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Abstract

This is an expository account of what is currently known about residually small

varieties.
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Introduction

Residually small varieties were first discussed in by Taylor. Taylor discovered many
important results, including the "Hanf-number” of subdirect irreducibility in vari-
eties, and a proof of eleven equivalent conditions for a variety to be residually small.
Coincident with Taylor’s paper, Quackenbush posed a conjecture that has served as
an impetus for much of the research on residual smallness. In a recent tour de force,
McKenzie refuted both the conjecture of Quackenbush, and the stronger so-called
RS conjecture, The refutation of these conjectures ends a search for a resolution
to these problems that has spanned some twenty years. This search has served to
expand our understanding of subdirect irreducibility in many well-known varieties

(including semigroups, groups, and more generally, congruence modular varieties).

The purpose of this paper is to discuss results on residually small varieties up
to but not including McKenzie’s work of 1993. (The counterexamples of McKen-
zie, while of relatively simple structure, are technical, and any presentation of such
results would only complicate our task of surveying all known results on the sub-
ject. Theinterested reader should read [29] for a discussion of McKenzie’s methods).
Some twenty papers exist on the subject of residually small varieties, demonstrating
a wide range of techniques and theoretical approaches. Apart from pure univer-

sal algebra, papers on residually small varieties include tools from model theory




(Mckenzie-Shelah; Baldwin), category theory (Tholen), and set theory (Erdés’ the-
orem in Taylor). Our focus is on the theory of varieties or equational classes !;
accordingly, our treatments of results from model and category theory are brief.
We assume the reader is familiar with the basic results of universal algebra (for ex-
ample, the first two chapters of [3]). A preliminary section, however, briefly defines
the relevant algebraic ideas required. For example, we describe the many equiva-
lent definitions of a subdirectly irreducible algebra used interchangeably throughout
the discussion. Two tools of importance in modern universal algebra are tame con-
gruence theory of finite algebras, and commutator theory for congruence modular
varieties. We make no assumption of deep knowledge on these subjects. Never-
theless, we introduce some basic terminology, because of the fact that various vital
theorems on the RS conjecture make use of both tame congruence theory and com-
mutator theory. The reader will find both the summaries of tame congruence theory
in Mckenzie-Valeriote and of the commutator in Mckenzie, McNulty, and Taylor as

sufficient for our needs.

Chapter 1 will deal first with the generative work of Taylor on residually small
varieties. We discuss the notion of principal congruence formula and state a com-
binatorial lemma of Erdos that plays a central role in Taylor’s determination of
the Hanf number for subdirect irreducibility in varieties. An easy corollary of Tay-
lor’s theorem (discovered by the author) will be proven. In the second part of the
Chapter, we will discuss the results of Quackenbush, including a theorem (proven
in the locally finite case), and the conjecture described at the beginning of this
introduction. To close the chapter, we state without proof model theoretic results

due to Mckenzie- Shelah on the spectra of subdirect irreducibles in varieties.

In the second chapter we will discuss various results concerning varieties with

!Gorbunov extended the results of Taylor and McKenzie-Shelah to quasivarieties.




the property of residual smallness. Topics here include: the results of Baldwin
and Berman, especially concerning the property of having definable principal con-
gruences; Baldwin’s use of infinitary logic; and lastly, we discuss the connection
between the categorical property of "having enough injectives” and residual small-

ness.

Asis evidenced in the literature, both the RS and Quackenbush conjectures have
generated considerable attention. Accordingly, we devote Chapter 3 to a survey of
results on these conjectures before 1993. We describe Ol’shanskii’s determination
of a syntactic criterion for residual finiteness that proves the Quackenbush conjec-
ture for groups. We summarize the determination of all residually small varieties of
semigroups by McKenzie (and independently by Golubov and Sapir). Both Freese
and McKenzie’s commutator condition for residual smallness in congruence mod-
ular varieties, and the results of Hobby-McKenzie using tame congruence theory
are central to work on the RS and Quackenbush conjectures. We describe these
results only superficially. Lastly, we state open questions related to the RS and

Quackenbush conjectures.




Chapter 0

Preliminaries

In this chapter we lay down the basic terminology used in this paper. We assume
the reader is familiar with basic Zermelo-Fraenkel (or Gédel-Bernays) set theory,
as well as the lattice theory and universal algebra contained in Chapter 1-2 of [3]

(or a suitable equivalent). We start with a rigorous definition of an algebra.

Definition 1 Define a language, F, of algebras to be a set of function symbols
and assign to each f € F a unique n € w, called the arity of f. An algebra A
of type F is the ordered pair < A, F >, where A is a nonempty set and F is the
set of operations on A (namely, members of A4", for some n € w) indezed by F so

that for every n-ary function symbol of F, there is a corresponding n-ary operation

of F.

Throughout our discussion, A, will always denote an algebra.

The notions of subalgebras, homomorphisms, and products of algebras are as

in [3].
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Let K be a class of algebras. Define the class operators H, S, and P, as the
class of all homomorphic images, subalgebras, and direct products of members of
K, respectively (we shall define other class operators along the way). A class of
algebras K closed under H,S,P is a variety. V(K), or the variety generated by
K, equals HSP(K). By a famous theorem of Birkhoff’s, varieties are precisely
the models of equational theories. Denote the congruence lattice of A as Con(A).
The smallest and largest members of Con(A) are the diagonal relation, A4, and
A x A, or \J 4, respectively. We say that a variety is congruence P for some lattice
property P iff every congruence lattice of every algebra in the variety satisfies that
property. For example, V is congruence distributive iff all of its members have

distributive congruence lattices.

The notion of subdirectly irreducible algebra is fundamental in what follows.

We make the following definition:

Definition 2 A is subdirectly irreducible iff for every embedding

a:A-~>HAi

el
where

moa:A — A, is onto for each i€ I

there exists j € I such that 7; 0 a is an isomorphism.

Many equivalent definitions of the notion have appeared in the literature. We
include a theorem that states numerous equivalent definitions of the subject. As

the proof is elementary we omit it.
Theorem 1 The following are equivalent:

1. A s subdirectly irreducible.
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2. Con(A) has a unique atom; that is, a unique member covering 0\ 4.

3. Ay is completely meet irreducible; that is, if Aa= Nicy 0, then DNy = 6; for

some 1 in I.

4. There exist distinct a,b € A such that every morphism f of A into any algebra
is one-one or satisfies f(a) = f(b).

5. A contains an (a, b)-irreducible pair (that is, a pair of distinct elements

contained in every nontrivial congruence).

6. The mazimal member of Con(A) separating a, b is /\,, for some distinct a,

be A.

7. Any family of morphisms with domain A which separates points of A must

contain a morphism that is one-one.

Example 1 It is not hard to check that the only subdirectly irreducible abelian

groups are the groups Z,x, for p a prime, k € w, and the Priifer groups, Z .

Example 2 A well- known fact is that the only subdirectly irreducible Boolean

algebra (semilattice) is the two-element Boolean algebra (semilattice).

Subdirectly irreducibles form the ”building blocks” of algebras, in the sense of
the following theorem due to Birkhoff:

Theorem 2 (Birkhoff) For any algebra A there exist subdirectly irreducible alge-
bras A;pery (of the same type as A), such that there exists a morphism
a: A — H A;
el
with m; 0 a onto for all i € I. (that is, A is isomorphic to a subdirect product

of subdirectly irreducible algebras).
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It follows from Birkhoff’s theorem that V = I.SP(V,;), where I is the isomorphism
class operator, and V,; are all subdirectly irreducible members of the variety. (the

class "V,;” is sometimes called a cogenerating class of the variety).

When is a variety V' cogenerated by a set'? If one defines Spec(V,;) (the spec-
trum of the subdirectly irreducibles in V) to be the cardinalities of members
of V,i, then this is equivalent to asking: is there a cardinal 5 that is larger than ev-
ery cardinal in Spec(V,;)? The consideration of this question leads to the following

definition:
Definition 3 If V,; is (up to isomorphism) a set, then V is residually small.

By the previous example, the variety of abelian groups is residually small, as are the
varieties of Boolean algebras and semilattices. Residually small varieties will be the
main focus of our exploration, and we defer any further remarks about them until
the next chapter. As will be demonstrated, residual smallness is quite a restrictive

property for a variety to possess.

Let |S| be the cardinality of S, and |S|* be the successor cardinal of |S|. Fol-
lowing the convention of elementary real analysis, we let co mean: "larger than any
cardinal”. We define the following function on varieties which (after McKenzie) we

call the residual character of V:

Definition 4 Let V be a variety. Define

sup{|S|t :S € V,} if V is residually small
w(V) =

0o otherwise

Define k(A ) to be (V(A)).

1 As opposed to a proper class.
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For example, the residual character for the variety of abelian groups is w;, and
for both the varieties of Boolean algebras and semilattices, the residual character is
3. The variety of groups has arbitrarily large simple groups; therefore, the residual

character of that variety is oco.

To state Taylor’s equivalent conditions for residual smallness, we state three
definitions necessary for the exposition. We make no use of these concepts above

and beyond the description of Taylor’s results.

Definition 5 A is equationally compact iff whenever ¥ is any set of equations
with constants from A, and if every finite subset of ¥ can be satisfied in A, then ¥

can be satisfied simultaneously in A.

Definition 6 A is an absolute retract in a variety V, iff whenever
A CB €V, then there exists an epimorphism o : B — A, which is the identity
on A.

Definition 7 B is an essential extension of an algebra A iff A C B and every

proper congruence on B identifies two points of A.

We next introduce elementary commutator theory, and base our discussion on

the exposition found in [15].

Definition 8 Let o,3,7 € Con(A). a centralizes 8 modulo vy (C(a,B;7)) iff
for any n+1-ary term (n > 1), p,

<a,b >C a,and < ¢,dy >,--- < cy,d, €0

we have:

<p(a,cl,-'- ,cn))p(G')dla"' 7dn) >€ 7 =< P(b’cla"' acn),p(badh"‘ 7dn) ey
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If A is an algebra with a, 8, and ; (i € I) € Con(A), it is easy to see that if Vi € I
(C(a, B;4:), then (C(a, B; Aicr¥:)- This allows us to make the following definition:

Definition 9 Let a and B € Con(A). Define the commutator of a and 8, with
notation [a, B], to be the smallest congruence v for which (Cla,B;v)).

