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Abstract. We consider a generalized copy model of the web graph and
related networks, and analyze its limiting behaviour. The model is mo-
tivated by previously proposed copying models of the web graph, where
new nodes copy the link structure of existing nodes, and a certain num-
ber of additional random links are introduced. Our model parametrizes
the number of random links, thereby allowing for the analysis of thresh-
old behaviour. We consider infinite limits of graphs generated by our
model, and compare properties of these limits with orientations of the
infinite random graph. As well, we analyze the power law behaviour of
the in-degree distribution of graphs generated by our model.

1 Introduction to the model

The overwhelming success of search engines that use a graph-based
ranking system (Google being the most famous example) has made
the Web graph a popular object of study. The Web graph is the graph
formed by web pages or sites as nodes, and hyperlinks as directed
edges. The Web graph is the most famous, and most complex, exam-
ple of a Networked Information Space (NIS). A NIS is a collection
of information containing entities which are linked together. Other
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examples are digital libraries, which consist of publications linked
by references [10], or networked databases recording phone calls or
financial transactions.

In order to exploit the link structure of Networked Information
Spaces, for ranking of search results, clustering, or focused crawling
for example, we need to understand its generative process. Typically,
the graphs in question have the property that their in-degree distri-
butions satisfy a power law : for a positive integer k, the proportion
of nodes of in-degree k is approximately k−γ, where γ is an exponent
that is generally observed to be between 2 and 3. This qualifies them
as so-called scale-free networks. Several stochastic models for the
generation of scale-free networks have been proposed. In the copying
models of [1, 11] a new node copies part of the link environment of an
existing node, while adding an additional number of random links.
Copy models seem to be especially appropriate to model the link
structure of a NIS. Namely, it is very likely that a new information
entity (for example a web page or paper), is modelled on an exist-
ing one, and hence, will create a link environment that will have a
large overlap with that of its model, but will also include some new
links. Other recent models use other paradigms (such as preferential
attachment) for link creation; see [2–4]. A recent generation model
for the internet based on Heuristically Optimized Trade-Offs [12]
implicitly contains the concept of copying.

We continue our study of [5, 6] of the infinite limits of graphs gen-
erated by stochastic models. One important reason why we consider
such limits is to investigate the consequences of the choices made in
the design of the model. In a certain sense, the infinite limit magni-
fies the properties of the finite graphs that lead to it. In our previous
work, we considered generation processes for undirected graphs, and
their measure of convergence to the infinite random graph, or R (in-
troduced by Erdős and Rényi in [9]). For a fixed positive integer,
and real number p ∈ (0, 1), the graphs in G(n, p) possess n nodes,
and every pair of distinct nodes is joined independently and with
probability p. If we consider the limit of the graphs in G(n, p) as n

tends to infinity, then the resulting graph will with probability 1 be
isomorphic to R. As noted in [6], convergence to R may be viewed as
loosing all structure, comparable in a sense to convergence to white
noise.



The graph R is undirected, as are the limiting graphs introduced
in [5]. However, the link structure of a NIS often is by nature a di-
rected graph: for a web page, it is easy to see what pages it points to,
but very hard to find out what pages point to it. For scientific papers,
it is definitely not the same to cite or be cited. Hence, the question
arises as to what infinite graphs could be taken as directed versions
of R. A suitable “generic” infinite directed graph is the Acyclic Ran-
dom Oriented Graph, or ARO, introduced and investigated recently
in [8]. ARO is an orientation of R. Like R, ARO is uniquely defined
(up to isomorphism) by a certain adjacency property (see Section
2), is the limit of a sequence of finite acyclic directed graphs, and
contains every acyclic directed graph as an induced subgraph.

However, our research shows that graphs generated by the copy
models are unlikely to converge to ARO. As we prove in Theorem 3,
the limits are isomorphic to ARO with low probability, but in some
cases are homomorphically equivalent with ARO with high probabil-
ity. In order to classify the limits that we do obtain, we introduce the
concept of a near-ARO. There are infinitely many non-isomorphic
near-ARO’s; this could imply a certain sensitivity of the copying
model to initial conditions. Near-ARO’s have a rich structure; see
Theorem 1. While convergence to ARO may be viewed as a process
of loosing all structure, convergence to a near-ARO may be viewed
as loosing a significant amount of structure.

