
MATCHINGS DEFINED BY LOCAL CONDITIONS
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Abstract. A graph has the neighbour-closed-co-neighbour, or ncc
property, if for each of its vertices x, the subgraph induced by the
neighbour set of x is isomorphic to the subgraph induced by the
closed non-neighbour set of x. Graphs with the ncc property were
characterized in [1] by the existence of a locally C4 perfect match-
ing M : every two edges of M induce a subgraph isomorphic to C4.
In the present article, we investigate variants of locally C4 perfect
matchings. We consider the cases where pairs of distinct edges of
the matching induce isomorphism types including P4, the paw, or
the diamond. We give several characterizations of graphs with such
matchings. In addition, we supply characterizations of graphs with
matchings whose edges satisfy a prescribed parity condition.

1. Introduction

Matchings have been extensively studied in graph theory, and play an
important role in combinatorial optimization; see for example, [7, 8]. A
disjoint neighbour perfect or dnp matching M is a perfect matching with
the property that no edge of M is in a triangle. For example, every perfect
matching in a bipartite graph is dnp, and there is a unique dnp matching
in the Cartesian product of an n-vertex clique with K2, written Kn2K2.

We only consider graphs which are finite, undirected, and simple. We
use the notation G ¹ S for the subgraph of G induced by a set of vertices
S, and the notation G ∼= H for isomorphic graphs. If x is a vertex of
G, then define N(x) to be the set of vertices of G joined to x. Define
N c[x] to be the set V (G) \ N(x). R. Nowakowski recently proposed the
following vertex partition property as an analogue of similar properties for
infinite graphs (such as the infinite random graph): a graph G has the
neighbour-closed-co-neighbour or ncc property, if for all x ∈ V (G), we have
that G ¹ N(x) ∼= G ¹ N c[x]. There are many examples of such graphs, such
as the bipartite cliques Kn,n and the graphs Kn2K2. There are, however,
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many ncc graphs that are not one of these types. The class of ncc graphs
were completely characterized in [1] using dnp matchings.

Theorem 1. A graph G is ncc if and only if there is a positive integer n
so that G has 2n vertices, G is n-regular, and G has a dnp matching.

Theorem 1 implies the following.

Theorem 2. A graph G is ncc if and only if G has a perfect matching M
so that every pair of distinct edges of M induce a subgraph isomorphic to
C4.

A dnp matching in an ncc graph acts “locally” as an isomorphism. This
is made precise in the following theorem, which was proved as a claim in
the converse of Theorem 2.1 from [1].

Theorem 3. Let G be an ncc graph with a dnp matching M = {aibi : 1 ≤
i ≤ n}. Then the mapping

f : G ¹ {ai : 1 ≤ i ≤ n} → G ¹ {bi : 1 ≤ i ≤ n}
defined by f(ai) = bi is an isomorphism.

Following [1], we name the mapping f of the theorem an M -isomorph-
ism. The conclusion of this theorem holds regardless of what “orienta-
tion” the matching is given. Hence, for each edge xy ∈ M, there are two
choices for the “a” vertex and two for the “b”, giving rise to 2n distinct
M -isomorphisms. In this way, we may view a matching as a mapping
(which may not necessarily be an isomorphism), which we refer to as an
M -morphism. This view leads to a new characterization of ncc graphs.

Theorem 4. A graph G is ncc if and only if G has n2 edges, has a perfect
matching M so that every M -morphism is an isomorphism, and no two
distinct edges of M induce a subgraph isomorphic to K4.

Before we prove Theorem 4, we need some notation. Let Pn denote the
path with n edges. The graph 2K2 consists of two disjoint copies of K2.
The paw is K3 plus one endvertex, and the diamond is K4 minus an edge.
See Figure 1. For more on these graphs, the reader is directed to [2].

Proof. The necessity follows by Theorems 1, 2, and 3. For sufficiency, fix
distinct edges e = ab and e′ = a′b′ of M. Up to isomorphism, the graph H
induced on the vertices of e and e′ is one of 2K2, C4, P4, the paw, or the
diamond. Suppose first that H is the paw, say with edges ab, aa′, ba′, a′b′.
But then aa′ is an edge, with bb′ a non-edge, which violates that every
M -morphism is an isomorphism. A similar argument excludes P4 and the
diamond. By Theorem 2, we need only exclude 2K2. If H ∼= 2K2, then
each pair of distinct edges of M distinct from e, e′ is joined by at most two



