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Abstract. We study a signed variant of edge covers of graphs.
Let b be a positive integer, and let G be a graph with mini-
mum degree at least b. A signed b-edge cover of G is a func-
tion f : E(G) → {−1, 1} satisfying

∑
e∈EG(v) f(e) ≥ b for every

v ∈ V (G). The minimum of the values of
∑

e∈E(G) f(e), taken over
all signed b-edge covers f of G, is called the signed b-edge cover
number and is denoted by ρ′b(G). For any positive integer b, we
show that a minimum signed b-edge cover can be found in polyno-
mial time, using a reduction to b-edge cover, which itself is solved
by b-matching. A sharp lower bound for ρ′b and a sharp upper
bound ρ′2 are given. A sharp upper bound for ρ′b of Cartesian
product graphs is presented. Exact values of ρ′b for cliques and
bicliques are found.

1. Introduction

Structural and algorithmic aspects of covering vertices by edges have
been extensively studied in graph theory. An edge cover of a graph G
is a set C of edges of G such that each vertex of G is incident to at
least one edge of C. Let b be a fixed positive integer. A simple b-edge
cover of a graph G is a set C of edges of G such that each vertex of G
is incident to at least b edges of C. Note that a simple b-edge cover of G
corresponds to a spanning subgraph of G with minimum degree at least
b. Edge covers of bipartite graphs were studied by König [4] and Rado
[7], and of general graphs by Gallai [2] and Norman and Rabin [6], and
b-edge covers were studied by Gallai [2]. For an excellent survey of
results on edge covers and b-edge covers, see Schrijver [8].

We consider a variant of the standard edge cover problem. Let G be a
graph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G),
let EG(v) = {uv ∈ E(G) : u ∈ V (G)} denote the set of edges of G
incident to v. The degree, d(v), of v is |EG(v)|. For a real-valued

1991 Mathematics Subject Classification. 05C70, 05C85, 90C35.
Key words and phrases. edge cover, signed b-edge cover; signed b-edge cover

number; strongly polynomial-time; Cartesian product graphs.
The first two authors gratefully acknowledge support from NSERC research

grants, and the first from a MITACS grant.
1



2 ANTHONY BONATO, KATHIE CAMERON, AND CHANGPING WANG

function f : E(G) → R and for X ⊆ E(G), we use f(X) to denote∑
e∈X f(e). A function f : E(G) → {−1, 1} is called a signed b-edge

cover (SbEC, for short) of G if f (EG(v)) ≥ b for every v ∈ V (G). The
minimum of the values of f (E(G)) , taken over all signed b-edge covers
f of G, is called the signed b-edge cover number of G and is denoted
by ρ′b(G). A minimum signed b-edge cover is a signed b-edge cover f
satisfying f (E(G)) = ρ′b(G). For example, ρ′2(K4.4) = 8; see Figure 1.
For G to have a signed b-edge cover, it is necessary that the minimum
degree of G, denoted δ(G), be at least b. Hence, when we discussing
ρ′b, all graphs involved have minimum degree at least b. In the special
case when b = 1, ρ′b is the signed star domination number investigated
in [9, 11, 12, 13].

- - --

Figure 1. A minimum signed 2-edge cover of K4,4, with
the bold edges labelled −1 and all other edges labelled
+1.

In Section 2, we investigate the complexity of the minimum signed
b-edge cover problem. We prove that a minimum signed b-edge cover
can be found in polynomial time. In Section 3, sharp bounds for ρ′2 are
supplied, and upper bounds are conjectured for b > 2. In Section 4, a
sharp upper bound for ρ′b of Cartesian product graphs is presented. We
finish by determining the exact value of ρ′b(G) for cliques and bicliques.