As we need know nothing more than the notation of the commutator, we do

not attempt to develop any commutator theory here (which is a deep theory in

congruence modular varieties; see [7]).

Another area in which we must defer the reader is in tame congruence theory.
In this theory, the congruence lattice of any finite algebra becomes a labelled graph.
The patterns and combinations of labelling may influence the possible structure,
and conversely the structure of the algebra will determine the possible so-called
"type set”. For example, finite groups display only types 2 and 3. We merely state
what the five types are, and make the assumption (a valid one) that every covering
pair of congruences (or prime quotient) of a finite algebra has a unique type. We

describe the five possible types in the following definition.

To every prime quotient < a,3 > we can assign a so-called "minimal” algebra?,
Each such minimal algebra will have a well-defined type, called the type of

< o, f3 >,
Note that two algebras are polynomially equivalent iff they have the same

set of polynomial operations?®.

Definition 10 Let o and B be a prime quotient in A, denoted by {a,B}. Let M
be the minimal algebra of {a,B}.

2See Ch. 4 and 5 of [11].
3See Definition 13.3 of (3].
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1. M is type 1 or unary type iff the polynomials of M are the polynomials of

the algebra, < M,m >, for some subgroup © of the group of permutations on

M.
2. M s type 2 or affine type iff M is polynomially equivalent to a vector space.

3. M is type 3 or Boolean type iff M is polynomially equivalent to a two-

element Boolean algebra.

4. M istype 4 orlattice type iff M is polynomially equivalent to a two-element

lattice.

5. M is type 5 or semilattice type iff M is polynomially equivalent to a two-

element semilatiice.

The type set of any finite algebra is the set of all types of all of it’s prime
quotients. Hence, it is a subset of {1,2,3,4,5}.




Chapter 1

Fundamental Results

This chapter is devoted to the "classical” results on residually small varieties, draw-
P )

ing from the papers of Taylor, Quackenbush, and McKenzie-Shelah.

1.1 Taylor’s Results

As mentioned above, we shall compute the Hanf-number for subdirect irreducibility,
as well as describe Taylor’s eleven equivalent conditions for a variety to be residually
small. To do this, we shall need a lemma of Mal’cev’s on principal congruences, the

notion of a principal congruence formula, and a combinatorial result due to Erdés!.

Lemma 1 (Mal’cev) Let a,b,c, d € A Then
< a,b>€ 0(c,d)

ff there exist m terms

pi(maylw .o ,yk)1gigm

LThis is also sometimes called the FErdds-Radé Theorem in the literature.

11
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for some m € w, and t;,...,t, € A so that

a = P1(7'1,t1,---tk)
pi(sirtty .o te) = pipa(rirn,ty,. . ) for 1 <i<m,

Prm(Smyt1, .. tx) = b

where

{Ti) Si} = {ca d}'

Our proof of this theorem follows the proof in [3].

PROOF. Let pi(z,y1,...,yx) be atermof A, and ¢,...,% € A. As congruences
are compatible with the operations of A, it follows that

< pileyta, .. te), pi(d, b, . . . tk) >€ O(c, d).

Now if
{r:,8:} = {c,d}
and
pi(sisty, .. te) = Pi+1(7'i+1,t1, cotr),

then by the transitivity of ©(c,d),
< pi(r1te, - )y Pm(Smo b1, - - - E) >€ O(c, d).

Thus 6 = {< a,b > |there exist m terms p;(z,y1,. .. yYk)1<i<m for some m € w, and
t1,.. .t € Asothat a = pi(r1,t1,. . . 8k), Pi(si, b1, . . k) = Piv1(Pig1, by .- 1) for 1 <4 < m,,
and pm(8m,t1,...tx) = b, where {r;, s;} = {c,d}} is a subset of O(c, d).

6 is a congruence relation:

i) 6 is reflexive: let m=2, let p; and p, be the projections on the second factor, and
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let ¢ = t5 = a.

i) 0 is symmetric: Let < a,b >€ 6, so that < a,b > is witnessed by some m € w,
some t; € A, and some suitable set of terms p; (as in the definition of ). Take the
same values for m and ¢;, but take the reverse sequence of p;.

ili) @ is transitive: If < a,b >, < b,c > € 6, then the composition of the two
sequences of terms witnessing < a,b >, < b,c > will give < a,c >€ 4.

iv) 0 is compatible with the operations of A: Let < ay,br >€ 0 (1 <k < n). Let f

be an operation of A.

Let
ar = Pri(rrst1, .- th)
Pki(ski7t1,- . .tk) = Pki+1(7'ki+1,t1, .. .tk) for 1 < 1< m,
pkmk(rkmkatl)"'tk) = bk-
Then
f(bl,...,bk_l,a.k,,,_,a,n): f(b17""bk—lapk'i-{-l(rki—}—l)tl)"'tk)7ak+17
ey ),

and

F(byy ooy by, Privt (Phizr, b1, - - - Bk
F(bay oy by, Pri(Skis b1y e tk), Glt1y - o vy Gn) = Y o e )

Alt1y- -0 a’n)7

for 1 <17 < my.

Further,

f(bl, .. -,bk—l,Pki(ski,tl, . -tk),ak+1, . .,a,n) = f(bl,. . ,bk—l,bkak-}-l, . .,a.n)

Therefore,

< f(bl,. . ,bk_l,ak,. . ,an),f(bl,. .. ,bk,ak+1,. . ,an) > 9, for all k,
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by definition of 6.

By transitivity,
< f(al, . .,an),f(bl, . .,bn) >€ 8

which establishes compatibility.

Clearly, < ¢,d >€ 6. As ©(c,d) is the smallest congruence containing

< ¢,d >, the proof is complete. O

Mal’cev’s lemma has the following Corollary:

Corollary 1 Let a,b,c, and d € A.
< a,b >€ O(c,d) iff there ezists a four variable formula ¢(z,y,z,w) in the first

order language of A such that:

1) ¢ is positive (that is, it built up from atomic formulae and does not contain an

occurrence of -, —, or «.)
i) F Vy,z [Fzé(z,z,y,2) = y = 2]

iii) A = ¢(c,d,a,b).

A formula that satisfies i) and ii) is called a principal congruence formula®.

The next theorem follows from our theorem on subdirect irreducibility.

Corollary 2 A is subdirectly irreducible iff there exists a pair of distinct elements
a,b € A such that for all distinct elements c,d € A there exists a principal congru-
ence formula ¢ with A = ¢(c,d, a,b).

%In the sense of [26].
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We now state Taylor’s main theorem.

Theorem 1 (Taylor) LetV be a variety of algebras of type F defined by equations

Y. Let n = sup(w, |F|). Then the following are equivalent:

10.

11.

. for some cardinal p, every subdirectly irreducible algebra in V has cardinal

< p

every subdirectly irreducible algebra in V has cardinality < 27

there are < 2" non-isomorphic subdirectly irreducible algebras in V
there is a set K such that V C ISP(K)

there is a set K C with |K| < 2" and |A| < 2" for all A € K, such that V
—ISP(K)

each algebra in 'V has (up to isomorphism) only a set of essential extensions

mV.

. if B € V is an essential extension of A, then |B| < 274l

every algebra in V is a subalgebra of an equationally compact algebra
every algebra in V is a subalgebra of an equationally compact algebra in V
every algebra in V is a subalgebra of some absolute retract in V

for every positive formula ¢(z,y, z,w) in the language of V such that - Yy, =
[Fzd(z,z,y,2) — y = 2] there exists n € w such that

Y FVYyz[dz;. ..z, /\ Az, zj,y,2) = Yy~ 2]

1<i<j<n
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All the ingredients for a complete proof of this theorem are in Taylor’s paper.
Instead of proving the entire result, we focus on proving that residual smallness is

equivalent to the second item in the theorem.

We define a concept from Model Theory:

Definition 11 Let P be a property of models in some fired language L. If T is a
set of theories, then Hanf number of P in T (if it exists) is defined to be the
least cardinal 1, such that for each T € T, if T has a model of cardinality n with

property P, then T has models with property P of arbitrarily large power.

Let P be the property ”subdirect irreducibility”, and let 7 be the class of all
varieties with language F. Taylor’s result says that the Hanf number of P in 7

is < (2")*, where 7 is defined as in the above theorem. We prove this result, and

show by example that (27)" is exactly the Hanf-number of P in 7.

To do this we first state a combinatorial lemma found in [26]. Let A®) denote

all doubletons in A that are not singletons.

Lemma 2 (Erdds) Let k be a cardinal > w, and let A be a set with |A| > 2%, C'
a set with |C| < k. If f : A® — C is a map, then there is a set BC A, |B] > w
with f constant on B.

Theorem 2 (Taylor) The Hanf number for P in T is < (2")*, where 5, P, and
T are defined as above.

Proof [3]: Let V' be a variety with language 7, and let A € V,;, with |4] > 2"
By our theorem on subdirect irreducibility, A is (a,b)-irreducible, and ©(a, b) is the

monolith of Con(A). Let C be the class of all principal congruence formulae in the




CHAPTER 1. FUNDAMENTAL RESULTS 17

language F. It is clear that |C| > w; hence |C| = 5. By Corollary 1, for each ¢ # d
in A there exists a ¢ € C (depending on ¢ and d) such that A | §(c,d,a,d). Let
Coa={¢€C:¢(c,d,a,b)}. As D = {C.4:{c,d} € A®} is a nonempty family
of nonempty sets, by the Axiom of Choice there exists a choice function, say g, on
D. It follows that f : A® — C defined {c,d} — g(C.4) is a function. By Erdés’s
lemma, there is a B C A, |B| > w, such that there exists a ¢ € ' such that for all
{c,d} € B®), A k= §(c,d,a,b). Let A be a set of nullary function symbols, with
|M| =m > w. Let X be an infinite set of variables. If we let £(X) be the equations

of V in variables taken from X, define a new set of first order formulas ®, to be
{e#jli,j € N and i # 5} U B(X) U {¢(i,4,0,b)li,5 € N and i # 5} U {a # b}.

