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Abstract. The web graph has been the focus of much recent attention,
with several stochastic models proposed to account for its various prop-
erties. A survey of these models is presented, focussing on the models
which have been defined and analyzed rigorously.

1 Introduction

The web graph W has nodes representing web pages, and edges rep-
resenting the links between pages. The graph W is massive: at the
time of writing, it contains billions of nodes and edges. In addition,
W is dynamic or evolving, with nodes and edges appearing and disap-
pearing over time. The explosive growth of W itself is mirrored by the
recent rapid increase in research on structural properties, stochastic
models, and mining of the web graph. There are now several sur-
vey articles [10, 19, 44], and several books on W [6,22, 31] (including
a popular book by Barabdsi [7]). A new mathematics journal de-
voted to research related to W, Internet Mathematics, was recently
launched.

The purpose of the present survey is to highlight recent stochastic
models which are used to model W. We focus on six of these models,
chosen both for their various design elements, and because they have
been rigorously defined and analyzed. For more on information on
web mining and the mathematics of web search engines, the reader
is directed to Chakrabarti [22] and Henzinger [39].

For background on graph theory and random graphs, the reader
is directed to [8,9,30,40]. We use the notation N for the nonnega-
tive integers and N*t for the positive integers. If A is an event in a
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probability space (2, then P(A) is the probability of the event in the
space (2; if X is a random variable with domain {2, then E(X) is the
expectation of X. All logarithms are in base 2.

2 Properties of W

We begin with a brief overview of some of the experimental data
and structural properties observed in W collected from various web
crawls. The overview will highlight experimental features of W that
models of the web graph often attempt to replicate. For a more de-
tailed introduction to experimental data on W, the reader is directed
to Chapter 3 of Dorogovtsev, Mendes [31] and Kumar et al. [44].
Arguably the most important properties observed in W are power-
law degree distributions. Given an undirected graph G and a non-
negative integer k, we define the rational number Pg(k) as follows.

[{z € V(G) : degg(z) = k}|

Falk) = V(@)

In other words, Pg(k) is the proportion of nodes of degree k in G. We
will suppress the subscript G if it is clear from context. We say that
the degree distribution of G follows a power law if for each degree k,

P(k) ~ ck™",

for real constants ¢ > 0 and § > 0. Such distributions are some-
times called heavy-tailed distributions, since the real-valued function
f(k) = ck= exhibits a polynomial decay to 0 as k tends to oco.
Real-world graphs like W with power law degree distributions are
sometimes called scale-free. The graph W may be viewed as either a
directed or undirected graph. If G is directed, then we may discuss
power laws for the in- and out-degree distributions by defining the
proportions Py, ¢(k) and P, ¢ (k), respectively, in the obvious way.

Based on their crawl of the domain of Notre Dame University, In-
diana, Albert et al. [4] claimed that the web graph exhibits a power
law in-degree distribution, with § = 2.1. This claim was supported
by an independent larger crawl of the entire web reported in Broder
et al. [17], who also found § = 2.1. There is some evidence in both
studies that the out-degree distribution follows a power law with



[4] reporting § = 2.45 and [17] reporting = 2.7. The presence of
power law degree distributions reflects a certain undemocratic aspect
of W: while most pages have few links, a few have a large number.
This is perhaps not surprising, since the choice of links from new
pages to existing ones is presumably governed by the users own per-
sonal or commercial interests. It is interesting to note that power law
degree distributions are now known to be pervasive in a variety of
real world networks where some degree of choice is involved, such as
the telephone call network, the e-mail network, or the scientific cita-
tion network; see [31] for other similar networks. Power law degree
distributions are also prevalent in biological networks (such as the
network of protein-protein interactions in a cell), where evolution is
the dominant decision making force in the generation of nodes and
edges; see Chung et al. [23]. Models for power law behaviour have
long been studied in such disciplines as biology and economics; see
Mitzenmacher [45].