All graphs considered in this paper are finite, simple, and undirected.
For a general reference on graph theory, the reader is referred to [1, 10].
For a graph G, a vertex v ∈ V (G) is called odd (even) if d(v) is odd
(even). For S ⊆ V (G) and v ∈ V (G), we denote by G[S] and G − v
the subgraphs of G induced by S and by V (G)\{v}, respectively. A
k-factor of G is a k-regular spanning subgraph of G. In particular, F
is a 1-factor of G if and only if E(F ) is a perfect matching in G. The
union of two vertex-disjoint graphs G and H is denoted by G∪H. We
use N to denote the set of nonnegative integers. The Cartesian product
G¤H has V (G) = V (G) × V (H), and two vertices (a, b) and (c, d)
of G are adjacent if and only if ac ∈ E(G) and b = d or a = c and
bd ∈ E(H).
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2. Complexity

An algorithm is said to run in strongly polynomial time if the number
of elementary arithmetic and other operations is bounded by a fixed
polynomial in the size of the input, where any number in the input is
counted only for 1. Strongly polynomial time is of relevance only for
algorithms that have numbers among their input; otherwise, strongly
polynomial time coincides with the more well-known polynomial time.
For more background on strongly polynomial time, the reader is re-
ferred to [8]. Our main result for this section is the following theorem.

Theorem 1. For any positive integer b, a minimum signed b-edge cover
can be found in strongly polynomial time.

For the proof of Theorem 1, we use the following result from [8].

Theorem 2. If k : V (G) → N is a function, then a minimum simple
k-edge cover can be found in strongly polynomial time.

Proof of Theorem 1. The minimum simple k-edge cover problem can
be formulated as the following 0-1 linear programming problem:

Minimize
∑

uv∈E(G) fuv(2.1)
∑

uv∈EG(u)

fuv ≥ k(u), for every u ∈ V (G),

fuv ∈ {0, 1}, for every uv ∈ E(G).

We may formulate the minimum signed b-edge cover problem as the
following problem.

Minimize
∑

uv∈E(G) fuv(2.2)
∑

uv∈EG(u)

fuv ≥ b, for every u ∈ V (G),

fuv ∈ {−1, 1}, for every uv ∈ E(G).

It is sufficient to prove that (2.2) may be converted to an instance of
(2.1); the proof then follows by Theorem 2. We consider the case only
when b is even, as the proof is similar when b is odd. Assuming b is
even, if d(u) is odd for some u ∈ V (G), then

∑
uv∈EG(u) fuv ≥ b implies

that
∑

uv∈EG(u) fuv ≥ b + 1. Hence, (2.2) is equivalent to
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Minimize
∑

uv∈E(G) fuv(2.3)
∑

uv∈EG(u)

fuv ≥ b, for each even vertex u ∈ V (G),

∑

uv∈EG(u)

fuv ≥ b + 1, for each odd vertex u ∈ V (G),

fuv ∈ {−1, 1}, for every uv ∈ E(G).

Now define guv = 1
2
(1 + fuv) for each uv ∈ E(G). It is straightfor-

ward to see that guv ∈ {0, 1} for each uv ∈ E(G). Moreover, (2.3) is
equivalent to the following problem.

Minimize 2
∑

uv∈E(G) guv − |E(G)|(2.4)
∑

uv∈EG(u)

guv ≥ 1

2
(b + d(u)) , for each even vertex u ∈ V (G),

∑

uv∈EG(u)

guv ≥ 1

2
(b + 1 + d(u)) , for each odd vertex u ∈ V (G),

guv ∈ {0, 1}, for every uv ∈ E(G).

Define

k(u) =

{
1
2
(b + d(u)) , d(u) even;

1
2
(b + 1 + d(u)) , d(u) odd.

To solve (2.4), it is equivalent to minimize
∑

uv∈E(G) guv rather than

minimizing 2
∑

uv∈E(G) guv − |E(G)|, thus (2.4) can be solved as an

instance of (2.1). Thus, by Theorem 2, (2.4) is polynomial time solv-
able. ¤

We remark that the reduction method in the proof of Theorem 1
applies to more general minimum signed b-edge cover problems, where
b : V (G) → N is any non-negative integer-valued function.