By interpreting each member of A/ as a member of B, it follows that A satisfies
every finite subset of ®. By the Compactness theorem for first order logic, there

exists an algebra, N of type F U N U {a,b}, such that N= &.

Let N C N be members of N corresponding to A, and let o/, denote the
members of N corresponding to a,b. Hence, |[N| = 5 and o' # V. Let 6 be a
maximal congruence of N with respect to not containing < a’,b’ >. Then N/#
is subdirectly irreducible. Clearly, < ¢,7 >¢ 0, for i,j € N, and i#j, since N
= ¢(i,7,a',b"). As there are at least as many congruences classes in 6 as there are
members of N, it follows that |[N/6| > m. As m was an arbitrary infinite cardinal,

this establishes the result. a

Example 3 (Taylor) We construct a subdirectly irreducible algebra of cardinality
27, with 7 unary operations, where 7 is any infinite cardinal. Define an algebra

A =< A, F >, where A is the set 27, F is the set of n unary operations f;, for i < 7,
defined for all j < 7 as

fi(a)(5) = a(s)
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where a € 27. If we let a € 27 be the constant function a(i) = 0, for all i € n,
and b € 27 be the constant function b(i) = 1, for all 7 € 5, then it’s not hard to
show that A is (a, b)-irreducible. Hence, A is subdirectly irreducible. However, any

variety of unary type is residually small3.

Example 3 and Theorem 2 show that 27 is indeed the Hanf number of P in 7.
Taylor also shows in the proof of his main Theorem (Theorem 1), that the bounds

for items iii), v), and vii) are best possible.

If we enrich our set theory enough to allow the existence of strongly inaccessible
cardinals (uncountable cardinals 7 that are regular and obey: p < 7 — 2¢ < 7)

then the following is an easy Corollary of Taylor’s result:

Corollary 3 (ZFC + the aziom of inaccessibles) Let A be an algebra, n an inac-
cessible cardinal > w, w < |A| < 7. If K(A) > 7, then s(A) = co.

PROOF. Let F be the type of A. A is term equivalent with the algebra A’, which
shares the same universe as A, but whose language, F’, consists of representatives
from the "natural partition” on F. By this we mean the following: There are |F]|
function symbols but only s = m < {J;¢, ]AI'AP possible n-ary functions on A. In
general |F| > s, so that by the "pigeonhole principle” some function symbols may
represent the same function. This will induce a partition on F, where two function
symbols are related iff they represent the same function. It is not hard to see that

V(A) = V(A'); hence, without loss of generality, we can work with F'.

Let m = sup(w,|F’|). Then m < U, |A|4F, Fix i € w. Then it is easy to

check that |A[4F = 214l. As 5 is strongl inaccessible, and since |A| < 7, it follows
n gly n

%see [26), p.39.
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that m < 7. Hence, n > 2™ so that n > (2™)*. By Theorem 2, x(A)= co. 0

1.2 Quackenbush’s Theorem and Conjecture

A paper of Quackenbush, published near the time of Taylor’s paper, established
another result concerning subdirectly irreducibility in varieties. Quackenbush’s
Theorem (as he first proved it) pertains only to finitely generated varieties, but is
true for any locally finite variety (proved first by Baldwin and Berman, and later
by Dziobiak). We state and prove this fact, with a proof taken from [3]. One can

find the relevant theorems on ultraproducts in that book as well.

Py denotes the class operator of all ultraproducts of a class.

Theorem 3 (Quackenbush) If V is a locally finite variety, with (up to isomor-
phism) only finitely many finite subdirectly irreducibles, then k(V) < w.

Proof [3]: Let W be the class of finite subdirectly irreducible members of V.
Fix A € V. Let K4 be the set of finitely generated subalgebras of A. By Theorem
TV 2.14 of [3],

A € ISPy(K,).

As finitely generated algebras are finite in locally finite varieties, every member of

K, is a subdirect product of members of W. Thus,
K4 CIPs(W)CISP(W).
This gives

A € ISPySP(W) C ISPPy(W) by Thm. IV 2.23 of [3]
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As an ultraproduct of a finite set of finite algebras is isomorphic to one of those

algebras

A € ISP(W)

so that A is a subdirect product of members of W. Hence, if A was subdirectly
irreducible, A € W. O

Quackenbush includes an example of a variety V generated by an infinite alge-
bra A with the property that V has infinitely many finite subdirectly irreducible

algebras, but no infinite one.

Example 4 (Quackenbush) Consider a family of algebras {A;}ic,, with A; de-
fined to be < {0,1}, Fi;c, >, where F; = {m;} U {f;;}, with

(a) mi(z,z,y) = mi(z,y,z) = mi(y, z,2) = =,
1—z if iz

z otherwise

(b) fii(z) = {

Let V be generated by {A;}ic,. As each |4;| = 2, A; is simple, and clearly
A; # Aj for ¢ # j. As members of V have “majority terms”, V is congruence
distributive?. By Jénsson’s theorem®, the subdirectly irreducible algebras in V are
contained in HSPy({Ai}ic.). However, an ultraproduct of two-element algebras is

a two-element algebra.

Quackenbush conjectured the existence of a finite algebra with k(A) = w. He

also asked: ”Can the algebra be of finite type?”®. These questions have turned out

“see Thm. 12.3 of [3].
SThm. IV 6.8 of [3]
p. 265 of [25] .
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to be very difficult, with the majority of the literature leaning towards a negative

answer to both of them. Hence, we formally state them as conjectures.

Conjecture 1 (Quackenbush) unrestricted Conjecture There does not exist

a finite algebra A with x(A) = w.

restricted Conjecture There does not ezist a finite algebra A of finite type with
k(A) = w.

Ralph McKenzie has refuted the unrestricted Quackenbush conjecture in his
unpublished manuscript from January of 1994. However, the "restricted” question
is still open, and McKenzie states in his manuscript that it may be one of the more

difficult of the problems in this area. McKenzie goes on to say,

For a long time, I hoped that the non-ezistence of such an algebra could
be proved using the tame congruence theory of [7]. But tame congruence
theory is insensitive to the number of basic operations of an algebra
...[and] if the answer [to the conjecture] is yes, then new meihods will

be required to prove it. (p. 2, [21])

1.3 The Spectrum of Subdirectly Irreducible Al-

gebras in a Variety
We start with a definition.

Definition 12 Let K be a class of algebras in a variety V. Let 7 be as in Taylor’s
theorem. Define S(K)"(S(K),), the upper (lower) spectrum of K, to be the
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class of cardinals B > n (< 0), such that there is a member of K with cardinality
B. Define the spectrum of K to be S(K) = S(K)"U S(K),.

McKenzie and Shelah analyzed the spectrum of the subdirectly irreducible mem-

bers of a variety.

Theorem 4 (McKenzie-Shelah) Let V be a variety, V,; the subdirectly irre-
ducible members of V. Let n be defined as in Theorem 1.

i) (ZF+GCH) S(Vy;) omits 0 and 1; S(Vi)" = 0,{n},[n,2"], or {B|8 > n}; there

are no other restrictions.

ii) (ZFC) The characterization of i) is true if n = w. For every 7, S(Vii), can be
any set of cardinals < 7 that excludes 0 or 1. For uncountable n, when S(V,;),

does not include all B > 7, then it is an interval [y, X), where X < (27)*F,

We note that McKenzie-Shelah proved more than this, essentially extending
these results to T-simple models, where T is a universal theory (that is, equivalent
to a set of universal sentences). For example, if T is an equational theory, then a
T-simple model is just a simple algebra. Hence, the spectral results of McKenzie-
Shelah will apply to the class of simple algebras in a variety. These results are
beyond the scope of this paper.




Chapter 2

Other Results

In this second chapter of our treatise we examine results from various sources,
which although important, are not central. These include: the results of Baldwin
and Berman on definable principal congruences; Baldwin’s use of infinitary logic;
a categorical result, in which "having enough injectives” in a variety is shown to
imply residual smallness; lastly, we include a chart of varieties which lists if they

are residually small, inspired by a similar chart in [13].

2.1 The Results of Baldwin-Berman

The paper of Baldwin-Berman [1] contains many results of interest, including a
"near” counterexamples to Quackenbush’s conjecture. Besides this "near” coun-
terexample, we present their work on the relationship between definable principal
congruences and residual smallness, as well as their syntactic criterion for residual

finiteness.

Before we begin, we state two theorems of model theory which we shall use

23
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during our discussion.

Theorem 5 (Upward Lowenheim-Skolem-Tarski Theorem) Let T be a the-
ory in a language L. If T has models of infinite power, it has models in all powers

a > max(|L|,w).

Theorem 6 (Downward Lowenheim-Skolem-Tarski Theorem) Let A be a

model of power a, and let |£] < 8 < a. Then A has an elementary submodel of

power [3.

We start with a definition.

Definition 13 Let V be a variety. V has definable principal congruences? or
DFP iff there is a first order formula ¢(z,y,z,w) (in the language of the type V')
such that for every a, b € A € V, {< ¢,d >: ¢(a,b,c,d)} = O(a,b).

For example, commutative rings with unit have definable principal congruences:
in such a ring R, < ¢,d >€ O(a,b) iff (32 € R)(c —d = z(a — b)) [8]. Every
locally finite variety with the congruence extension property (every member A of
the variety V has the property that if A C Be V, then every congruence of A is
the restriction of a congruence of B) has DFP [1]. We do not prove this, but prove

instead the following result:

Theorem 7 (Baldwin-Berman) Let V be a variety with DFP. Then V s resid-

ually small iff for some n € w, K(V) = n.

1See Definition 2.2.16 of [4].
“In the sense of [1].
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PROOF. The reverse direction is obvious.