So-called small world graphs were first introduced by Strogatz,
Watts [46] in their study of social networks. One important feature
of small world networks is the presence of “short” paths between
nodes. To be more precise, define the distance from u to v in a
graph G, written d(u,v), to be the number of edges in a shortest
path connecting u to v, or co otherwise. Define
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where S is the set of pairs of distinct nodes u, v of G with the
property that d(u,v) is finite. The rational number L(G) is the av-
erage distance of G. The directed analogue of this parameter, where
distance refers to shortest directed paths, is denoted L4(G). The
small world property demands that L(G) (or Ly(G) if G is directed)
must be much smaller than the order of the graph; for example,
L(G) € O(log(|V(G)|)). As evidence of the small world property
for W, in Albert et al. [4] it was reported that L,(W) = 19, while
Broder et al. [17] reported Ly(W) = 16 and L(W) = 6.8. Another
measure of global distances in a graph is the diameter of G, written
diam(G), which is the maximum of d(u,v) taken over all pairs of
distinct nodes u and v in G. In contrast with the just cited results
on average distance, data from [17] suggests that diam(W) > 900.



The web contains many communities: sets of pages sharing a
common interest. An idea presented in Kleinberg et al. [41] and Ku-
mar et al. [44] is that communities in the web are characterized by
dense directed bipartite subgraphs. A bipartite core is a directed
graph which contains at least one directed bipartite clique as a sub-
graph, where the directed edges in the subgraph all have terminal
nodes of one fixed colour. In their study of communities in W, the
authors in [41,44] show the presence of many more small bipartite
cores in W than a directed random graph with the same number of
nodes and edges.

3 Models of W

A large number of models for the web graph have been proposed.
Such models are useful for several reasons. They deepen our under-
standing of the generative mechanisms driving the evolution of W.
They provide insight into superficially unrelated properties observed
in the web. Perhaps most importantly from the point of view of ap-
plications, they may aid in the development of the next generation
of link-analytic search engines. As discussed in the survey by Bol-
lobés, Riordan [10], the majority of the analysis of models of the web
has been heuristic and non-rigorous. A small but growing number
of rigorous studies of web graph models have been appearing in the
literature, and it is these models that we focus on in the present
survey.

Pioneering work on random graphs was first done by Erdos and
Rényi [34, 35]. In what is now sometimes called the Erdos-Rényi (ER)
model, written G(n,p), we are given n nodes and a fixed real num-
ber p € (0,1). For each of the (g) many distinct pairs of nodes, add
an edge between them independently with probability p. In many
contexts, p is a function of n, and properties of G(n,p) are studied
asymptotically as n tends to oco. The probability space G(n,p) is
often referred to as a random graph of order n (an accepted mis-
nomer). Random graphs have been intensively researched, and the
subject has spawned several thousand research articles. We direct
the interested reader to the texts of Bollobas [9] and Janson et al.
[40] for more on the ER model.



The ER model is, in a sense, static or off-line: the number of
nodes is fixed (although G(n,p) is often viewed as having a variable
number of edges with time). In addition, it is straightforward to
prove that in G(n, p) the degree of a vertex is binomially distributed.
Hence, based on our discussion in Section 1, the ER model is not
appropriate as a model of the web graph W. What features would
make a good web graph model? The following is a (partial) list of
desirable properties that graphs generated by a web graph model
should possess, based on the observed properties of W given in the
Introduction.

1. On-line property. The number of nodes and edges changes with
time.

2. Power law degree distribution. The degree distribution follows a
power law, with an exponent 3 > 2.

3. Small world property. The average distance (or diameter) is much
smaller than the order of the graph.

4. Many dense bipartite subgraphs. The number of distinct bipartite
cliques or cores is large when compared to a random graph with
the same number of nodes and edges.

To aid the reader, we give a chart that summarizes the prop-
erties of the various models we will consider. We will focus on the
following web graph models, each given an acronym (if they do not
already have one) for purposes of comparison: the LCD model of Bol-
lobés et al [14]; the ACL models of Aiello et al [3], the CL model of
Chung, Lu [24], [25], the copying model of Kumar et al [43]; the CL-
del growth-deletion model of Chung, Lu [27]; and the CFV growth-
deletion model of Cooper et al. [29]. A “Y” in the i, j entry of the
table means that the model in row 7 has the property of column j;
a “N” or “?” are read similarly. The column “Directed?” refers to
whether the model generates directed graphs. The column entitled
“B” refers to the possible range of exponent for the power law proven
asymptotically for graphs generated by the model, with the value of
(8 dependent on the parameters of the model. If the model produces
directed graphs, then the range refers to the in-degree distribution.
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As is evident from the chart, all the models in the present survey
have property 2, all but the CL model have property 1, while it has
yet to be proven that any of them have all four properties. At the
time of writing, it is an open problem to find a web graph model
that produces graphs which provably has all four properties.