3. Bounds

We now turn to finding sharp lower and upper bounds for the signed
b-edge cover numbers in graphs. Sharp lower bounds are easier, while
upper bounds are more elusive for general b. We supply a sharp upper
bound in the case b = 2 and give examples of graphs witnessing all
possible values of the parameter ρ′2. We first consider lower bounds for
ρ′b.
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Theorem 3. Let b be a positive integer. For any graph G of order n
and minimum degree at least b,

ρ′b(G) ≥ dbn/2e.
Proof. For a SbEC f of G, for every v ∈ V (G), we have that

f (EG(v)) ≥ b.

Hence, ∑

v∈V (G)

f (EG(v)) ≥ bn.

In particular,
2f (E(G)) ≥ bn.

Thus, ρ′b(G) ≥ bn/2, and the result follows since ρ′b(G) is an integer. ¤
For an upper bound for the signed b-edge cover number, we propose

the following conjecture.

Conjecture 4. Let b ≥ 2 be an integer. There is a positive integer nb

so that for any graph G of order n ≥ nb with minimum degree b,

(3.1) ρ′b(G) ≤ (b + 1)(n− b− 1).

Since
ρ′b (Kb+1,n−b−1) = (b + 1)(n− b− 1),

the upper bound (3.1) would be best possible if the conjecture were
true. Conjecture 4 appears difficult to prove even for b = 3. However,
the case b = 2 is the following result.

Theorem 5. Let G be a graph of order n with minimum degree at least
2. For n ≥ 7,

ρ′2(G) ≤ 3n− 9.

Proof. We proceed by induction on the size m = |E(G)| of G. By a
tedious and so omitted argument, it follows that ρ′2(G) ≤ 12 if |V (G)| =
7. We may therefore assume that n ≥ 8.

Assume that the theorem is true for all graphs G′ with minimum
degree at least 2, where |E(G′)| ≤ m− 1 and 7 ≤ |V (G′)| ≤ n. We will
prove that ρ′2(G) ≤ 3n− 9 for a graph G of order n and size m. There
are three cases.

Case 1. δ(G) = 2.
Let w be a vertex with degree 2, and two neighbours of w are denoted

by u and v.
Subcase 1.1. uv 6∈ E(G).
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Let G′′ = G − w and G′ = G′′ + uv. Then G′ has order n − 1 and
size m − 1 with δ(G′) ≥ 2 . By the induction hypothesis, we have
that ρ′2(G

′) ≤ 3(n − 1) − 9 = 3n − 12. Let f ′ be a S2EC of G′ so
that f ′(E(G′)) = ρ′2(G

′). We can form a S2EC f of G by assigning
f(uw) = f(vw) = 1 and f(e) = f ′(e) for each e ∈ E(G)\{uw, vw}.
Hence,

f(E(G)) = f ′(E(G′))− f ′(uv) + 2

≤ ρ′2(G
′) + 3

≤ 3n− 9,

implying that ρ′2(G) ≤ 3n− 9.
Subcase 1.2. uv ∈ E(G).
If both u and v have degree 2, then the subgraph induced by u, v and

w is an isolated triangle. It is not hard to show that ρ′2(G) ≤ 3n − 9
when n = 8 or 9. Hence, we may assume that n ≥ 10. Let G′ =
G − {u, v, w}. Then G′ is a graph of order n − 3 ≥ 7 with minimum
degree at least 2. By the induction hypothesis, we have that ρ′2(G

′) ≤
3(n−3)−9 = 3n−18. Hence, ρ′2(G) = ρ′2(G

′)+3 ≤ (3n−18)+3 < 3n−9.
We therefore assume that u or v has degree at least 3.