MATCHINGS DEFINED BY LOCAL CONDITIONS 3

Figure 1. The paw and the diamond.

edges (since we have excluded all possibilities for H except 2K2 and C4).
But then

|E(G)| ≤ n + 2
((

n

2

)
− 1

)
< n2,

which contradicts hypothesis. ¤

Let G have a perfect matching M. We say that M is locally H if each
pair of distinct edges of M induce a graph isomorphic to H. Hence, a
matching may be locally 2K2, C4, P4, the paw, the diamond, or K4, with
no other possibilities. A graph with a locally 2K2 perfect matching consists
of n disjoint copies of K2. Such matchings have been well-studied, and are
sometimes called induced or strong ; see [3]. A graph with a locally K4

perfect matching is a clique. With this notation, we may restate Theorem
2 as follows.

Theorem 5. A graph is ncc if and only if it has a locally C4 perfect match-
ing.

From Theorem 5 and the above discussion, the remaining unexamined
choices for H are P4, the paw or the diamond. In each case, graphs with
locally H perfect matchings give rise to an interesting class of graphs. For
these graph classes, we prove structural characterizations similar to Theo-
rem 4 in Theorems 6 and 8.

Graphs with locally H perfect matchings have diameter 2 or 3. In Sec-
tion 3, we present a generalization of locally H perfect matchings to graphs
with arbitrary diameter. This gives rise to parity disjoint perfect match-
ings, which are defined via certain distance conditions on the edges of the
matching. We characterize such matchings in Theorem 10, and give a poly-
nomial time recognition algorithm for them in Corollary 2.
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2. Characterizing graphs with locally H perfect matchings

We now characterize graphs with locally H perfect matchings in a fashion
similar to Theorem 4. However, we will use M -morphisms that are not
necessarily isomorphisms.

Let f : V (G) → V (H) be a vertex mapping. We will abuse notation and
write f : G → H. The mapping f is a homomorphism if xy ∈ E(G) implies
that f(x)f(y) ∈ E(H); in other words, it sends edges to edges. See the
book [6] for more on homomorphisms. The map f is a cohomomorphism
if xy ∈ E(G) implies that f(x)f(y) 6∈ E(H). Cohomomorphisms were first
studied in [5]. An anti-homomorphism sends edges to non-edges, while an
anti-cohomomorphism sends non-edges to edges. The mapping f is an anti-
isomorphism if it is bijective and is both an anti-homomorphism and an
anti-cohomomorphism.

Theorem 6. Let G be a graph with 2n vertices, where n is a positive
integer.

(1) The graph G has a locally P4 perfect matching if and only if there is
a perfect matching M of G so that every M -morphism is an anti-
homomorphism, there are n2+n

2 edges in G, and no two edges of M
induce a subgraph isomorphic to 2K2.

(2) The graph G has a locally paw perfect matching M if and only there
is a perfect matching M of G so that every M -morphism is an anti-
isomorphism.

(3) The graph G has a locally diamond perfect matching M if and only
if there is a perfect matching M of G so that every M -morphism is
an anti-cohomomorphism, there are 3n2−n

2 edges in G, and no two
edges of M induce a subgraph isomorphic to K4.

Proof. (1) For the forward direction, let M be a locally P4 perfect matching
with M = {aibi : 1 ≤ i ≤ n}. Fix an M -morphism

f : G ¹ {ai : 1 ≤ i ≤ n} → G ¹ {bi : 1 ≤ i ≤ n}
defined by f(ai) = bi, for 1 ≤ i ≤ n. Since each pair of distinct edges aibi

and ajbj of M induce a P4, if say aiaj is an edge, then bibj is a non-edge.
Hence, by symmetry, f is an anti-homomorphism. As each pair of edges of
M are joined by exactly one edge, there are n+

(
n
2

)
= n2+n

2 edges in G. As
M is locally P4 perfect, no two edges of M induce a subgraph isomorphic
to 2K2.

