoted by a(A). A vertex cover A is minimal if
no proper subset of A is a vertex cover. A facet complex A is unmixed if all of
its minimal vertex covers have the same cardinality.

e Aset B of facets of A is called an independent set if FNG = () forall F,G € B.
The maximum possible cardinality of an independent set of facets, denoted by
B(A), is called the independence number of A.

Example 4.2. Consider the two facet complexes in Example 2.8. We have a(A) =
B(A) = 2. Also, A is unmixed as its minimal vertex covers {x,u}, {y,u}, {y,v},
{z,u} and {z, v} all have cardinality equal to two. We further have a(A’) = B(A’) =
1, but A’ is not unmixed, because {2} and {y, z} are minimal vertex covers of different
cardinalities.

The following observations are basic but useful.

Proposition 4.3 (Cohen-Macaulay facet complexes [6, 7]). Let A be a facet complex
with vertices in x1, . .., x,, and consider its facet ideal I = F(A) in the polynomial
ring R = k[x1,...,x,]. Then the following hold:

(@) height I = a(A)anddim R/I =n — a(A).

(b) Anideal p = (zi,,...,;,) of R is a minimal prime of I if and only if the set
{zi,,...,z;, }isaminimal vertex cover for A.

(€) If k[z1,...,2,])/F(A) is Cohen-Macaulay, then A is unmixed.

4.1 Grafting

One of the most basic ways to build a Cohen-Macaulay facet complex is via grafting.

Definition 4.4 (Grafting [7]). A facet complex A is a grafting of the facet complex
A" ={G1,...,Gs} with the facets Fi, ..., F,. (or we say that A is grafted) if

A={F,...,F,}U{Gy,...,Gs}
with the following properties:
() Giu...UG; C FLU...UF,
(ii) Fy,..., F, areall the leaves of A;
(iii) {G1,...,Gs}N{F,...,F.} =0;
(iv) Fori #j, FiNF; =0;

F1

graft graft

EFZ
F1

Figure 1: Three different ways of grafting a facet complex A.

(v) If G;isajointof A, then A\ {G;} is also grafted.

Note that the definition is recursive, since graftedness of A is defined in terms of
graftedness of A\ {G;}. Also note that a facet complex that consists of only one facet
or several pairwise disjoint facets is grafted, as it can be considered as a grafting of the
empty facet complex. It is easy to check that conditions (i) to (v) above are satisfied in
this case. It is also clear that the union of two or more grafted facet complexes is itself
grafted.

Example 4.5. There may be more than one way to graft a given facet complex. For
example, some possible ways of grafting {G1, G2} are shown in Figure 1.

The interest in grafted facet complexes, from an algebraic point of view, lies in the
following facts.

Theorem 4.6 (Grafted facet complexes are Cohen-Macaulay). Let A be a grafted
facet complex. Then F(A) is Cohen-Macaulay.

Even more holds when A is a tree.

Theorem 4.7 ([7, Corollaries 7.8, 8.3]). If A is a simplicial tree, then the following
are equivalent:

(i) A is unmixed;
(ii) A is grafted;
(iii) F(A) is Cohen-Macaulay.

10

4.2 Graftedness algorithm

A direct application of Definition 4.4 is not very convenient for checking whether a
given facet complex A is grafted, since at each step of the recursion, one potentially
needs to check condition (v) for several of the G;, and this leads to a worst-case ex-
ponential algorithm. In order to arrive at a more efficient algorithm, we characterize
graftedness as follows:

Lemma 4.8 (cf. [7, Remark 7.2, 7.3]). A facet complex A is grafted if and only if (1)
for each vertex v, there exists a unique leaf ' such that v € F, and (2) all leaves of A
are reducible.

Sketch of the proof. First, assume that A is grafted. Condition (1) follows from (i), (ii)
and (iv). The fact that all leaves are reducible is shown by induction on the number
of facets of A. The converse is also shown by induction. Suppose A satisfies (1)
and (2), and let {Fy,..., F.} and {G1, ..., G} be the sets of leaves and non-leaves,
respectively. Conditions (i)—(iv) hold trivially. Further, if G; is a joint, then Fy, ... F,
are still reducible leaves of A \ {G;} by Remark 3.15; also, there are no additional
leaves in A\ {G;}. Therefore, A \ {G;} satisfies (1) and (2) and is therefore grafted
by induction hypothesis, proving (v). O

The algorithm for checking if a facet complex is grafted follows immediately from
Lemma 4.8.