We obtain a graph G′ from G as follows. If both u and v have degree
greater than 2, then G′ = G−w. If one of u and v has degree 2, say u,
then G′ is obtained from G−w by adding an edge between u and one
of its nonadjacent vertices.

It is clear that G′ is a graph of order n−1 and size at most m−1 with
δ(G′) ≥ 2. By induction hypothesis, we have that ρ′2(G

′) ≤ 3n − 12.
Let f ′ be a S2EC of G′ so that f ′(E(G′)) = ρ′2(G

′). We can form a
S2EC f of G by assigning f(uw) = f(vw) = 1 and f(e) = f ′(e) for
each e ∈ E(G)\{uw, vw}. Then,

f(E(G)) =
∑

e∈E(G)\{uw,vw}
f ′(e) + f(uw) + f(vw)

≤ (f ′(E(G′)) + 1) + 2

= ρ′2(G
′) + 3

≤ 3n− 9,

implying that ρ′2(G) ≤ 3n− 9.
Case 2. δ(G) = 3.
Let v be a vertex with degree 3. Then G′ = G−v is a graph of order

n and size m− 3 with δ(G′) ≥ 2. By the induction hypothesis, we have
that ρ′2(G

′) ≤ 3n − 12. Let f ′ be a S2EC of G′ so that f ′ (E(G′)) =
ρ′2(G

′). We can obtain a S2EC f of G by assigning f(e) = 1 for each
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e ∈ E(G)\E(G′) and f(e) = f ′(e) for each e ∈ E(G′). Observe that

f (E(G)) = f ′ (E(G′)) + 3

= ρ′2(G
′) + 3

≤ 3n− 9.

Hence, ρ′2(G) ≤ 3n− 9.
Case 3. δ(G) ≥ 4.
In this case, there is an even length cycle in G (see Lemma 3.1 of

[12]); denote such a cycle by C. Then G′′ = G − E(C) is a graph
of order n and size m − |E(C)| with δ(G′′) ≥ 2. By the induction
hypothesis, we have that ρ′2(G

′′) ≤ 3n− 9. Let f ′′ be a S2EC of G′′ so
that f ′′ (E(G′′)) = ρ′2(G

′′). We can obtain a S2EC f of G by assigning
1 and −1 alternately along the cycle C and f(e) = f ′′(e) for each
e ∈ E(G′′). Notice that

f (E(G)) = f ′′ (E(G′′))

= ρ′2(G
′′)

≤ 3n− 9.

¤
As ρ′2 (K3,n−3) = 3n − 9, the upper bound given in Theorem 5 is

sharp.
By Theorems 3 and 5 we have that

n ≤ ρ′2(G) ≤ 3n− 9

for any graph G of order n ≥ 7. Are all these possible values of ρ′2
witnessed? The next theorem answers this question in the affirmative.

Theorem 6. Let n ≥ 7. For each k satisfying n ≤ k ≤ 3n − 9, there
is a connected graph G such that

ρ′2(G) = k.

Proof. We prove the assertion holds by constructing desired graphs for
each of the following three cases.

Case 1. n ≤ k < d3n
2
e.

For k = n, we can take G ∼= Cn and so ρ′2(G) = n. Thus, in the
following, we may assume that k > n.

We construct a graph G by adding some chords to Cn. Assume that
the order of the vertices of the cycle Cn is v1, . . . , vn. We add the fol-
lowing chords:

k−n⋃
i=1

{vivbn/2c+i}.
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See Figure 2 for an example when n = 8 and k = 10.

v

v

vv

v

v

v

v

1 2

3

4

56

7

8

Figure 2. A graph G of order 8 with ρ′2(G) = 10.

The graph G has size k and no vertex with degree greater than 3
and so ρ′2(G) = |E(G))| = k.

Case 2. d3n
2
e ≤ k ≤ 2n− 4.