We make some definitions. Let ¥y be the set of equations defining V, let &,, be
the formula stating that “there are n distinct elements,” and let ¥ be the formula

defining principal congruences (which exists by hypothesis) in V.

Let a be:
JzoTzi [Tz T2s(V (20, 21, T2, 3) A T2 # 23)
ANV VesVeeVar(¥(zo, ©1, 6, T7) V T4 # T5 — U(24, T5, 6, 27))]-
Let I',, be the formula &, A a.
It should be clear that A = o iff A has an (a,b)-irreducible pair, that is, A is
subdirectly irreducible. Define

A=2yU{l,:n€w}

Assume (to prove the contrapositive of the forward direction), that for no n € w,
k(V) = n. Then A is consistent. By Theorem 5, A has models of any infinite

cardinality. Hence, V is residually large. Q

This result has the following immediate Corollary:

Corollary 4 (Baldwin-Berman) Let V be a variety of finite type with DFP. If
V has infinitely many finite subdirectly irreducible algebras, V is residually large.

The reader will note that with Corollary 4, any algebra that refutes Quackenbush’s

restricted conjecture cannot have definable principal congruences.

We state a remark of [1] as a Lemma.

Lemma 3 Let V be a residually large variety. Then V has subdirectly irreducible

members of every infinite cardinality.
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PROOF. Define B to be a pure subalgebra of A iff every finite set of equa-
tions with coefficients from B satisfied in A is satisfied in B. Now, let A be (a,b)-
irreducible. Then any pure-subalgebra B of A containing a, b is (a,b)-irreducible
[1]. If we also assume A is of infinite power, Theorem 6 implies the existence of a

pure subalgebra of A of every infinite cardinal less |A|, which establishes the result.
O

We present next a "near” counterexample to Quackenbush’s unrestricted con-
jecture. It is "near” in the sense that it is an example of a locally finite variety V

with (V) = w, generated by w many algebras rather than one.

Example 5 (Baldwin-Berman) The language £ of our variety V will consist of
a ternary operation symbol t, a constant symbol 0, and for each prime p, a p+1-ary
function symbol g,. Let K = {Z, : p prime}, where Z, is an algebra defined as
follows: the universe of Z, is just {co?,...,c,—17}. In Zy, co® denotes "0”, and we
interpret "t” as the ternary majority function that takes value co? if its arguments
are all distinct. Now we define g,: if p # g then g (y1,...,y441) = co?, for y; € Z,.

For < ay,...,a, >€ Z,%,

( P C§+1(mod D) if the a; are all distinct
gp al,...ap,cj =

co? otherwise

Let V = V(K). As V is congruence distributive, Jénsson’s Theorem states that
Vi € HSPy(K). Following the proof in [1], we show that V,; = K. It is not hard

to see that every member of K is subdirectly irreducible (in fact, simple).

Next, for all primes p, define

ap = (Vao,...,Va, \/ @i ==;)V (Vay,... Ve Vygp(z1,. .. 2p,y) =0)
0<i<j<p
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and let
B =VeoVaeVas(( i = ;) V tzo, 21, 25) = 0)

0<i<i<2
Clearly, K |= a, A 3, for all primes p. Both the o, and 8 are positive universal
sentences; hence, every member of HSPy(K) satisfies them. If A is an infinite

model in K, we must have that:

A |= (\V/:Bh. .o aV$PVygp(w1,~~-)$P)y) = 0) N (ﬂ)

Then for a,b € A,
O(a,b) ={<a,b>,<a,0>,<b,0>,<0,a><0,b><ba>rUly

From this equality, clearly no infinite member A of V can be (a,b)-irreducible for

any distinct a,b € A. Hence, there can be no infinite members of V;.

By a property of ultraproducts, every member B of Py(K) with cardinality p is
isomorphic to Z,. Therefore, if Ac V,;, then Ac HS(B), for some B isomorphic to
Z, for some p. For a fixed p, it is easy to check that every subset of Z, containing 0
is a subalgebra. Further, such a subalgebra, if different from B, is term equivalent
to an algebra M=< M,t,0 >, where M is a nonempty set . Define the class L of
algebras to be the class of all such algebras M. L is axiomatized by the following

positive universal sentences
VaVyVz(z =y Ve =2Vy=zVi(z,y,z)~0)

and

VaVy(t(z, z,y) = t(z,y,z) ~ t(y,z,z) ~ z).

Therefore, L is closed under H. We conclude that V,; contains K and possibly

some members of L. It is not hard to see that, up to isomorphism, the two element
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member of L is the only subdirectly irreducible algebra in L (which is not isomorphic

to Z2)3.

To show that V is locally finite, we will show that |Fy ()| < w, for each prime
P (here, Fy(p) is the free algebra in V with p generators). Fy () is isomorphic to
a subdirect product of subdirectly irreducibles generated by p or fewer elements.
This follows as ¢ > p implies that Z, is not generated by p or fewer elements.

Therefore, Fy(p) is a subdirect product of finitely many finite algebras.

We describe a syntactic criterion for a variety to have residual character < w.

We first make two definitions.

Definition 14 A positive existential formula ¢(z,y,z,w) is a weak congruence

formula f - VyVz[3¢(z,z,y,2z) — y = 2].

Definition 15 Let a, b € A. Let ¢ be a weak congruence formula. Define
So ={{z,y} € AP : A | ¢(2,y,4,b) V §(y,z,a,b)}.

We now state a theorem of [1] which answers Problem 1.25 of [26].

Theorem 8 (Baldwin-Berman) Let V be a variety defined by equations ¥, and

let n € w. The following are equivalent.

i) V is residually < n.

ii) For every weak congruence formula ¢

Y F YyVz[(3zy,. .., 3z, /\ Hziyz;,y,2)) =y = 2].

1<i<j<n

*We note that in [1], it is claimed (erroneously) that K = V.
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iti) If A € V is (a,b)-irreducible and X® C S, for some weak congruence formula
¢, then | X| < n.

PROOF [1]: i) — ii): Ifii) is false for some weak congruence formula ¢, then for
some A €V,
A Jy3z[Feq,..., 32 A\ b= z5,y,2) Ny # 2)).
1<i<j<n
Let a,b,ci,...,c, € A witness this formula. Let 6 be a maximal congruence in
A not containing < a,b >. Let f :A — A/ be the canonical map. Then A/ is
subdirectly irreducible. We show that |[4/8| > n. As ¢ is positive, if ¢ # 7 then

A /0 | ¢(f(ci), f(cj), f(a), £(B)).

As ¢ is a weak congruence formula, f(c;) # f(c;) if 7 # 5.
ii)—iii): Assume iii) fails. Then there exists X C A, where A€ V is (a,b)-
irreducible, X C S, and | X| > n. Let {1, , 2.} be a set of n distinct elements

in X. Define ¢ to be the weak congruence formula ¢(z,y, z,w)V ¢(y, z, z,w). Then

a,b,zq,--- ,z, will witness the following formula

Fyr, -+ 5 Fyn( /\ ' (zs,z5,v,w) A v # w).

1<i<ji<n

Hence, i1) fails, as desired.

iii)— 1): If 1) is false, there exists A € V such that A is (a,b)-irreducible and
|A| > n. Let § = {®1,...,%.} be a subset of A of cardinality n. As A is (a,b)-

irreducible, there is a congruence formula ¢;; such that
A E ¢ii(zi,zj,a,b)

forall 1 <i<j<n. Let ¢ =Vicicj<nPij- As ¢ is a weak congruence formula,
by iii) if X® C S4 then |X| < n. But S@ C §4 and |S| > n, which gives a

contradiction. 0
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2.2 Infinitary Logic

We now turn to Baldwin’s second work on subdirectly irreducible algebras. In [2],
he first describes an example of a locally finite variety of finite type with exactly one
infinite subdirectly irreducible algebra. Baldwin then derives some consequences
on the number of subdirectly irreducibles in a variety by using infinitary logic. We

describe the latter analysis.

An infinitary language L, g consists of the expansion of the language £ of usual
first-order logic to include two new kinds of logical operations. Define the operations

as follows:

1. Let (¢¢)ecy be a sequence of formulas in £, g with v < . Then
A\ (¢e) and \/ (¢c)
€<y €<y

are formulas of £, 5 .

We interpret A, (¢c) to hold in a structure for a given assignment in free
variables iff each (@) holds; similarly, V. ,(¢.) holds iff (¢.) holds for some

€ <.

2. Let (2c)ecy be a sequence of variables with v < 8. Let ¢ be a formula of £, g.
Then

V(@c)ecyd and I(ze)ecyd

are formulas of £, 3. We interpret that V(z.)ccy¢ holds in a structure for
a given assignment to the remaining free variables iff each ¢ holds for ev-
ery assignment to the variables (z.)c<,, but holding the assignment fixed for
the remaining free variables; similarly, 3(z.)c<,¢ holds iff ¢ holds for some

assignment.
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We show that for any variety V in a countable language, V,; is definable in
Loy o
Let ¥ be the equations defining the variety, and for a fixed distinct set of vari-
ables z,y, let ®,, be all congruence formulas ¢(z,w,z,y) for V. Then A € V is
subdirectly irreducible in V iff

A Jedy[(z £ y) AVVw(z £ w — \[ &.,)] A A\ Z.
Consider the following two theorems on L, ,:

Theorem 9 (Harnik, Makkai) If ¢ is a sentence of L., ., and ¢ hasn countable
models, X1 <7 < 2%, then ¢ has a model of cardinality X;.

Theorem 10 (Shelah) (GCH) If a sentence of L, ,, has at least one but strictly

less than 2™ models of power R, then it has a model of power R,.

We apply Theorems 9 and 10 to obtain the following immediate Corollaries:

Corollary 5 (Baldwin) IfV has countable type and £(V) = Ny, then it has < Rq

or 2% countable subdirectly irreducible algebras.

Corollary 6 (Baldwin) (GCH) If a residually small variety V of countable type

has a subdirectly irreducible member of power Ny, it has 2% such.