We introduce a model D(p, ρ, H) motivated by the copying mod-
els. Like the copying models, our model uses copying of the existing
link structure as its basic rule for link creation. Our model allows
for variation of the number of random links. The three parameters
of this model are a fixed copying probability p ∈ (0, 1), a random link
function ρ : N → R, defined by

ρ(t) = αts,

where α and s are non-negative real constants so that s ∈ [0, 1], and
a fixed finite acyclic initial digraph H .

1. At t = 0, set G0 = H.

2. For a fixed t ≥ 0, assume that Gt has been defined, is finite, and
contains G0 as an induced subdigraph. To form Gt+1, add a new
node vt+1 to Gt and choose its out-neighbours as follows.



(a) Choose an existing node u from Gt uniformly at random
(u.a.r.). The node u is called the copying node.

(b) For each out-neighbour w of u, independently add a directed
edge from vt+1 to w with probability p. In addition, choose
⌊ρ(t)⌋-many (not necessarily distinct) nodes from V (Gt) u.a.r.,
and add directed edges from vt+1 to each of these nodes. The
latter edges are called random links.

(c) Make the digraph Gt+1 simple by removing any parallel edges.

At each time-step t, our model adds approximately ρ(t)-many
random links between the new node and the existing nodes. Theorem
3 shows that if ρ(t) ∈ θ(t), then the limit is a near-ARO with high
probability. As s tends to 1, with high probability the limit, while
not a near-ARO, behaves increasingly like a near-ARO. On the other
hand, Theorem 5 shows that we loose power law behaviour if we have
more than a constant number of random links. Hence, an interesting
“grey area” where 0 < s < 1 emerges; we will elaborate further on
this in Section 4.

2 Limits and the D(p, ρ, H) models

Before we state the main results for this section, we require a few
definitions. If u is a node in a digraph G, then let

N↑(u) = {v ∈ V (G) : (u, v) ∈ E(G)}

be the out-neighbourhood of u in G. If (Gt : t ∈ ω) is a sequence
of digraphs with Gt an induced subdigraph of Gt+1, then define the
limit of the Gt, written

G = lim
t→∞

Gt,

by

V (G) =
⋃

t∈N V (Gt),

and

E(G) =
⋃

t∈N E(Gt).



A digraph G is good if G is acyclic, has no infinite directed paths,
and each node of G has finite out-degree. For example, if Gt is gen-
erated by our model D(p, ρ, H), then any limit G = limt→∞ Gt is
good. A digraph G is an acyclic random oriented graph, or ARO
for short, if G is good, and for each finite set S ⊂ V (G), there are
infinitely many nodes u such that S = N↑(u). AROs were intro-
duced and investigated recently in [8], where it was proved (among
other things) that a countable ARO is unique up to isomorphism.
Hence, we will refer to this unique isomorphism-type simply as ARO.
(Strictly speaking, we are using the inverse of ARO as defined in [8],
where the inverse of a digraph results by reversing the orientations
of all the directed edges. Since we have only have use for ARO as
defined above, we will keep our notation.) As noted first in [8], ARO
results from a suitable orientation of the infinite random graph R.
Indeed, ARO may be defined probabilistically: let N be the set of
nodes, allow all edges to be directed backward (that is, (i, j) is a
directed edge only if j < i), and adopt these edges independently
with probability 2i+j. The digraph ARO results with probability 1
from this random digraph.

We say that a digraph G is a near-ARO if it is good, and for each
finite set S ⊂ V (G), there is a node u ∈ V (G) such that S ⊆ N↑(u).
ARO is clearly near-ARO. However, there are many examples of
countable near-ARO digraphs that are not isomorphic to ARO; see
Corollary 1 below.