In this case, a graph G with ρ′2(G) = k is the following bipartite
graph with some edges subdivided. Let

V (G) = {a, b, u1, . . . , uk−n+2, v1, . . . , v2n−k−4}
and

E(G) =
k−n+2⋃

i=1

{avi} ∪
2n−k−4⋃

j=1

{ujvj, buj} ∪
k−n+2⋃

j=2n−k−3

{bvj}.

Every edge of G is incident to a vi or a uj, and each such vertex has
degree 2, so the only signed 2-edge cover has all edges with weight 1.
See Figure 3 for an example of such graph when n = 10 and k = 15.

v v v vvv v
1 2 3 4 5 6 7

a b

u1

Figure 3. A graph G of order 10 and size 15 with
ρ′2(G) = 15.

Case 3. 2n− 4 < k ≤ 3n− 9.
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In the final case, one graph G with ρ′2(G) = k is the following bipar-
tite graph. Let

V (G) = {a, b, c} ∪ {v1, . . . , vn−3}
and

E(G) =
n−3⋃
i=1

{avi, cvi} ∪
k−2n+6⋃

i=1

{bvi}.

See Figure 4 for an example when n = 8 and k = 13.

v vvv v1 2 3 4 5

a b c

Figure 4. A graph G of order 8 with ρ′2(G) = 13.

The graph G is bipartite with vertex classes X = {a, b, c} and Y =
{v1, . . . , vn−3}. Furthermore, each edge is incident with at least one
vertex of degree at most 3. Hence, ρ′2(G) = k. ¤

4. Cartesian products

We investigate the signed b-edge cover number of Cartesian product
graphs. Our main result is the following.

Theorem 7. Let G be a graph of order nG and size mG with kG odd
vertices. Let H be a graph of order nH and size mH with kH odd
vertices. For any integer b ≥ 2, the signed b-edge cover number of
G¤H is at most

min
1≤i≤b−1

{nHρ′b(G) + nGτ(H), nGρ′b(H) + nHτ(G), p(i, G, H)},

where for J ∈ {G,H}

τ(J) = kJ +
1− (−1)mJ

2
,

and for 1 ≤ i ≤ b− 1,

p(i, G, H) = nHρ′i(G) + nGρ′b−i(H).
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The upper bound in Theorem 7 is sharp, as will follow from Corollary
12. To prove Theorem 7, we use the following lemma. We call a
function f : E(G) → {−1, 1} good if f satisfies that f (EG(v)) ≥ 0 for
every v ∈ V (G).

Lemma 8. For any graph G of order n ≥ 2 and size m, there is a good
function f such that

f(E(G)) =
∑

e∈E(G)

f(e) ≤ k +
1− (−1)m

2
,

where k ≤ 2bn
2
c is the number of odd vertices in G.

Proof. As every graph has an even number of odd vertices, k is even
and k ≤ 2bn

2
c. Partition the odd vertices of G into k/2 pairs, and let H

be a graph obtained by adding k/2 new vertices w1, . . . , w k
2

to G, and

joining each wi to the two odd vertices of the ith pair. It is clear that
H has no odd vertices and so is Eulerian. Let C be an Eulerian circuit
of H. We assign values 1 and −1 alternately along C. This defines a
function f ′ : E(H) → {1,−1} such that

∑
e∈EH(v) f ′(e) = 0 for every

v ∈ V (H) and
∑

e∈E(H)

f ′(e) =
∑

e∈E(G)

f ′(e) =
1− (−1)m

2
.

Now we modify f ′ to form a good function f of G as follows: for each
odd vertex v of G, change −1 to 1 exactly once on one of the edges
incident with v. We need to make such changes at most k/2 times, as
there are k/2 many −1’s on edges to the wi. Hence,

f(E(G)) =
∑

e∈E(G)

f(e) ≤
∑

e∈E(G)

f ′(e) + 2× k

2
= k +

1− (−1)m

2
.