2.3 A Categorical Result

There are two ways that category theory has influenced the study of residually small

varieties. The first way, known to Taylor (and Banachewski before him), is that
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for a variety of algebras to have the categorical property of “having enough injec-
tives” is equivalent to the variety being residually small and some other properties.
The second way, used by Tholen, is a generalization of "subdirectly irreducible”
(and hence, residual smallness) to fairly general categories. We describe the first
approach. As our main subject is universal algebra, we shall defer the proofs in

this section to other sources.

Definition 16 Let V be a variety. An algebra A € V is V-injective iff whenever
B C C €V and B—A is a morphism, then there exists a morphism ¢:C—A
extending f.

Definition 17 A variety V has enough injectives (EI) iff every member of V

can be embedded in some V -injective.

For example, Day* showed that every variety generated by a primal algebra® has
enough injectives; Bruns and Lakser® have shown that the variety of all semilattices

has enough injectives.

Definition 18 A variety V has the amalgamation property (AP) iff whenever
f and g are embeddings between members of V with the same domain, there ezist

embeddings © and j (again in V) such thatio f = jog.

For example, groups, lattices, and semilattices all have the AP.

The following theorem, first proved by Banachewski, describes the interrelation-

ship of all of these concepts. For a proof, see Taylor.

4See p. 45 of [26].
5See Definition 7.2 of [3].
8See p. 397 of [8].
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Theorem 11 (Banachewski) A variety V has EI iff it has AP, CEP, and is

resitdually small.
We include examples to show the concepts in Theorem 11 are independent.

Example 6 1. The variety of pseudocomplemented distributive lattices is resid-

ually large (proved by Lakser) but has the AP and CEP [26].

2. The variety V of commutative rings with unit satisfying z* ~ x is residually
g

small (as proved by Banachewski), but does not have enough injectives [26].

2.4 A Compendium of Residually Small Varieties

In this brief section, we include a list of some common varieties, and state whether
they are residually small. Our motivation is to increase our stock of examples, and
to lead the reader to the conclusion that residual smallness is somewhat of a rare
property for varieties to possess (more will be said in this vein in the next chapter).
Most of the results stated in the chart are well-known; the reader will find the

relevant references to prove these results in the comprehensive bibliography of [13].
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variety

residually small

unary algebras

abelian groups
semigroups
commutative semigroups
bands

semilattices

monoids

commutative monoids
quasi-groups

loops

groups

rings

commutative rings satisfying ™ ~ =
k-algebras

Lie algebras (over a field)
near-rings

lattices

modular lattices
distributive lattices
Stone algebras

Heyting algebras
Boolean algebras

cylindric algebras

pseudocomplemented distributive lattices

yes
yes
no
no
no
yes
no
no
no
no
no
no
yes
no
no
no
no

no

yes
yes

no
yes
no

no
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Chapter 3

The Quackenbush and RS

Conjectures

Our final chapter discusses the influence and impact of the Quackenbush and RS
conjectures on the study of both residually small varieties and universal algebra
in general. The key player here is McKenzie who has written numerous articles
on these conjectures, and in whose book ([11]) the RS conjecture first appears.
As we mentioned earlier, owing to early success in well-known varieties, McKenzie
(mistakenly) believed that the conjecture would be proven true for all varieties. We

examine the work of both McKenzie and other mathematicians on these conjectures.

3.1 Statement and Survey

The Quackenbush conjectures are in Chapter 1. We now state the RS! conjecture.

1Sometimes called the SI conjecture.

35
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Conjecture 2 (Hobby-McKenzie) Let A be a finite algebra. Then:

k(A) < 0o = K(4) < w.

The reader will note that the RS conjecture is stronger than the unrestricted Quack-
enbush conjecture. Also note that the above statement is no longer a conjecture,
as McKenzie has refuted it in [21]. Nevertheless, it is true in many varieties; for
example, it holds in congruence modular varieties (which include the varieties of
groups, rings, and Heyting algebras); the variety of all semigroups; varieties of K-
algebras (where K is any commutative ring with unit); and most generally, for any
locally finite variety that is congruence P, for some nontrivial lattice equation P
(that is, an equation false in at least one lattice). In the coming sections we will
examine the proofs of the RS conjecture for each of the above mentioned classes of

algebras.

3.2 An Early Result: The Variety of Groups

A. Ju. OPshankskii’s paper of 1969 contains the following result:

Theorem 12 Let V be variety of groups. Then (V) < w iff V = V(G), for a

nite group G, all of whose Sylow subgroups are abelian.
P Y

This theorem is the first we are aware of that gives a ”structural” condition to de-
scribe the property of being residually finite*. Theorem 12 predates Quackenbush’s

conjecture, and for that matter the notion of residual smallness. The original proof

2QP’shanskii worked with ”finitely approximable groups”, a notion equivalent to residual

finiteness.




CHAPTER 3. THE QUACKENBUSH AND RS CONJECTURES 37

involves fairly specialized results from group theory so we omit it. In hindsight,
Theorem 12 may be viewed as a special case of the results of [7]. For this reason,

we defer a proof based on those results to Section 3.5.

3.3 Taylor’s Result: Congruence Permutability-

Regularity

The following results of Taylor, published in 1979, were significant findings dealing
with the Quackenbush conjecture. They prove that conjecture true in a variety

satisfying special conditions that we describe now.
Definition 19 Let V be a variety.

1. V 1s congruence permutable iff for any A € V, and for any 6, 6, in
OOTI(A), 91 (0] 92 = 92 (o] 91.

2. V is congruence regular iff every congruence in every A € V is determined

by any one of its congruence blocks.

There exist term conditions for a variety to have either of the properties in
Definition 19. A variety V is congruence permutable® iff there is a ternary term

p(x,y,z) (in the language of the type of V) such that

VEpzzzy)~y

and

V Ep(z,y,y) = z.

3See Theorem 12.2 of [3].
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V is congruence regular® iff there exist n € w, and terms (in the language of the
type of V') pi(z,y,2) (for 1 <1 < 2n) and gi(z,y,z,w) (for 1 <i < n) such that V

satisfies

z

&

pi(z,z,z) 1 <1< 2n,

Q

z a(z,y,2,pi(2,y, 2)),

g1(CC, Y, zaPZ(w, Y, Z)) R gz(m,y, z,pg(w,y, Z))a

g2(z,y, 2, pa(2,9,2)) = gs(z,vy,zps(2,y,2)),

Yy = gn(a:’y) z’pZn(may) Z))

Examples of congruence permutable-regular varieties include groups, Boolean alge-

bras, and rings.

We prove the following result:

Theorem 13 (Taylor) If A is a finite algebra with V(A) both congruence regu-
lar and permutable, and if V,; contains arbitrarily large finite members, then Vi

contains an infinite member.

Hence, no algebra that is congruence regular-permutable would supply a counterex-
ample to Quackenbush’s conjecture. The proof hinges on the following technical

Lemma;:

Lemma 4 (Taylor) If A is a finite algebra with V(A) both congruence regular
and permutable, then there exists a sequence {@;}icr of congruence formulas such

that the elements of every finite member B of V,; can be arranged in a sequence

bo, b1, bz, ... such that B |= ¢;(b;,b;,b0,b1) when 1 < j.

4See p.196 of [27].




CHAPTER 3. THE QUACKENBUSH AND RS CONJECTURES 39

We will not prove this Lemma here, but use it in the proof of Theorem 13.

PROOF of Theorem 13 ([27]). Let B; be a finite member of V,;. Then there
exist b;; such that B; = {bj,bi1,...}, as in Lemma 4. Let B be a nonprincipal
ultraproduct of {B; : 7 € I'} (that is, of all finite members of V,;, up to isomorphism).
Define b; € B so that for each j, the ith coordinate of b; is b;;, for almost all i. By
Los’ Theorem®, B |= ¢;(b;, b;, b, b1 ) wheneveri < j, where the ¢; are as in Lemma 4.
If < bg,by >¢ 6 for 6 € Con(B), then the b; are all distinct in B/6. Hence, B/4
is infinite. If we let 6 be a maximal congruence separating by and b,, we are done.

O

Taylor’s result was strengthened by Freese and McKenzie. We defer any discus-

sion of this until Section 3.5.

3.4 The Variety of Semigroups

In 1979, Golubov and Sapir classified all residually finite varieties of semigroups.
They proved that if a variety of semigroups has residual character < w, then the
variety is finitely generated and has residual character < w. This proves the Quack-
enbush conjecture for semigroups. In 1981, McKenzie classified (independently of
[9]) residually small varieties of semigroups modulo some questions concerning va-
rieties of groups. He also showed that the Quackenbush conjecture is true for
semigroups (a result weaker than that of [9]). In a sequel to his 1981 work, McKen-
zie classifies residually finite semigroup varieties, and partially addresses the group
questions mentioned above. As a corollary of these results the RS conjecture holds

true for semigroups.

5See Theorem 4.1.9 of[4].
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We examine these three works and summarize their findings. The proofs of the

results of this section require somewhat specialized results from semigroup theory,

and so proofs are omitted. We show, however, how the RS conjecture follows from

the results [18]°.

We make some introductory definitions.

Definition 20 1. Let 2 =< {0,1},. >, where "-” is integer multiplication.

2.

3.

A zero semigroup is one with all products equal.

Let 2¢ be the two element zero semigroup.

A left (right) zero semigroup is one satisfying zy ~ z (zy =~ y).
Let Lo (Ro) represent the two element left zero (right zero) semigroup.

Let S be any semigroup. Define the semigroup S(© to have universe SU0 (for
0¢5S), and zy = 0 if esther x ory is 0.