To simplify notation, we present the following general mathemat-
ical framework for all the on-line models presented. (Hence, the CL
model will not follow this framework.) The model possesses a set of
real number parameters, and has a fixed finite graph H as an addi-
tional parameter. The model generates by some stochastic process a
sequence of finite graphs Gy indexed by (¢ : t € N). Unless otherwise
stated, for all ¢t € N, we have that

2. G, is an induced subgraph of Gyq;
3. [V(Gea)| = V(G| + 1
4. [E(Gy)| < |E(Gr1)]-

In all the models we consider, the graphs G; are defined induc-
tively. In the inductive step, the unique node in V(G1)\V(Gy) is
referred to as the new node, written v, and the nodes of V(G})
are the existing nodes. We refer to a model which generates graphs
satisfying all of these conditions as an evolving graph model. We note
that the choice of H usually has no effect on the value of the power
law exponent (3, while the choice of real number parameters does
generally affect 3.

4 Preferential attachment models

The first evolving graph model explicitly designed to model W was
given by Albert, Barabdsi [5]. Informally, the idea behind their model



is a straightforward and intuitively pleasing one: new nodes are more
likely to join to existing nodes with high degree. This model is now
referred to as an example of a preferential attachment model. Al-
bert and Barabasi gave a heuristic description and analysis of such
a model, and concluded that it generates graphs whose in-degree
distribution follows a power law with exponent 5 = 3.

The first rigorous attempt to design and analyze a preferential
attachment model was given in Bollobds et al. [14]. Their model
is called the Linearized Chord Diagram or LCD model, since an
equivalent formulation of the model is via random pairings on a
fixed finite sets of integers. The parameter of this model is a positive
integer m, where H is a copy of K; with a single directed loop. We
first describe the model in the case m = 1. To form G, add a single
directed edge from v, to v;, where the node v; is chosen at random
from the existing nodes, with

2t—1

L if s=t¢.

{deth—l(vs)iflgsgt_l’
2t—1

This mechanism of joining new nodes to existing ones proportion-
ally by degree we refer to as preferential attachment. Observe that
the graph G, is a directed tree for all values of ¢. Indeed a similar
version of this model was previously studied (in a different context)
as random recursive trees; see [14] for further discussion.

If m > 1, define the process (G%,)i>0 by first generating a se-
quence (Gy : t € N) of graphs using the case m = 1 on a sequence of
nodes (v} : i € N*). The graph G?, is formed from G,,, by identifying
the vertices vy, v, ..., v, to form vy, identifying v], 1, v/, 5, ..., V5,
to form vy, and so on.

Using martingales and the Azuma-Hoeffding inequality (see The-
orem 1.19 of [9], for example), Bollobds et al. [14] prove the following
theorem.

Theorem 1. Fiz m a positive integer, and fix ¢ > 0. For k a non-
negative integer, define

2m(m + 1)
k+m)(k+m+1)(k+m+2)

am,k = (



Then with probability tending to 1 as t — oo, for all k satisfying
0 < k < t1/15,

(1 - E)am,k S Pzn,Gﬁn(k) S (1 + E)am,k-

Theorem 1 proves that for large ¢, with high probability the de-
gree distribution of G follows a power law with exponent § = 3
(formally justifying the conclusions derived in [5]). The reader will
note that Theorem 1 is stated as a concentration result for degrees
in the range 0 < k < t'/'%; as remarked in [14], this may be extended
to degrees k > t'/1°. The power law exponent § = 3 is independent
of the choice of m.

Bollobés, Riordan [12] prove the following theorem which com-
putes the diameter of G%,.

Theorem 2. Fiz an integer m > 2 and a positive real number e.
With probability 1 as t — oo, G is connected and

logt logt
BT < diam(G) < (14 ¢)—2

loglogt —

(1—-¢)

loglogt

A set of preferential attachment models different than the LCD
model were proposed by Aiello et al. [3]. In [3], four evolving graph
models were given. Three models produce directed graphs, while
one generates undirected graphs. These models have some advantage
over the LCD model, since the power law exponent # may roam
over the interval (2, 00), dependent on the choice of parameters. Not
surprisingly, these models are more complex in their description than
the LCD model. We summarize only one such model that produces
directed graphs, named Model C in [3].