¤
Proof of Theorem 7. To show that

ρ′b(G¤H) ≤ min{nHρ′b(G) + nGτ(H), nGρ′b(H) + nHτ(G), p(i, G, H)},
it suffices to show

(4.1) ρ′b(G¤H) ≤ nHρ′b(G) + nGτ(H),

(4.2) ρ′b(G¤H) ≤ nGρ′b(H) + nHτ(G),

and for each 1 ≤ i ≤ b− 1,

(4.3) ρ′b(G¤H) ≤ p(i, G, H).
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The statement (4.2) will follow by symmetry from (4.1). To show
that (4.1), it suffices to construct a SbEC f of G¤H so that

∑

e∈E(G¤H)

f(e) ≤ nHρ′b(G) + nGτ(H).

Let fG and fH be SbECs of G and H such that fG(E(G)) =∑
e∈E(G) fG(e) = ρ′b(G) and fH(E(H)) =

∑
e∈E(H) fH(e) = ρ′b(H),

respectively. By Lemma 8, there exists a good function gH of H such
that

gH(E(H)) =
∑

e∈E(H)

gH(e) ≤ kH +
1− (−1)mH

2
.

Note that for any vertex v ∈ V (H), the subgraph (G¤H)[Sv] induced
by Sv = {(u, v) : (u, v) ∈ V (G¤H)} is isomorphic to G. Similarly,
for any vertex u ∈ V (G), the subgraph (G¤H)[Tu] induced by Tu =
{(u, v) : (u, v) ∈ V (G¤H)} is isomorphic to H.

We define f as follows. For every v ∈ V (H), if u1u2 ∈ E(G), then

f ((u1, v)(u2, v)) = fG(u1u2).

For every u ∈ V (G), if v1v2 ∈ E(H), then

f ((u, v1)(u, v2)) = gH(v1v2).

Hence, for each (u, v) ∈ V (G¤H), we have that

∑

e∈EG¤H((u,v))

f(e) =
∑

e∈EG(u)

fG(e) +
∑

e∈EH(v)

gH(e)

≥ b + 0

= b,

and

∑

e∈E(G¤H)

f(e) = nH

∑

e∈E(G)

fG(e) + nG

∑

e∈E(H)

gH(e)

≤ nHρ′b(G) + nG

(
kH +

1− (−1)mH

2

)

= nHρ′b(G) + nGτ(H).

Thus,
ρ′b(G¤H) ≤ nHρ′b(G) + nGτ(H),

and (4.1) follows.
We now prove (4.3). For each 1 ≤ i ≤ b − 1, let fG

i be SiEC of
G such that

∑
e∈E(G) fG

i (e) = ρ′i(G) and let fH
b−i be S(b − i)EC of H
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such that
∑

e∈E(H) fH
b−i(e) = ρ′b−i(H). Define f as follows. For every

v ∈ V (H), if u1u2 ∈ E(G), then

f ((u1, v)(u2, v)) = fG
i (u1u2).

For every u ∈ V (G), if v1v2 ∈ E(H), then

f ((u, v1)(u, v2)) = fH
b−i(v1v2).

Hence, for each (u, v) ∈ V (G¤H), we have that

∑

e∈EG¤H((u,v))

f(e) =
∑

e∈EG(u)

fG
i (e) +

∑

e∈EH(v)

fH
b−i(e)

≥ i + (b− i)

= b,

and

∑

e∈E(G¤H)

f(e) = nH

∑

e∈E(G)

fG
i (e) + nG

∑

e∈E(H)

fH
b−i(e)

≤ nHρ′i(G) + nGρ′b−i(H)

= p(i, G, H).

Thus,

ρ′b(G¤H) ≤ p(i, G, H),

and (4.3) follows. ¤

Corollary 9. Let G be an Eulerian graph of order nG and size mG.
For any graph H of order nH , and for any integer b ≥ 2,

⌈
bnGnH

2

⌉
≤ ρ′b(G¤H) ≤ nGρ′b(H) +

1− (−1)mG

2
nH .