Let G be a group, U a nonempty set, and o :G—» Perm(U) a group morphism
(e is arepresentation). Define a semigroup R(G,U, o) =< GUUU{0},- >

where 77 is defined as follows:

?

a.(y) ifeeGandyelU
z-y =1 the product in G ifz,yc G
0 otherwise

L(G,U,a) is defined as follows. Again the universe of the algebra is G U U U
{0}. « is defined to be a representation of G into U; that is, agp(u) =

6We note that the RS conjecture had not yet been posed at the time of the writing of [18].
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an(ag(u))), for g,k € G, and w € U. The operation of L(G, U, ) is defined:

a.(y) freGandyeclU
Yz =4 the product in G ifz,y € G
0 otherwise

Definition 21 Let n > 1. A semigroup S is a group of exponent n iff

Sz~ oz, 2" &y

Note that if a semigroup S is a group of exponent n, S becomes a group if we define

Definition 22 1. Forn > 1, define i" = {S: S |= ((zy)"*! =~ zy) A (2"yz ~

z yz"z) A (zy2™ =~ zz"yz")}
2. Forn > 1, define V;" = {S: 8 = ((z)""'y ~ zy) A (z"y"z ~ y"z"2)}.

8. Formn > 1, define V3" = {S: S | (2y™*! = zy) A (zy"z" =~ z2z"y"™)}.

Note that for each n > 1 the variety V3" is the dual of the variety V™.

3.4.1 Results of Golubov-Sapir

From [9] we include the following classification of all residually finite semigroups

varieties:

Theorem 14 (Golubov-Sapir) Let I be a two element semilattice’; P a semi-

group with universe {a,b,0} with a® = a,ab = b, and all other products equaling 0;

T = 2.
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Q the dual semigroup of P. Then a variety of semigroups, V, is residually finite iff

it 1s generated by one of the following semigroups:

Lo xCxQ CxP xRy LixGxIxRy GxI
G X 2¢ Lo x G x Ry Lo x G x1I CxQ
Lo x G x 2 G x 20 x Ry G x2yx1I G x Ry
Lo x G x 29 x1I GX2xIxRy LixGx2xRy CxP
LixGx2xIxRy Lo xG G xI xRy G,

where G is a finite group all of whose Sylow subgroups are abelian; and C is a finite

cyclic group of prime power order.

Golubov and Sapir show that any residually finite semigroup variety must be a
subvariety of V" for some ¢ € {1,2,3}. They then classify the subdirect irreducibles

of each such subvariety.

Theorem 15 (Golubov-Sapir) 1. If VC Vi", and V is residually finite then
the only possible subdirectly irreducible semigroups in V are (up to isomor-
phism):

LZ) L2(0)7 RZ) RZ(U)) 20) I) GiGi(),
where G; is a subdirectly irreducible finite group all of whose Sylow subgroups

are abelian, and i € {1,--- ,m}, where m is the number of subdirectly irre-

ducible groups in V.

2. If VCWV;", and V is residually finite then the only possible subdirectly irre-

ducible semigroups in V are (up to isomorphism):
R27 RZ(O), 2o, I7 P’ Ci’ Ci(o)’ C; Vv P(O),

where C; is a subdirectly irreducible cyclic group, 1 € {1,--- ,m} (m is defined
as in 1), and S 7 T(® is the Cartesian 0-product of the semigroups S and
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T©); that is, the Rees quotient semagroup of S x T modulo the congruence

consisting of all pairs with second entry zero.

3. IfVCWV,", and V is residually finite then the only possible subdirectly irre-

ducible semaigroups in 'V are (up to isomorphism):
L, 1,”,2,,L,Q,C;, C?, C; 7 Q©,

where C; is a subdirectly irreducible cyclic group, i € {1,--- ,m} (m is as in

1), and S 7 T is as in 2.

As there are (up to isomorphism) only finitely any subdirect irreducible semigroups
within any of the three possible families of residually finite semigroups. This proves

the Quackenbush conjecture for semigroups®.

3.4.2 Results of McKenzie - Part I

The following theorem gives a necessary condition of all residually small varieties

of semigroups.

Theorem 16 (McKenzie) Let V be a residually small variety of semigroups.
Then V must be a subvariety of V;"™, for some 3 € {1,2,3}.

McKenzie then classifies, within each of V;" for 1 € {1,2,3}, the subclass of subdi-
rectly irreducible semigroups. We list (after McKenzie) the subdirectly irreducible

members of each of three families of varieties described in Theorem 16.

We first state a Proposition of McKenzie’s.

8See Propositions 1 through 5 in [9].
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Proposition 1 (McKenzie) If G is a group of order at least two, then R (G,U, a)

15 subdirectly irreducible iff it satisfies the following:
1. g # h implies that ay # ap, (that is, o is faithful ).
2. a(G) acts transitively on U.

3. For someu € U, {g € G : ay(u) = u} is a completely meet irreducible member

of the lattice of subgroups of G.

Theorem 17 (McKenzie) Let G™); be the subvariety of V;™ consisting of all

groups of exponent n.

1. The subdirectly irreducible members of V;™ are G and G, where G € G,
is subdirectly irreducible, 2, 29, Lo, Ro, Lo®, and R,

2. The subdirectly irreducible members of V3™ are G and G where G € G,
is subdirectly irreducible, R(G, U, a), where G € G™, and the conditions of
Proposition 1 hold, 2, 29, Ro, and Re(®.

3. The subdirectly irreducible members of V;" are G and G(®), where G € G,
is subdirectly irreducible, L(G, U, a), where G € Gy and the conditions of
Proposition 1 hold, 2, 2o, Ly, and Lo'®.

Using model theoretical arguments, McKenzie proves the following theorem :

Theorem 18 (McKenzie) If V(A) is residually finite where A is a finite semi-
group, then V(A) has only finitely many non-isomorphic subdirectly irreducible

semigroups.

As alluded to previously, Theorem 18 proves the Quackenbush conjecture for semi-

groups.
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3.4.3 Results of McKenzie - Part I1

In [18], McKenzie partially answered some of the questions left over from [16]. His
results are sufficient to both characterize all residually finite varieties of semigroups,

and prove the RS conjecture true for semigroups. We prove the latter result.

We state three theorems from [18].
Theorem 19 (McKenzie) If V is a vartety of groups, X a cardinal, and

1. for every G € V, every strictly meet irreductble element N of the lattice of
normal subgroups of G satisfies (G : N| < A; and

2. for every G € V, every strictly meet irreducible element H of the lattice of
subgroups of G satisfies [G : H] < A.

Then every finite group in V is abelian.

To state our next theorem, we need some terminology. Let N = V{2,20,Lq,Ro}.
Then N has sixteen subvarieties, generated by the subsets of its generating set.
After McKenzie, we denote these by N;, for ¢ € {0,--- ,15}. Welet R = V{R,, P},
and L = V{Lo,Q}. Then R (L) has two subvarieties not in N; namely, Ry, = R
and Ry = V{P} (Lo = L and L, = V{Q}).

Theorem 20 (McKenzie) A variety V of semigroups is residually small iff the
groups in V constitute a subvariety W of G for some n and one of the following

holds:

1. V=N; VW for somei < 16 and W satisfies 1. of Theorem 19 for some ).
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2.V =R VW orV =L, VW for somei < 2 and W satisfies both 1. and 2.
of Theorem 19 for some ).

To describe the subdirect irreducibles in each of the twenty classes of Theo-
rem 20, we need more notation. Let H be a subgroup of a group G. Define a
semigroup R(G,H) to have universe the disjoint union of G, {z - H : z € G}, and
{0}, and with an operation defined so that G is a subsemigroup, z-(y-H) = (zy)-H,
and all other products equal 0. The semigroup L(G,H) is defined to be the dual of
R(G,H). For K a class of groups, let R(G) (L(G)) be the class of all subdirectly
irreducible semigroups R(G,H) (L(G,H)) with G € K.

The class F = {2,20, Lo, Ro,P,Q, Lo, Ro(} is (up to isomorphism) the class
of subdirectly irreducible members of N U R U L®.

Theorem 21 Let V = GV W, where W is one of the classes N,R,L, and G is a
variety of groups of finite exponent. Then

(WNFYUG,UG;® ifW=N
Vi={ WNF)UG,UG,YUR(G) W =R
(WNFY)UG,UGOUL(G) fW=1L

The classification of all residually small varieties of semigroups is still incom-
plete. As McKenzie states in [18], such a classification depends on both the classifi-
cation of residually small varieties of groups of finite exponent, and the classification

of varieties of groups possessing property 2. in Theorem 19.

From the above results, we can (with the help of some of the results of the next

section) prove the RS conjecture for semigroups.

®See [18].
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PROOF of the RS conjecture for semigroups. Let S be a finite semigroup. Assume
that V' = V(S) has residual character < co. Then, by Theorem 20, the groups in
V constitute a subvariety G of G(™ for some n, and either V = N; V G, for some
1 < 16 and G satisfies 1. of Theorem 19 for some A, or V equals one of R; V G or
L; V G for some 7 < 2, and G satisfies both 1. and 2. of Theorem 19 for some ).

Assume the first case holds. By Theorem 21, V,; = (N N F)U Gy U Gy;(®.
Now, (NN F) contributes only finitely many non-isomorphic subdirectly irreducible
semigroups. G.;(®) will contribute only finitely many non-isomorphic subdirectly
irreducible semigroups if G,; does. We show that G has residual character < w. As
G satisfies 1. of Theorem 19, G is residually small. But G is finitely generated'®.
By the results of [7] (to be discussed in the next section), G has residual character

< w.

Assume the second case holds. Then V,; = (WNF)UG,;U G, YU W(G), where
W = R or W = L. We prove V is residually finite in the case W = R (the case
W = L follows similarly). As G satisfies now both 1. and 2. of Theorem 19, every
finite group in G is abelian. As in the first case, G has residual character < w.
The question is now whether R(G) is finite. As every member of G,; is abelian, so
is every group in G. If H C G is a pair of groups, then the semigroup R(G,H)
is subdirectly irreducible iff H is a strictly meet irreducible element in the lattice
of subgroups of G, which contains no nontrivial normal subgroup of G!* But then
R(G) is a finite set of semigroups of the form R(C,{1}), where C is a cyclic group

of prime power order.