The parameters are m®¢, m®", m™¢, m™" € Nt and a fixed finite
directed graph H. (We adopt a simpler version of the parameter set
in our description; in [3], the numbers are chosen according to some
bounded probability distribution.) At time ¢ + 1, add m®® directed
edges randomly among all nodes. The origins are chosen using pref-
erential attachment with respect to the current out-degree and the
destinations are chosen using preferential attachment with respect
to the current in-degree. Add m®™ directed edges into v, randomly.
The origins are chosen using preferential attachment with respect to



the current out-degree. Add m™*¢ directed edges from v;,1 randomly.
The destinations are chosen using preferential attachment with re-
spect to the current in-degree. Add m™" directed loops to vy 1.

The following result was proved in [3] using the Azuma-Hoeffding
inequality (see Theorem 3 of [3] for a precise statement of the concen-
tration results). Note that Model C produces directed graphs whose
in- and out-degree distribution follow power laws.

Theorem 3. For graphs generated by model C, with probability 1 as
t tends to oo, the out-degree distribution follows a power law with the
exponent

m"™" 4+ m'°

men + mee

With probability 1 as t tends to oo, the in-degree sequence follows a
power law with exponent

B=2+

mn,n + me,n
mme 4+ mee ’

B=2+

There are other important preferential attachment models such
as the model of Cooper and Frieze [28]. Their model is fairly com-
plex, owing to its large number of parameters. Their proof of a power
law degree distribution for graphs generated by their model is novel,
since it uses martingale techniques along with the Laplace method
for the solution of linear difference equations. Both Dorogovtsev et
al. [32] and Drinea et al. [33] introduced a variation into preferential
attachment where each node is assigned a constant initial attractive-
ness am. The probability that a new node is joined to an existing
one u is proportional to its in-degree plus am. Buckley, Osthus [18]
gave a rigorous version of this model along the lines of the LCD
model. A model using preferential attachment to generate directed
graphs in a way different than the ACL and LCD models was given
in Bollobés et al. [13].

5 Off-line web graph models

We discuss an interesting off-line model for the web introduced by
Chung, Lu [24,25]. The ER model G(n,p) may be generalized as
follows. Let w = (wy,...,w,) be a graphic sequence; that is, the



degree sequence of some graph of order n. We define a model for
random graphs with expected degree sequence w, written G(w), as
follows. The edge between v; and v; is chosen independently with
probability p;; where p;; is proportional to the product w;w;. Then
G(n,p) may be viewed as a special case of G(w) by taking w to
equal the n-sequence (pn,pn,...,pn). In this way, Chung, Lu [24,
25] consider G(w) where the expected degree sequence is a power
law with fixed exponent (3 in the interval (2, 00). They refer to such
G € G(w) as power law random graphs. The reader will note that
the model G(w) generates off-line graphs, unlike all the other models
in this survey. The motivation for the study of power law random
graphs comes in part from the fact that off-line models are easier
to work with mathematically than on-line models. For instance, in
contrast to off-line models, for on-line models the probability space
for the random graph generated at time-step t + 1 is different than
the one at time-step t.

In [24], the order of connected components of the graphs in G(w)
is investigated. The paper [25] proves the following result, which
exposes a nice connection between a power law degree distribution
and the small world property.

Theorem 4. Suppose G € G(w) has n nodes and expected degree
sequence W following a power law with exponent 3 > 2. Let G have
average degree d > 1 and maximum degree m satisfying

logn
logm > ————.
log logn

For all values of 3 > 2, with probability 1 as n tends to oo, the graph
G is connected with

diam(G) = O(logn).

If 2 < 3 < 3, then with probability 1 as n tends to oo,

L(G) < (2+0(1)) (1Ogg§g;gf 2)))

If B = 3, then with probability 1 as n tends to oo,

logn
L& =6 <loglogn) ‘




If B > 3, then with probability 1 as n tends to oo,
logn

L(G) = (1+o(1)) 120

Expected power law degree sequences fall into the more general
category of admissible expected degree sequences introduced in [25].
The results of Theorem 4 generalize to G(w) with admissible ex-
pected degree sequences; see Theorems 1 and 2 of [25].

A recent paper of Chung, Lu [26] uses power law random graphs
in the design of a certain off-line model named the hybrid power law
model. This model generates so-called hybrid graphs, whose edge set
is the disjoint union of a global graph and a local graph. The results
of [26] show that hybrid graphs satisfy properties 2 and 3 of Section
3, and in addition, are locally highly connected.