We say that an undirected graph G is algebraically closed, or a.c.
for short, if for each finite subset U of nodes of G, there is a node
z ∈ V (G)\U such that z is joined to each node of U . For example, an
infinite clique and R are examples of a.c. graphs. A homomorphism
from the digraph G to H is an edge-preserving mapping from V (G)
to V (H). The digraphs G and H are homomorphically equivalent,
written G ↔ H , if there is a homomorphism from G to H and
from H to G. Note that isomorphic digraphs are homomorphically
equivalent, although the converse fails.

The following theorem (whose proof relies on König’s infinity
lemma and the back-and-forth method, and so is omitted) charac-
terizes near-ARO digraphs up to homomorphic equivalence.



Theorem 1. Let G = limt→∞ Gt be a good digraph. The following
are equivalent.

1. The underlying graph of G (formed by forgetting the orientation
of each directed edge) is a.c.

2. The digraph G is a near-ARO.
3. The digraph G ↔ARO.
4. For all countable good digraphs H, H admits a homomorphism

into G.

While the digraph ARO is unique up to isomorphism, the fol-
lowing corollary demonstrates that the maximum possible number
of non-isomorphic near-ARO digraphs exist. We write 2ℵ0 for the
cardinality of the set of real numbers.

Corollary 1. There are 2ℵ0 many non-isomorphic countable near-
ARO digraphs.

We say that a digraph satisfies the locally near-ARO adjacency
property if it is good, and for all finite sets of nodes S that are in the
out-neighbourhood of some other node y, there is a node whose out-
neighbours include S. Clearly, a near-ARO digraph is locally near-
ARO; Theorem 3 (4) will demonstrate that the converse is false. Our
next result shows that for all values of s, limits of graphs generated
by D(p, ρ, H) are locally near-ARO with high probability.

Theorem 2. Fix p ∈ (0, 1), ρ, and H. With probability 1, the limit

G = lim
t→∞

Gt

of graphs generated by the model D(p, ρ, H) is locally near-ARO.

Proof. Since a countable union of measure 0 subsets has measure 0,
it suffices to show that for a fixed y ∈ V (G) and a finite S ⊆ N↑(y)
the probability that there is no node joined to all of S is 0 (since
there only countably many choices for y and S in G).

Let t0 be the least integer such that y and S are in V (Gt0). Let
|V (Gt0)| = m and |S| = i. If t ≥ t0, the probability that y is chosen as
copying node in Gt equals 1

m+t−t0
. Given that y is the copying node,



vt is joined to all of S with probability pi. Then the probability that
no node of G is joined to all of S is at most

∞
∏

t=t0

(

1 −

(

1

m + t − t0

)

pi

)

= 0. ⊓⊔

Our main result is the following theorem, which demonstrates
that as s tends to 1, graphs G generated by D(p, ρ, H) share more
and more properties of a near-ARO. Further, the graphs G are very
rarely isomorphic to ARO. For a positive integer n, we say that a
digraph G is n-near-ARO if it is good, and for each set S ⊂ V (G)
of cardinality n, there is a node u ∈ V (G) such that S ⊆ N↑(u).
Observe that a digraph is near-ARO if and only if it is n-near-ARO
for all positive integers n.

Theorem 3. Fix p ∈ (0, 1), ρ = αts, and H. Let G be the limit of
a sequence of digraphs generated according to the model D(p, ρ, H).

1. If s = 1, then with probability 1 G is near-ARO.
2. If s ∈ [0, 1), then with probability 1 G is ⌊ 1

1−s
⌋-near-ARO.

3. If s ∈ [0, 1), then with positive probability G is not near-ARO.
4. For all s ∈ [0, 1], with probability 1 G is not isomorphic to ARO.

Theorem 3 suggests a threshold behaviour for convergence to a
near-ARO: as s tends to 1, with high probability the limit G ac-
quires more and more properties of a near-ARO, but with positive
probability is not near-ARO. At s = 1, we obtain a near-ARO with
high probability.