In either case, x(S) < w. O

10See Lemma 28 of [16).
11Gee p.145 of [18].
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3.5 Congruence Modular Varieties

In 1981, Ralph Freese strengthened Taylor’s result by dropping the condition of
congruence permutability'?. Freese and McKenzie strengthened this result, in that
the variety need only be congruence modular. The purpose of this section is to

explore the validity of the RS conjecture in the congruence modular case.

The following is the main result of [7], which we state without proof:

Theorem 22 Let Ac V, where V is congruence modular, with |[A| = m < w.

Then the following are equivalent:

1. K(A) < oo.
2. V(A) is residually < (14 1)!m, where [ = m™™"" .

3. For any a,B € Con(B), where B CA, a <[3,8] — a = [3,q].

To prove this result we require the commutator theory of modular varieties. We do
not develop this theory here, and refer the reader to [7]. The congruence modular
varieties are a broad class of algebras, containing, for example, the varieties of
classical algebra (groups, rings, lattices, etc.). Accepting Theorem 22 and repressing
one’s historical hindsight, it is easy to see how the RS conjecture could be believed

to be true.

We prove a special case of Ol’shanksii’s theorem (for finitely generated varieties)

in the form of two theorems.

Let G be a finite group.

'2The result was unpublished.
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Theorem 23 If every Sylow subgroup of G is abelian, then k(G )< w.

PROOF. We follow a proof as in [7]. Define a finite algebra A to be critical iff
A ¢ HSP((HS)*(A)), where (HS) * (A)is {B€ HS(A):|B| < |A]}. Let () be

the property of having no nonabelian Sylow subgroups.

We show that if G is a finite group satisfying (), then V(G) has only finitely
many finite subdirectly irreducibles (up to isomorphism); the result will then follow
from Quackenbush’s theorem. It is not hard to check that if G satisfies (%), then
so will any finite group in V(G) (it is enough to show that (x) is preserved by H,
S, and finite products). Kovdcs and Newman'® showed that any finite subdirectly
irreducible group satisfying (*) is critical. Oates and Powell'* proved that V(G)

has only finitely many critical groups, which establishes the result. a
Theorem 24 If some Sylow subgroup of G is nonabelian, then k(G) = co.

PROOF. The proof here is inspired by the general case in [7].

Step 1 Let HE HS(G), be chosen so that H has a nonabelian Sylow subgroup
and |H| is minimum. Then H is subdirectly irreducible. To see this, note
that since |H| is finite, H is isomorphic to a finite subdirect product of finite
subdirectly irreducible algebras S;, each of which are homomorphic images of
H'. If H is not subdirectly irreducible, each of the S; must have cardinality
strictly less |H|; hence, they all satisfy (%) by the minimality of |H|. As
alluded to in the proof of Theorem 23, groups satisfying (%) form a local

subvariety of V(G), which gives us our contradiction.

13Gee [14].
145ee [23].
15See Corollary 8.7 of [3].
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Let N be the monolith of H. If the commutator subgroup, H', was a trivial
subgroup, then H would be abelian. Hence, each of the subgroups of H
would be abelian, contradicting our hypothesis. We next show that H is
a p-group; therefore, the center of H, Z(H), is nontrivial. As H is finite,
|H| = p1* -+ p,"™, for primes pi,...,p,. By hypothesis, H has a nonabelian
Sylow p-subgroup, say S. As |S| = p;* for some i € {1,...,n}, it follows that
S will have a nonabelian p; subgroup; namely, itself. By the minimality of

|H|, it follows that H=S, and we are done.

As Z(H) and H' are normal subgroups of H, they contain N.

Step 2 Let K be the normal subgroup of HxH generated by {< z,z™* >: z ¢H}.
We show that Nx{1} C K:

As NCH', it suffices to show that < [z,y],1 >€ K for all z,y € H. But this

follows since: < [z,y],1>=<z ™l 2> (<y,z>7'< z,27! ><y,z >).
Step 3 Let A be an infinite cardinal. Let
B = {f € H: f(i) =1 for all but finitely many i < A}.

It is easy to show that B is a subgroup of H*.

For each i < j < ) define
Ki;; ={f € B:< f(i), f() >€ K and f(k) =1 for all k # 1,7}
Further define

M = {f € B:range(f) € N and [] f(:) = 1}.
<A
Then K;; <« B, for all ¢ < 5, and M < B (because N is normal and is in the
center of H).
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For each c € H and ¢ < j define f;° € B by:

c ifj=1
ff(j)z{ X

1 otherwise.
Fix a € N — {i}. The following facts will hold:
Fact 1 From Step 2 and by the definition of K;;, it follows that f;* € Kj;,
forall i < j < Al
Fact 2 By the definition of M, f;* = f;*(mod M), for all ¢ < j < .
Fact 3 Therefore, fo* €¢ MV K;;, forall i < j < X .
Fact 4 Again by the definition of M, f,* ¢ M.
Step 4 Let S be any normal subgroup of B maximal with respect to the property
that MCS, and f,* ¢ S. Hence, B/S is subdirectly irreducible.

We show that |B/S| can be arbitrarily large. To do this I show that for any
infinite cardinal &, if we chose A = (2%)*, then |B/S| > x*.

Fix + < j < A. K;; is the smallest normal subgroup (of B) containing the set

{f7(£°) " 1z e H}
(From the definitions, one can check that K;; is the normal closure in B of
{£i"(f;°)" : ¢ € H}.) By Fact 3, observe that MCS, and f,* ¢ S imply that
K;;  S. Hence,
{fF(fi5) " e € H} 8
Therefore, for all i < j < A, there exists z € H such that f°(f;*)! & S.

By the Erd6s-Rado Theorem, there exists X C A, such that |X| = x*, and a
¢ € H, such that

(3.1) (i,j € X and i< j) > fo(f) 1 ¢ S
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By 3.1 the elements f;° are pairwise inequivalent (mod S). Hence, |B/S| >
|X| = k*. As k was arbitrary, it follows that V(G) is residually large. D

3.6 Varieties of K-algebras

In 1982 McKenzie proved the analogue of the RS conjecture for locally finite va-
rieties of K-algebras. He also gave a syntactic condition equivalent to residual

smallness for all varieties of K-algebras. In this section, we describe these results.

Definition 23 Let K be a commutative associative ring with identity. A K- al-
gebra, A, is an algebra < A,+,-,—,0,t,(k € K) > so that < A,+,-,~,0 > is an
associatie ring, and the map k v~ ty is a ring (with identity) homomorphism of K
into End(< A,+ >) so that t(z - y) = 2 - ti(y) = te(z) - v, for all 2,y € A, and
ke K.

For a fized K, the class of all K-algebras is a variety, which we denote by Ag.
A K-algebra has an identity iff it has a constant, 1, and satisfies z -1~z ~ 1 - z.

The variety of all K -algebras with identity is denoted by Ag™.
The following is McKenzie’s main result:

Theorem 25 (McKenzie) Let V be a variety so that either V. C Ag or V C
AxM. Then the following are equivalent:

1. 'V s residually small.
2. Iy N [I, 1) C [Io, I1] holds for all ideals in every algebra of V.

3. V satisfies an identity of the form x -y ~ f(z,y) whose monomials on the

right side each have a total degree not less than 8.
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4. VE@E-z")y—y") ~[(z—z")(y — y")]", for some integer n > 1.
As the proof is largely ring-theoretical, we omit it.

Corollary 7 Every residually small variety V. C Ag® is restdually < n for some
n € w. Every residually small and locally finite variety V C Ag is residually < n

for some n € w.

3.7 Monotone Clones

We present a non-central result of McKenzie’s that proves the RS conjecture true
for a special class of varieties, which are "order-generated”. McKenzie studied such
varieties as part of his quest to prove the RS conjecture true for all varieties. In
such varieties, we also prove that congruence distributivity is equivalent to residual

smallness.

We first make some definitions.

Definition 24 1. An algebra A=< P, F > is monotone with respect to an

ordered set P =< P, <> iff each operation of A preserves the order of P.

2. A 1s order primal with respect to P iff A is monotone with respect to P
and the clone'® of all monotone operations (over P) equals the clone of term
operations of A.

Denote: A is order primal over P by A(P).

8. V(A(P)) is called an order-primal variety.

18A clone is a class of functions closed under composition, and containing all the projection

functions; for example, the term operations of A form a clone.
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McKenzie proved that the RS conjecture is true for bounded order-primal varieties
("bounded” in the sense that the underlying order has aleast and greatest element).
As congruence distributivity is equivalent to residual smallness in such varieties, the

result follows as an application of Jénsson’s Theorem.

McKenzie’s main result is the following theorem.

Theorem 26 (McKenzie) Let P be a bounded ordered set with 0 and 1 as least
and largest elements, respectively, and let A be an algebra monotone over P which

has ternary terms A(z,y, z) and B(z,y,2), such that A satisfies:

A(0,0,z) ~ 0, A(0,z,z) ~ A(z,0,z) =~ A(z,z,z) ~ =,

B(1,1,z) = 1, B(l,z,z) = B(z,1,z)~ B(z,z,z) ~ .
If V(A) is residually small, then it is congruence distributive.

An immediate Corollary is the following:

Corollary 8 (McKenzie) V = V(A(P)) (where P is a finite bounded ordered

set) is residually small iff it is congruence distributive.

PROOF. We mentioned in our previous remarks why the reverse direction is true
(if V' is congruence distributive, then it is residually < |A| + 1). For the forward
direction define the following term operations: let A(z,y,2) = z unless z = y = 0,
and define A(0,0,z) = 0. Define B(z,y,z) dually. These operations are clearly

monotone and satisfy the hypotheses of Theorem 26. a

To prove Theorem 26 we need a technical Lemma.

Lemma 5 (McKenzie) Let A be a monotone algebra over an ordered set with

zero. Assume A has a term operation A(z,y,z) as in Theorem 26. If V(A) is
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residually small, then A possesses terms do(z,y,2),...d.(z,y,2) such that A sat-
isfies di(z,0,z) ~ z (for all © < n) and which are Jonsson terms'” except that A

may not satisfy d;(z,y,2) =~ z.