For the reverse direction, fix distinct edges aibi and ajbj of M. Without
loss of generality, say i = 1 and j = 2. By hypothesis, the subgraph H
induced by {a1, a2,b1, b2} cannot be isomorphic to 2K2. We must therefore
exclude the cases when H is C4, a paw, diamond, or K4. Suppose for a
contradiction that H is C4. As M is an anti-homomorphism, a1 is not
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Figure 2. Excluding C4 in the proof of (1).

joined to a2 and b1 is not joined to b2; hence, a1b2 and a2b1 are edges.
Define the M -morphism

f ′ : G ¹ {a1, b2, a3, . . . , an} → G ¹ {b1, a2, b3, . . . , bn}

by f ′(ai) =
{

bi if i 6= 2;
a2 else. See Figure 2. The map f ′ fails to be anti-

homomorphism, as a1b2 ∈ E(G ¹ {a1, b2, a3, . . . , an}) but f ′(a1)f ′(b2) ∈
E(G ¹ {b1, a2, b3, . . . , bn}). Hence, H is not C4. A similar argument ex-
cludes the diamond and K4.

We have shown that each H is either P4 or a paw. Suppose for a con-
tradiction that some pair of distinct edges of M induces a paw. Let r be
the number of pairs of edges of M with exactly 1 edge between them, and
let s be the number of pairs of edges with exactly 2 edges between them.
Then r ≥ 0, s ≥ 1, and r + s =

(
n
2

)
. Further,

|E(G)| = n + r + 2s

> n +
(

n

2

)
=

n2 + n

2
,

which contradicts hypothesis.
(2) For the forward direction, let M be a locally paw perfect matching,

and fix an M -morphism f : G ¹ {ai : 1 ≤ i ≤ n} → G ¹ {bi : 1 ≤ i ≤ n}
defined by f(ai) = bi for 1 ≤ i ≤ n. Since each pair of edges aibi and ajbj

of M induce a paw, if say aiaj is an edge, then bibj is a non-edge. Hence,
by symmetry, f is an anti-homomorphism. If aiaj is a non-edge, then aiaj

is an edge; by symmetry, f is an anti-cohomomorphism, and thus, f is an
anti-isomorphism.

For the reverse direction, fix distinct edges aibi and ajbj of M. By hy-
pothesis and arguments similar to those given in the proof of (1), the sub-
graph H induced by {ai, aj , bi, bj} cannot be isomorphic to 2K2, P4, C4,
the diamond, or K4. Hence, M is locally paw.
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(3) For the forward direction, let M be a locally diamond perfect match-
ing, and fix an M -morphism f : G ¹ {ai : 1 ≤ i ≤ n} → G ¹ {bi : 1 ≤ i ≤ n}
defined by f(ai) = bi. Since each pair of edges aibi and ajbj of M induce
a diamond, if say aiaj is a non-edge, then aiaj is an edge; by symmetry
f is an anti-cohomomorphism. As each pair of edges of M are joined by
exactly three edges, there are n+3

(
n
2

)
= 3n2−n

2 edges in G. As M is locally
diamond perfect, no two edges of M induce a subgraph isomorphic to K4.

For the reverse direction, fix aibi and ajbj edges of M. By hypothesis and
arguments similar to those of (1), the subgraph H induced by {ai, aj ,bi, bj}
cannot be isomorphic to 2K2, P4, C4, or K4. We must exclude the paw.
Suppose for a contradiction that H is isomorphic to a paw. Hence, between
each pair of edges in M there are either 2 or 3 edges. As in (1) there are
integers r ≥ 1 and s ≥ 0 so that r + s =

(
n
2

)
, and

|E(G)| = n + 2r + 3s

< n + 3
(

n

2

)
=

3n2 − n

2
,

which is a contradiction. ¤

Planarity is a strong restriction on graphs with a locally H perfect match-
ing, as witnessed by the following theorem.

Corollary 1. There are only finitely many non-isomorphic planar graphs
which have a locally H matching, where H is one of C4, P4, the paw, or
the diamond.

Proof. Fix H as in the statement of the corollary. A graph G with 2n ver-
tices and a locally H perfect matching is dense, in the sense that |E(G)| ∈
O(n2). This fact, Theorem 6, and the well known property that if G is
planar then |E(G)| ≤ 3|V (G)|+ 6 complete the proof. ¤

We now turn to another structural characterization of graphs with a lo-
cally H perfect matching. Suppose that G is a graph with perfect matching
M, and let ab, a′b′ be distinct edges of M. Define an interchange (with re-
spect to M) by interchanging the edges and non-edges of G ¹ {a, a′, b, b},
leaving the edges ab and a′b′ unchanged, so that the isomorphism type of
the subgraph induced by {a, a′, b, b} is unchanged. We write G ∼M G′

if G′ results from G by one C4-interchange with respect to M. We write
G ∼∗M G′ if there is an integer n ≥ 0, and graphs G0 = G,G1, . . . , Gn = G′

so that for all 0 ≤ i ≤ n− 1, Gi ∼∗M Gi+1. See Figure 3.
If G and H are graphs, then we write the Cartesian product of G and H

as G2H. The following theorem was proved in [1].