Proof of Theorem 3. We sketch a proof of (2) only. Let G = limt→∞ Gt.

It is straightforward to see that G is good. As in the proof of Theorem
2, it suffices to show that for a fixed finite S ⊆ V (G) the probability
that there is no node joined to all of S is 0.

The proof rests on the following lower bound. For each set S, for
each t ≥ t0 where t0 is such that S ⊆ V (Gt0), the probability that
vt is joined to every node of S is at least

βt(s−1)|S|(1 + o(1)) (1)

where β ∈ (0, 1) is a constant that does not depend on t. The proof
of this bound uses induction on the size of S.



Fix S a set of nodes with |S| ≤
⌊

1
1−s

⌋

. Then t(s−1)|S| ≥ t−1.
Hence, by (1), the probability that there is no node of G joined to
every node of S is at most

∞
∏

t=t0

(

1 − βt−1(1 + o(1))
)

= 0. ⊓⊔

Theorem 3 (1) may be generalized to other values of ρ(t) (which
are not necessarily a power of t) with only minor changes in the
proof.

Theorem 4. Let G be the limit of a sequence of graphs generated
according to the model D(p, ρ, H), with ρ a non-negative, monotone
increasing function ρ : N → R satisfying the condition:

∞
∑

t=0

ρ(t)

t2
= ∞. (2)

Then with probability 1, G is near-ARO.

3 Degree distributions of the D(p, ρ, H) models

When do the models D(p, ρ, H) produce digraphs whose in-degree
distributions follow power laws? We find in the following results that
power laws are sensitive to the choice of ρ.

Theorem 5. Fix p ∈ (0, 1) and H. Let G be the limit of a sequence
of graphs generated according to the model D(p, ρ, H), where ρ(t) =
αts. Then the degree distribution of Gt converges to a power law
distribution if and only if s = 0.

Proof. Let Xi(t) be the expected number of nodes of in-degree i at
time t. Suppose that

lim
t→∞

Xi(t)

t
= bi = ci−d,

for some positive constants c and d. It follows that

bi = p((i − 1)bi−1 − ibi) + ⌊ρ(t)⌋(bi−1 − bi) + o(1).



By definition bi is a constant, so either bi − bi−1 = 0 or ρ(t) =
αt0 = α. If bi = bi−1, then this contradicts that bi = ci−d. Therefore,
s = 0 and ρ(t) = α. We omit the details that if ρ(t) = α, then a
power law is obtained. ⊓⊔

4 Conclusions and future work

We introduced a new model D(p, ρ, H) of the web graph and other
Networked Information Spaces, motivated by the copying models of
the web graph proposed by [1, 11]. D(p, ρ, H) provides a continuum
of models, whose structural properties depend largely on the number
of random links parameterized by ρ = αts.

We have seen that for all values of s ∈ [0, 1], our model gener-
ates limit graphs G which satisfy the locally-near-ARO adjacency
property. As s tends to 1, G becomes increasingly random, until at
s = 1 it is with probability 1 homomorphically equivalent with a
certain random acyclic digraph, ARO. Hence, on the one hand, the
model D(p, ρ, H) is robust: a large number of random links must be
added at each time-step to ensure a random-like structure. Further,
the choices of p and H seem to have little impact on the structure of
the limit. On the other hand, we obtain power laws only if there are
at most a constant number of random links. Hence, for any choice of
ρ with 0 < s < 1, there is an interesting “grey area” that emerges:
the limits are not completely random, nor do we obtain power laws.
We do not understand exactly the in-degree distributions that arise
when s ∈ (0, 1). We plan on analyzing these distributions in future
work.
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scale-free random graph process, Random Structures Algorithms 18 (2001) 279-
290.



5. A. Bonato and J. Janssen, Infinite limits of copying models of the web graph,
accepted in Internet Mathematics.

6. A. Bonato and J. Janssen, Limits and power laws of web graph and biological
network models, submitted.

7. P.J. Cameron, The random graph, in: Algorithms and Combinatorics 14 (R.L.
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