Proof. The lower bound follows by Theorem 3. By hypothesis, G has

no odd vertices and so τ(G) = 1−(−1)mG

2
. The second inequality holds

by Theorem 7. ¤

Many other graph products exist, such as the categorical, strong, and
lexicographic products; see the book [3] for more on graph products.
We will investigate how the parameter ρ′b acts with respect to these
products in future work.
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5. Cliques and bicliques

As the parameter ρ′b is new, it is important to determine its values
for some familiar graphs. The exact values of ρ′b for cliques, Kn, and
bicliques, Kn,n, are found in this final section. In both cases, we use re-
sults on graph factors, 1-factorable graphs, and hamiltonian factorable
graphs.

Theorem 10. Fix b ≥ 1 an integer. For any integer n ≥ b + 2, we
have the following.

ρ′b(Kn) =





bn/2, n ≡ 0 (mod 2), b ≡ 1 (mod 2);
(b + 1)n/2, n− b ≡ 2 (mod 4), b ≡ 1 (mod 2);
(b + 1)n/2 + 1, n− b ≡ 0 (mod 4), b ≡ 1 (mod 2);
bn/2, n− b ≡ 1 (mod 4), b ≡ 0 (mod 2);
bn/2 + 1, n− b ≡ 3 (mod 4), b ≡ 0 (mod 2);
(b + 1)n/2, n ≡ 0 (mod 2), b ≡ 0 (mod 2).

Proof. We only prove the case when b is odd, as the proof is similar
when b is even. Consider the following three cases.

Case 1. n ≡ 0 (mod 2).
By Theorem 9.19 on page 273 of [1], Kn is 1-factorable into (n− 1)

1-factors. So, we assign x(e) = 1 for each edge e of 1
2
(n + b − 1) 1-

factors, and x(e′) = −1 for each edge e′ of the remaining 1
2
(n− b− 1)

1-factors. It is straightforward to verify that f is a SbEC of Kn and
f(E(Kn)) = bn/2. Hence, ρ′b(Kn) ≤ bn/2. It follows by Theorem 3
that ρ′b(Kn) = bn/2.

Case 2. n− b ≡ 2 (mod 4).
In this case, n = b + 4k + 2 for some integer k ≥ 0. Every vertex

of Kb+4k+2 has even degree b + 4k + 1, and b is odd. Thus, for any
SbEC f and for each v ∈ V (Kb+4k+2), f

(
EKb+4k+2

(v)
) ≥ b implies that

f
(
EKb+4k+2

(v)
) ≥ b + 1. Summing f

(
EKb+4k+2

(v)
)

over all vertices, we
get

f(E(Kb+4k+2)) ≥ (b + 1)(b + 4k + 2)/2 = (b + 1)n/2.

Hence,

ρ′b(Kb+4k+2) ≥ (b + 1)n/2.

To show that the equality holds, we need to obtain a SbEC f of
Kb+4k+2 such that f(E(Kb+4k+2)) = (b + 1)n/2. By Theorem 9.21 on
page 275 of [1], Kb+4k+2 can be factored into 2k + (b + 1)/2 hamil-
tonian cycles C1, · · · , C2k+(b+1)/2. Note that the graph H = Kb+4k+2 −⋃(b+1)/2

i=1 E(Ci) is Eulerian with 2kn edges. Assigning 1 to each edge of
C1, · · · , C(b+1)/2, and assigning +1 and -1 alternately along an Eulerian
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circuit of H, we obtain a SbEC f of Kb+4k+2 such that f(E(Kb+4k+2)) =
(b + 1)n/2.