Theorem 7. A graph G is ncc if and only if G has a perfect matching M
so that G ∼∗M (Kn2K2).
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*

Figure 3. A sequence of interchanges in a graph with a
locally P4 perfect matching.

Define the graph K ′
n by adding an endvertex joined to each vertex of Kn.

Let the vertices of Kn be labelled {xj : 1 ≤ j ≤ n}. Define the graph K ′′
n

by adding a set of n independent vertices yi, so that for each 1 ≤ i ≤ n, yi

is joined to all xj with j ≥ i. We use the notation Kn for the complement
of Kn. Define the graph K ′′′

n by adding all edges between Kn and Kn.
The proof of the following theorem, which extends Theorem 7 to locally H
matchings, follows from the definitions.

Theorem 8. Let G be a graph.
(1) The graph G has a locally P4 perfect matching M if and only if it

has a matching M so that G ∼∗M K ′
n.

(2) The graph G has a locally paw perfect matching M if and only if it
has a matching M so that G ∼∗M K ′′

n.
(3) The graph G has a locally diamond perfect matching M if and only

if it has a matching M so that G ∼∗M K ′′′
n .

Locally H graphs, where H is one of P4, the paw, or the diamond are in
a certain sense universal. We make this precise in the following theorem.

Theorem 9. Let G be a fixed graph, and suppose that H is isomorphic to
one of P4, the paw, or the diamond. Then G is isomorphic to the induced
subgraph of a graph G′ with a locally H perfect matching, so that |V (G′)| ≤
2|V (G)|.
Proof. We give the construction for H ∼= P4, since the cases of the paw
and diamond are handled analogously. Let V (G) = {x1, . . . , xn}. To form
G′′, add to G vertices {y1, . . . , yn} so that for all i, yi is only joined to
xi. Form G′ as follows: if xi is not joined to xj in G′′, then add an edge
between yi and yj ; add no other edges. It is straightforward to check that
{xiyi : 1 ≤ i ≤ n} is a locally P4 perfect matching in G′. ¤

We do not know if the problems of recognizing a locally H perfect match-
ing, where H is P4, the paw, or the diamond, are polynomial time.
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3. Parity disjoint matchings and pairings

All graphs in this section are connected. It is not hard to see that a graph
with a locally H perfect matching, where H is connected, has diameter 2 or
3. In this section, we consider a variation of locally H perfect matchings to
include graphs of arbitrary diameter. We denote by dG(u, v) the distance
between u and v; we may drop the subscript G if it is clear from context.

A pair in a graph is an unordered set of two distinct vertices. A parity
disjoint or pd pair is a pair {a, b} of vertices with the property that for all
vertices x

d(a, x) ≡ d(b, x) + 1 (mod 2).
In other words, a pair is pd if every vertex of even (odd) distance to a is odd
(even) distance to b. A pd edge is a pd pair that is an edge. For instance, an
ncc graph G is diameter 2, so by Theorem 5 each edge in a dnp matching
of G is pd. All edges in a bipartite graph is pd.

A pairing P is a set of pairwise disjoint pairs. In particular, a pairing
is a matching if each pair forms an edge of the graph. A pd pairing is a
pairing P so that

(1) for all x ∈ V (G), there is a unique pair p ∈ P so that x ∈ p;
(2) for each pair {a, b} ∈ P, d(a, b) is odd;
(3) each pair in P is pd.

A pd matching is a pd pairing P where each pair in P is an edge. For
example, an ncc graph or a balanced bipartite graph (that is, a bipartite
graph whose vertex classes have the same cardinality) have dnp pairings.

Before we give a characterization of graphs with pd matchings and pair-
ings, we need a few definitions. Define the graph G+odd by joining all pairs
of non-joined vertices of G that are an odd distance apart. See Figure 4 for
an example of G+odd.

Figure 4. A graph G and G+odd.

Let f : G → H be a vertex mapping. We say that f preserves parity if
for all x, y ∈ V (G),

dG(x, y) ≡ dH(f(x), f(y)) (mod 2).
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Define e(x) to be the set of vertices of even distance to x in G (including x);
the set o(x) is defined analogously. A perfect matching M of G is co-dnp
if for each edge ab ∈ M , there is no x ∈ V (G) that is non-joined to both a
and b.