6 Copying models

We saw in Section 4 the connection between preferential attachment
and power law degree distributions. In this section, we consider an
evolving graph model that uses a paradigm different than preferential
attachment, but nevertheless with high probability generates graphs
with power law degree distributions. The linear growth copying model
was introduced in Kleinberg et al. [41] and rigorously analyzed in
Kumar et al. [43]. It has parameters p € (0,1), d € NT, and a fixed
finite directed graph H with constant out-degree d. Assume G, has
constant out-degree d. At time t+1, an existing node, which we refer
to as uy, is chosen u.a.r. from the set of all existing nodes. The node
uy is called the copying node. For each of the d out-neighbours w of
u; with probability p, add a directed edge (v441, 2), where z is chosen
u.a.r. from V(G;), and with the remaining probability 1 — p add the
directed edge (vy11,w). The authors of [43] use martingales and the
Azuma-Hoeffding inequality to prove the following (see Theorems 8
and 9 of [43] for a precise statement of the concentration results).

Theorem 5. With probability 1 as t tends to oo, the copying model

generates directed graphs G, whose in-degree distribution converges
to a power law with exponent

2—p

p=—L

-P



Property 4 of Section 3, the presence of many dense bipartite
subgraphs, is a desirable property for graphs generated by a web
graph model. Kumar et al. [43] analyze the model of Aiello et al. [2]
(which was defined historically before the ACL models) and demon-
strate that this model generates graphs which on average contain
few bipartite cliques. Two subgraphs of a graph are distinct if they
have distinct vertex sets. Let K, , denote the expected number of
distinct K ;’s which are subgraphs of G.

Theorem 6. In the linear growth copying model with constant out-
degree d, for i <logt,

Kisa = 2t exp(—i)).

A new copying model G(p, p, H) was recently introduced in Bon-
ato, Janssen [16], motivated by the copying model, the generalized
copying graphs of Adler, Mitzenmacher [1], and partial duplication
model for biological networks in Chung et al. [23]. The three param-
eters of the model G(p, p, H) are p € (0,1), a monotone increasing
random link function p : N — N, and a fixed finite initial graph
H. The new node vy, acquires its neighbours as follows. Choose an
existing node u from G; u.a.r.. For each neighbour w of u, indepen-
dently add an edge from v;.; to w with probability p. In addition,
choose p(t)-many nodes from V(G;) w.a.r., and add edges from v,
to each of these nodes.

The existing research on models of W deals almost exclusively
with finite graphs. However, in the natural sciences, models are often
studied by taking the infinite limit. Limiting behaviour can clarify
the similarities and differences between models, and show the con-
sequences of the choices made in the model.

Limit behaviour of a deterministic copying model was investi-
gated in [15], and limit behaviour of the G(p, p, H) model was stud-
ied in [16]. For a positive integer n, a graph is n-existentially closed
or n-e.c. if for each pair of disjoint subsets X and Y of nodes of G
with [ X UY| = n, there exists a node z ¢ X UY joined to every node
of X and to no node of Y. A graph is e.c. if it is n-e.c. for all positive
integers n. By a back-and-forth argument, any two countable e.c.
graphs are isomorphic. The unique isomorphism type of countable
e.c. graphs is the infinite random graph R. The graph R takes its



name from the fact that for any fixed p € (0,1), with probability
1, a graph G € G(N,p) is e.c. The graph R has a rich structure,
which the interested reader may read more about in the surveys of
P. Cameron [20, 21].
If (G; : t € N) is a sequence of graphs with G; an induced sub-
graph of G, 1, then define the limit of the G,, written
G = lim Gy,

by
V(G) =|JV(Gy), EG) =] E(G.

teN teN

The following result is essentially stated in [16].

Theorem 7. Fiz p € (0,1), H, and p = |at®], where o and s are
non-negative real numbers with o,s € [0,1] and o +p < 1. Let
G = limy_o, Gy be generated according to the model G(p, p, H).

1. If s=1 and |at®| > 1 for all t > 0, then with probability 1 G is
1somorphic to R.

2. If s €[0,1) and |at®] > 1 for all t > 0, then with probability 1
G is [=]-e.c.

3. If s € [0,1), then with positive probability G is not isomorphic to
R.

Theorem 7 presents an example of threshold behaviour for con-
vergence to R: with high probability, as s tends to 1, the limit G
acquires more and more properties of R, but with positive probabil-
ity is not itself isomorphic to R. At s = 1, we obtain R with high
probability.