Case 3. n− b ≡ 0 (mod 4).
In this case, n = b + 4k for some integer k ≥ 1. By an argument

similar to that in Case 2, we have that ρ′b(Kb+4k) ≥ (b + 1)n/2.
We show by contradiction that the equality does not hold. Suppose

that there is a SbEC f of Kb+4k such that f(E(Kb+4k)) = ρ′b(Kb+4k) =
(b + 1)n/2. Let p and q be the numbers of edges in Kb+4k with values
1 and -1, respectively. Then,

p + q = (b + 4k − 1)n/2

and

p− q = (b + 1)n/2.

Adding the last two equations, we obtain that

2p = bn + 2kn,

which is impossible since both n and b are odd. So, ρ′b(Kb+4k) ≥ (b +
1)n/2 + 1.

To finish our proof in this case, we need to find a SbEC f of Kb+4k

such that f(E(Kb+4k)) = (b + 1)n/2 + 1. By Theorem 9.21 on page
275 of [1], Kb+4k can be factored into 2k +(b− 1)/2 hamiltonian cycles

C1, · · · , C2k+(b−1)/2. Note that the graph H = Kb+4k−
⋃(b+1)/2

i=1 E(Ci) is
Eulerian with (2k−1)n edges. Assigning 1 to each edge of C1, · · · , C(b+1)/2,
and assigning +1 and -1 alternately along an Eulerian circuit of H
starting with 1, we obtain a SbEC f of Kb+4k such that f(E(Kb+4k)) =
(b + 1)n/2 + 1. ¤

We finish by determining ρ′b for the bicliques Kn,n.

Theorem 11. Fix b a positive integer. For any integer n ≥ b + 1,

ρ′b(Kn,n) =

{
bn, n-b ≡ 0 (mod 2);
(b + 1)n, n-b ≡ 1 (mod 2).

Proof. By [5] (see also Theorem 9.18 on page 272 of [1]), the graph
Kn,n can be factored into n 1-factors. By Theorem 3, ρ′b(Kn,n) ≥ bn. If
n− b ≡ 0 (mod 2), then it suffices to show that ρ′b(Kn,n) ≤ bn. We can
do so by constructing a SbEC f for which f (E(Kn,n)) = bn. Since Kn,n

can be factored into n 1-factors, we can assign 1 to each edge of n+b
2

1-factors and −1 to each edge of n−b
2

1-factors. This defines a SbEC f
of Kn,n satisfying f (E(Kn,n)) = bn.
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If n − b ≡ 1 (mod 2), then for any SbEC f of Kn,n and each v ∈
V (Kn,n) we have that

∑

e∈EKn,n (v)

f(e) ≥ b + 1.

Thus,

f (E(Kn,n)) ≥ (b + 1)n,

which proves that ρ′b(Kn,n) ≥ (b + 1)n.
To show that ρ′b(Kn,n) ≤ (b + 1)n, it suffices to construct a SbEC f

such that f (E(Kn,n)) = (b+1)n. We assign 1 to each edge of 1
2
(n+b+1)

1-factors and -1 to each edge of the remaining 1
2
(n − b − 1) 1-factors.

This defines a SbEC f of Kn,n satisfying f(E(Kn,n)) = (b + 1)n. ¤

Corollary 12. Let G be an Eulerian graph of order nG and size mG.
For all positive integers n ≥ b ≥ 2 satisfying n ≡ b (mod 2), if mG is
even, then

ρ′b(G¤Kn,n) = bnnG.

Proof. Under the hypotheses, τ(G) = 0. By Theorem 11, ρ′b(Kn,n) =
bn. So, by Theorem 7, we have ρ′b(G¤Kn,n) ≤ bnnG. The reverse in-
equality follows by Theorem 3. ¤
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[4] D. König, Über trennende Knotenpunkte in Graphen (nebst Anwendungen auf
Determinanten und Matrizen), Acta Litterarum ac Scientiarum Regiae Univer-
sitatis Hungaricae Francisco-Josephinae, Sectio Scientiarum Mathematicarum
[Szeged] 6 (1932-34) 155-179.
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