Theorem 10. Let G be a graph with 2n vertices.
(1) A graph G has a pd pairing if and only if G+odd is ncc.
(2) A graph G has a pd matching if and only there is a perfect matching

M of G so that every M -morphism preserves parity, and for all
x ∈ V (G), |e(x)| = n.

Proof. (1) For the forward direction, assume that G has a pd pairing P =
{{ai, bi} : 1 ≤ i ≤ n}. Since d(ai, bi) is odd by hypothesis, aibi is an edge
of G+odd. Hence, M = {aibi : 1 ≤ i ≤ n} is a perfect matching in G+odd.
By Theorem 5 we need only check that any two distinct edges of M induce
C4. Suppose that ai and bi have either a common neighbour or common
non-neighbour z. In either case, dG(ai, z) ≡ dG(bi, z) (mod 2), which is a
contradiction. The result follows since a matching which is dnp and co-dnp
is locally C4.

For the reverse direction, suppose that G+odd is ncc. Let M = {aibi : 1 ≤
i ≤ n} be a locally C4 matching in G+odd, and so P = {{ai, bi} : 1 ≤ i ≤ n}
is a pairing in G (some of the edges aibi of G+odd may not be present in G).
If z ∈ V (G) has the property that dG(z, ai) and dG(z, bi) have the same
parity, then this would contradict that ai and bi has no common neighbour
nor non-neighbour in G+odd.

(2) For the forward direction, let G have a pd matching M = {aibi :
1 ≤ i ≤ n}. We prove that the M -morphism f mapping ai to bi preserves
parity. Now,

d(ai, aj) ≡ d(aj , bi) + 1 ≡ d(bi, bj) + 2 ≡ d(bi, bj) (mod 2).

As f was arbitrary, every M -morphism preserves parity.
For all i and j, each edge ajbj of M has exactly one of aj or bj in

e(ai). The same holds for e(bi). Hence, for all vertices x of G, we have that
|e(x)| = n.

For the reverse direction, fix M = {aibi : 1 ≤ i ≤ n} a matching of
G with the prescribed property. Consider the edge a1b1. Since |e(a1)| =
n, by relabelling if necessary, we may assume that e(a1) = {a1, . . . , an}
and o(a1) = {b1, . . . , bn}. As every M -morphism preserves parity and since
|e(b1)| = n, we have that e(b1) = {b1, . . . , bn} and o(b1) = {a1, . . . , an}
Hence, o(a1) = e(b1) and e(a1) = o(b1). In particular, a1b1 ∈ M is a pd
edge.

Define a pair of distinct vertices x, y of G to be even twins if e(x) = e(y).
Since every M -morphism preserves parity, every even twin of a1 among the
ai is mapped by M to an even twin of b1 among the bi. Further, there
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are the same number of even twins of a1 among the ai as even twins of
b1 among the bi. Therefore, each even twin of a1 is matched by M to an
even twin of b1. List the even twins of a1 and b1 as u1 = a1, u2, . . . , uk

and v1 = b1, v2, . . . , vk, respectively, so ui is matched to vi by M. Let
Mu1 = {uivi : 1 ≤ i ≤ ku1}, and let Mu1 = Mui

= Mvi
for all 1 ≤ i ≤ ku1 .

Note that each edge uivi is a pd edge.
Define

M =
⋃

z∈V (G)

Mz.

We now prove that M is a pd matching. To see that M is a matching,
suppose to the contrary that there are two edges uv and uv′ in M. But
then v and v′ are in the set {vi : 1 ≤ i ≤ ku}. But u is matched by M
with a unique element of {vi : 1 ≤ i ≤ ku}, which is a contradiction. The
matching M is pd by construction. ¤

Theorem 10 (1) implies that if G has a pd matching, then G+odd is ncc,
but the converse is false. Consider the graph G formed from K32K2 by
deleting one edge in its unique dnp matching. The graph G+odd ∼= G is
ncc, but G has no pd matching.

We now demonstrate how to recognize graphs with pd matchings and
pairings in polynomial time. To form the graph G−odd, delete all edges ab
with the property that there is a vertex x such that d(a, x) ≡ d(b, x) (mod
2). The graph G−odd may be constructed from G in polynomial time; the
same is true with G+odd. The graph G has a pd matching (pairing) if and
only if G−odd (G+odd) has a perfect matching (is ncc). This gives rise to
the following corollary of Theorem 10.