Algorithm 4.9 (Graftedness algorithm).
Input: A facet complex A with [facets and n vertices.
Output: True if A is grafted, False otherwise.

1. Build the lists 7 = (F1,..., Fy) (leaves of A)and G = (G4, ...,G,) (facets
of A which are not leaves).

IfUgeg G € Uper F, return False.
If 3 F, F’' € Fsuchthat F N F’ # (), return False.

If 3 F' € F that is not a reducible leaf, return False.

o & D

Return True.

4.3 Complexity

The leaf checking cost is O(nl), hence the cost of step 1 is O(nl?). The cost of steps
2 and 3 is O(nl). For step 4, there are k facets F' to check. Checking whether F' is
reducible takes O(nllog!) steps as mentioned in Section 3.3. Therefore the total cost
for step 4 is O(nl? log 1), and this is the cost of the algorithm.

Example 4.10. Let A = {zyz, yzu, ztu, uv, tw}, with F = {zyz,uv,tw} and G =
{yzu, ztu}. Then U G € Uper F = {7,v, 2,8, u,v,w} and zyz Nuv = xyz N
tw = uv Ntw = (. Additionally, we check that each F' € F is a reducible leaf by
showing that the set {F N G | G € G} is a totally ordered set under inclusion. For
example, if F' = zyz, then this set is equal to {yz, z} which is totally ordered. This
holds for all F' € F, and hence the facet complex is grafted.

11

Further work

As Theorem 3.7 and Algorithm 3.9 suggest, to check whether or not a given facet
complex is a tree, it is not necessary to check if every subset is a cycle. On the other
hand, it might be useful to have more information on the cycles of a facet complex.

The main ingredient in the proof of Theorem 4.7 is a generalization of Konig’s
theorem from graph theory.

Theorem 4.11 ([7] Theorem 5.3). If A is a simplicial tree (forest) and a(A) = r,
then A has r independent facets, and therefore a(A) = B(A) = r.

If A is a bipartite graph (not necessarily a tree), then the statement of Theorem 4.11
still holds. Moreover, facet ideals of bipartite graphs have and Cohen-Macaulay Rees
rings [10]. These facts lead us to consider the question: “Is there a higher-dimensional
generalization of a bipartite graph?”

The most promising approach so far has been to consider a facet complex “multi-
partite” if it has no minimal cycles of odd length. Computational evidence has shown
that Theorem 4.11 probably holds for such facet complexes. Using Corollaries 2.15
and 3.8 and Lemma 2.16, we have developed an algorithm that detects minimal cycles
in a given facet complex. Details of this work will be given in the full paper.

References

[1] C. Traverso, The Active Journal for Computational Algebra: A Proposal,
available at http://ww. dm uni pi.it/~caboaral/ Research/
Si npli ci al Trees/ aj ca. pdf

[2] M. Caboara, S. Faridi, P. Selinger, Prototype implementation of tree
algorithms, available at http://ww. dm uni pi.it/~caboara/
Research/ Si npl i ci al Trees/ Tr ees. coc.

[3] M. Caboara, S. Faridi, P. Selinger, Simplicial tree computations, in preparation.

[4] CoCoA Team, CoCoA: a system for doing Computations in Commutative Alge-
bra, available at htt p: // cocoa. di ma. unige.it/.

[5] CoCoALib. Seehttp://cocoa. di ma. uni ge.it/cocoalib/.

[6] S. Faridi, The facet ideal of a simplicial complex, Manuscripta Mathematica
109 (2002), 159-174.

[7] S. Faridi, Cohen-Macaulay properties of square-free monomial ideals, Journal
of Combinatorial Theory, Series A, to appear.

[8] S. Faridi, Simplicial trees are sequentially Cohen-Macaulay, J. Pure and Ap-
plied Algebra 190 (2004), 121-136.

[9] S. Faridi, Monomial ideals via square-free monomial ideals, Lecture Notes in
Pure and Applied Mathematics, to appear.

12

[10] A. Simis, W. Vasconcelos, R. Villarreal, On the ideal theory of graphs, J. Al-
gebra 167 (1994), no. 2, 389-416.

[11] R. Villarreal, Cohen-Macaulay graphs, Manuscripta Math. 66 (1990), no. 3,
277-293.

[12] X. Zheng, Homological properties of monomial ideals associated to quasi-
trees and lattices, Ph.D. thesis, Universitdt Duisburg-Essen, August 2004.

13