A new deterministic model for the web graph of note is the
Heuristically Optimized Trade-offs or HOT model of Fabrikant et
al. [36]. In the HOT model, nodes correspond to points in Euclidean
space, and each node u will link to the node v that performs best in
terms of an optimization function which is a linear combination of
proximity between u and v, and centrality of v in the network. This
implicitly suggests some degree of copying behaviour: a new node
whose position is very close to that of an existing node, will have a
similar optimization function and hence, is likely to connect to the
same node.



7 Growth-deletion models

In all of the models we presented in Sections 4 and 6, at each time
step nodes and edges are added, but never deleted. An evolving graph
model incorporating in its design both the addition and deletion of
nodes and edges may more accurately model the evolution of the web
graph. One approach to this was adopted by Bollobés, Riordan [11],
who consider the effect of deleting a set of nodes after nodes have
been generated in the LCD model. The purpose of this study was
to investigate the robustness of graphs generated by the LCD model
to random failures, and the vulnerability of these graphs to random
attack. We now describe two recent models, developed independently
of each other, that incorporate the addition and deletion of nodes
during the generation of nodes. We refer to such models as growth-
deletion models.

We first describe the growth-deletion model of Chung, Lu [27].
They introduce a model G(p1,p2, ps, ps, m), with parameters m a
positive integer, and probabilities py, po, p3, psa satisfying p; + ps +
p3+ps =1, p3 < p1, and py < po; the graph H is a fixed nonempty
graph. To form G4, we proceed as follows. With probability p;, add
vir1 and m edges from vy, to existing nodes chosen by preferential
attachment. With probability ps, add m new edges with endpoints
to be chosen among existing nodes by preferential attachment. With
probability ps3, delete a node chosen u.a.r. With probability p4, delete
m edges chosen u.a.r.

By coupling with off-line random graphs, Chung, Lu [27] prove
the following result.

Theorem 8. 1. With probability 1 as t — oo, the degree distribu-
tion of a graph Gy generated by G(p1, pa, p3, P4, m) follows a power
law distribution with exponent

p1+ D2
pl + 2py — p3 — 2py

=2+

2. Suppose m > log® ™ n. For py < ps + 2pa, we have 2 < < 3.
With probability 1 as t — oo, Gy is connected with

diam(G;) = O(logt)



and

loglog t
LGy =0 <10g(1/(ﬁ - 2)))

3. Suppose m > log*™“n. For py > ps + 2ps, we have 3 > 3. With
probability 1 ast — oo, Gy is connected with

diam(G;) = O(logt)

logt
LG =0 (logd) ’

and

where d is the average degree of GY.

Another recent growth-deletion model developed independently
of [27] is the one of Cooper et al. [29]. The parameters for this model
are fixed p; and p, in (0, 1) satisfying p» < py, and H is K;. With
probability 1 — p; delete a node of G;_; chosen u.a.r. If G;_; has
no nodes, then do nothing. With probability ps, add m edges from
vy41 joined to existing nodes chosen by preferential attachment. The
graph is made simple by deleting multiple edges. If there are no edges
nor nodes in GG;_1, then begin again at time ¢ = 0. If there are no
edges but some nodes in G;_;, then add v;y; joined to an existing
node chosen u.a.r. With probability p; — ps, add m edges between
existing nodes, with endpoints chosen by preferential attachment.
The graph is made simple by deleting multiple edges and deleting
any loops. If there are no edges nor nodes in GG;_1, then begin again
at time t = 0. If there are no edges but some nodes in GG;_1, then do
nothing.

Let D (t) be the number of nodes of degree £ > 0 in Gy, and let
E(Dx(t)) be the expectation of this random variable. Let

2p _ D2

:—and .
7 3p1 —1—ps P D1

Cooper et al. [29] prove the following.

Theorem 9. Assume that p1 +ps > 1. Then there exists a constant
C = C(m,p1,p2) such that for k > 1 and 1/2 <p; <1,

E(Dk (1))

= —Ck =0 (%) + O(k27).



As noted in [29], with a suitable choice of p; and p,, we find that

~ may take any value in the interval (1,00), and so there is a power
law for this model with exponent 5 =1+ € (2, 00).

An intriguing problem is to rigorously analyze the degree distri-

butions of growth deletion models where the choice of nodes and
edges to delete is not made u.a.r. A recent model of Flaxman et al.
[37] considers an adversarial growth deletion model, and analyzes
the size of the connected components of graphs generated by the
model.
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