Corollary 2. There is a polynomial-time algorithm to determine whether
a graph has a pd matching (pairing).

We conclude with a discussion of operations preserving pd matchings. If
G and H are graphs (whose vertex set may intersect non-trivially), then we
write G∪H for the graph with vertices V (G)∪V (H) and edges E(G)∪E(H).

Corollary 3. (1) If G has a pd matching and H is any graph, then
G2H has a pd matching.

(2) If G is any graph, then the graph G′ formed by joining an endvertex
to each vertex of G has a pd matching.

(3) If G has a pd matching, then the graph G′′ formed by joining a path
of length two to a fixed vertex has a pd matching.

(4) Let G and H have pd matchings M and M ′, respectively. If V (G)∩
V (H) = {a, b}, where ab is pd edge in M and M ′, then M ∪M ′ is
a pd matching of G ∪H.
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Proof. (1) Let M = {aibi : 1 ≤ i ≤ n} be a pd matching of G. Define

M2 = {(ai, x)(bi, x) : 1 ≤ i ≤ n, x ∈ V (H)}.

It is straightforward to verify that M2 is a perfect matching of G2H.
Now fix i ∈ {1, . . . n}, and (u, v) ∈ V (G2H). Then working (mod 2) we
have that

dG2H((ai, x), (u, v)) = dG(ai, u) + dH(x, v)
≡ dG(bi, u) + 1 + dH(x, v)
= dG2H((bi, x), (u, v)) + 1,

where the first and second equality follows by properties of distance in
G2H, and the congruence follows since M is a pd matching. As i and
(u, v) were arbitrary, we have that M2 is a pd matching of G2H.

(2) Let a ∈ V (G′)\V (G) be an endvertex of G′ joined to b. If z is vertex
of G′, then d(a, z) = d(b, z) + 1, so ab is a pd edge. Hence, M = {aibi : 1 ≤
i ≤ n, bi ∈ V (G), ai ∈ V (G′) \ V (G) is an endvertex joined to bi} is a pd
matching of G′. The proof of (3) is similar to the one given for (2), and so
is omitted.

For (4), let M = {aibi : 1 ≤ i ≤ m} and M ′ = {a′ib′i : 1 ≤ i ≤ n}.
Without loss of generality, let a = am = a1

′ and b = bm = b1
′. To see that

M ∪M ′ is a pd matching of G∪H, we show that a1b1 is a pd edge in G∪H
(the other cases are similar). Fix z ∈ V (G) ∪ V (H). If z is in V (G), then
a shortest path from z to a1 or b1 must have all of its vertices in G. Since
a1b1 is a pd edge in G, the distances in G ∪H from z to a1 and to b1 are
of opposite parities.

Now let z ∈ V (H)\V (G). Any shortest path connecting z to a1 or b1

must go through one of a or b.
Case 1 : The shortest paths P from z to a1 and Q from z to b1 both

traverse through a. (The case when P and Q traverse through b is similar
and so is omitted.)

Hence, if x is a1 or b1 then

dG∪H(x, z) = dG(x, a) + dH(a, z).(3.1)

Let P ′ be the subpath of P in G from a1 to a and Q′ the subpath of Q in
H from b1 to a. See Figure 5.

The parity of a path is even (odd) if its number of edges is even (odd).
Then P ′ and Q′ have opposite parities since ab is pd in G. It follows by
(3.1) that P and Q have opposite parities in G ∪H.

Case 2 : The path P traverses through a and Q through b. (The case
when P goes through b and Q through a is analogous and so is omitted.)



12 ANTHONY BONATO AND ALEXANDRU COSTEA

G H

a
a

b

b

P'

Q'

z

1

2

Figure 5. Case 1.

Then

dG∪H(a1, z) = dG(a1, a) + dH(a, z),(3.2)
dG∪H(b1, z) = dG(b1, b) + dH(b, z).(3.3)

Let P ′ be the subpath of P in G from a1 to a and Q′ the subpath of Q in
G from b1 to b. Let P ′′ be the subpath of P in H from a to z, and let Q′′

be the subpath of Q in H from b to z. See Figure 6.

G H

a
a

b

b

P'

Q'

z

1

2

P''

Q''

Figure 6. Case 2.

Then P ′′ and Q′′ have opposite parities, since ab is pd in H. As ab and
a1b1 are pd in G, we have that P ′ and Q′ have the same parities. Hence,
by (3.2) and (3.3) P and Q have opposite parities in G ∪H. ¤
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