PROOF ([19]). By hypothesis, there exists a cardinal )\ greater than the cardinals
of members of V(A),;. Define X = A x A x X. We define elements of AX. Define
fi, f2 € A by fi(a,b,c) = a, and fa(a,b,c) = b. Define finand fo,, forn € A, as

follows:

a ifn#c

0 otherwise

fl,n(av b, C) = {

b ifn#c
fZ,n(a, ba C) =
0 otherwise

Let S< A¥ be the subalgebra generated by fi, f», and the fin, fam, for each n € A,

Let 6 be the congruence in S generated by the ordered pairs of elements:

Z ={< finy fon >0 € A}

Our aim is to show that: < fi, f, >€ 6. If this is false, then let ¢ be a congruence
of S, maximal with respect to the property of not containing < fi, f, >: hence, B=
S/ is subdirectly irreducible. We show, to obtain a contradiction, that |B| > ).
If |[B| < ), then there exist distinct i,; € ), such that < fii, f1,; >€ ¢; hence,
< f24,f25 >€ &. Let A stand for the term operation in S induced by A(z,y,z)
in A. Then by the equations satisfied by A(z,y,z), if m € {1,2}, we have that:
A(fmis fmis fm) = fmi and A(Frmis Fmjy fm) = fm. Now, < fmis fnj >€ ¢ implies
that < fo, fm; >€ ¢. Then < fi;, fo; >€ ¢ implies that < f, f, >€ ¢, which
contradicts our assumption. Hence, |B| > ), a contradiction, so that in turn, our

assumption that < fi, fo >¢ 6 is erroneous.

17See Theorem 12.6 in [3].
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We can now show the existence of the desired term operations.

As < f1, fo >€ 6, there exists a finite sequence of elements of S:

fl = g0,915---39m-1, f2 = Gm

such that for every k < m, there exists a binary polynomial operation pe(z,y) of

S, and some i}, € A, such that

gr = Pe(friy, foin) and gig1 = pr(foss, Frin)

For each of the generators ”f” of S, there is a corresponding term operation B (z,v)
of A so that f(a,b,¢c) = B(a,b) unless f = fi. or f,. (take either B(z,y) = z or
B(z,y) = y.) I claim that for every f € S, there exists a binary term operation
B(z,y) and a finite subset F of ), so that

B(a,b) = f(z) for all ¢ = (a,b,c) € X such that ¢ ¢ F.

We prove this by induction. As Q= SgAX(Z) = UnewE™(Z) (our notation E™
is taken from Theorem 3.2 of [3]), f € Q is in E™ for some n € w. Then either
f € E*' in which case we are done by induction, or f = FAx(gl, ++ ,gm), for
some mn-ary fundamental operation F of A¥, and g; € E**, for i € {1,..-m}. By
inductive hypothesis, for each g; there is a binary term operation B;i(z,y) and a

finite set F; such that for all € {1,-.- ,m}
B;(a,b) = gi(z) for all z = (a,b,u) € X such that u & F,.

Let B(z,y) be the binary term operation FAX(Bl(z,y),--- yBm(z,y)), and let
F' be the finite set U;c;c,, Fi. Take (a,b,c) € X, such that ¢ ¢ F. Then
¢ € [hici<cmA — Fi. This means that for such a ¢, gi(a,b,¢) = Bi(a,b) by in-
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ductive hypothesis. Hence, for c ¢ F,

X

fla,b,c) = FA (gi(asb,c),- , gm(a,b,c))
AX
= F* (Bi(a,b),---,Bpn(a,b))
= B(a,b),
as desired.

For k < m let the operation B(z,y) corresponding to gr be Bi(z,y). Then
Bo(z,y) = z, Bn(z,y) =y, and

B,(a,b) = p.(f1,:.(z), f2:.(x))
and

B, (a, b) = Pa+1(f2,i.($), f1,i.($))

for all z = (a,b,u) € X so that u ¢ L,, for some fixed finite subset L, of ).

Fix k < m. The polynomial operation pi(z,y) can be expressed as:

pk(w’y) = Kk(w)y) fl,ikaf2,imf1,joaf2.jo .. -afl,jl_l)fZ,J'z_uflafZ)a

for some [ € w, some 2] 4 6-ary operation K; of A, and some distinct elements
Jos---Ji-1 € A, distinct from the ¢;. By evaluating the above equations at any

z € X such a that = (a,b,c) where ¢ & L, U {jo, -+ ,ji-1}, we have that
Bi(a,b) = Ki(a,b,a,b,...,a,b)and
Bria(a,b) = Ki(b,a,a,b,...,a,b).
Let Ri(z,y,2,w) = Ki(z,y, z,w, z,w,...,z,w).
Hence,
(3.2) Bi(a,b) = Ri(a,b,a,b), and

(3.3) Biyi(a,b) = Ri(b,a,a,b).
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We next show that

(3.4)  Ri(0,0,z,2z) = Ri(0,2,2,2) = Ri(2,0,2,2) = Bi(z,2,2,2) = 2

As every pair of generators of § agree at © = (a,a,b) € X, we have
gr(z) = grga(z) = go(z) = a.

Evaluating at =z = (a,a,i), and at © = (a,a,c), for ¢ & {ix, o, + ,Jx_1} We the
find that
Ki(0,0,0,0,a,a,...,a,a) = a = Ki(a,...,a).

Equation 3.4 now follows from this and our definition of Ry, as K} is monotone.

Define:

(35) D2k+1(z,y,z) = Rk(yaz,w)z)) D2k+2($yyaz) - Rk(z,y,w,z).

As k < m was arbitrary, we can define D;(z,y,z) in this way for 1 < i < 2m.

Equations 3.2 and 3.5 give us that

Dori1(z,2,2) = Dapya(z,2,2) for 0 < k < m, and

Da(z,z,2) = By(z,z) = Dagta(z,z,2)for 1<k <m.

Equations 3.4 and 3.5 give us that D;(z,0,z) = z for 1 < ¢ < 2m. Further,
Di(z,z,z) = Bo(z,z) = z and Dam(x,z,2) = Bp(z,z) = z. Letting Do(z,y,z) =

z and D41 (2,y,2) = 2, we see that the operations
Do, ... Damy1

are the required term operations. ad
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PROOF of Theorem 26. We construct Jénsson terms for V(A). By hypothesis
we have terms A4;(z,y,z) as in Lemma 5. As our hypotheses are self-dual, we
will obtain a dual set of term operations B;(z,y,z) satisfying a dual set of term

conditions. Define
Cij(z,y,2) = Ai(z, Bj(z,y, 2), 2).

As Bj(a,1,a) = a implies that B;(a,b,a) < a, 4;(a,0,a) = Ai(a,a,a) = a, and A;
is monotone, we have that C; ;(a,b,a) = a. Further,

(,9,2) = =,

( ) = Crzin(z,z,2),
Craiti(z,2,2) = Cigjra(z, 2, 2),

( ) = Cauram(z,y,2),

( ) = Caitio(z,y,2).
Thus, the sequence:

Ca05o- 7 Cim = Coymy- o3 Ca0 = C30,C31,...,C3m, - Croo

will yield a set of Jonsson terms. a

McKenzie also shows that residual smallness in a bounded order- primal variety

is equivalent to congruence modularity. We will not pursue this here.

3.8 Results from Tame Congruence Theory

The RS conjecture first appeared in the book "The Structure of Finite Algebras”,
written by David Hobby and Ralph McKenzie. In this book, the authors present
tame congruence theory — a powerful tool in the study of finite algebras — for the

first time. Among the many results in that book is the following:
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Theorem 27 (Hobby-McKenzie) Every locally finite, residually small variety

that omaits types 1 and 5 is congruence modular.

Hence, based on the results of [7], the RS conjecture is true for locally finite varieties
that omit type 1 and 5. It follows that the RS conjecture is true for every locally
finite variety whose congruence lattices obey a non-trivial lattice equation®. This
result proves the RS conjecture for the broadest class of algebras we have come
across, and was (not surprisingly) the strongest evidence of the truth of the RS
conjecture. As a Corollary to this result, we see that any finite algebra that gener-
ates a non-congruence modular variety that omits types 1 and 5 is residually large.
Here we again have more evidence that residual smallness is an uncommon property
of varieties. On this matter, McKenzie states in [20]: ’[The results from [11]] show

in a striking fashion just how restrictive the hypothesis of residual smallness is.’

The proof of Theorem 27 is beyond the scope of this paper.

3.9 Open Problems

The last twenty years has witnessed a large amount of work on residually small
varieties. We feel that there are still unanswered questions concerning such varieties.
In this final section we sample a few open problems and conjectures which may point

the way for future research.

First, we have noted that the restricted Quackenbush conjecture is still open.
This problem appears much more difficult than the unrestricted question. As we
mentioned earlier, a resolution of the restricted conjecture may require new methods

or techniques.

'8See Theorem 9.19 of (7]
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We restate a subset of the open problems as stated in [21].

1. Does there exist a finite algebra A with w < x£(A) < oo so that

i) |A| =37

ii) V(A) omits type 57
2. Does there exist a locally finite variety V' of finite type with (V) = w?

3. Does there exist a non-finitely based!? finite algebra A, of finite type, with

k(A) < w?

4. Does there exist a congruence distributive variety V of finite type with (V) =

w?

5. Suppose that x(V) = w and every subvariety of V is generated by a finite,

congruence distributive algebra. Is V congruence distributive?

The number ”3” is relevant in Problem 1 i). McKenzie’s counterexample in [21]
has cardinality 4, and (as McKenzie states in [21]) Taylor proved all two element
algebras satisfy the RS conjecture.

By our previous discussion of results from tame congruence theory, type 1 and
5 algebras would be possible culprits to violate the RS conjecture. In [21], the
counterexample admits type 5. Therefore, an algebra answering Problem 1 ii)

affirmatively would admit type 1.

McKenzie expects that the answer to Problem 1 ii) is no. McKenzie believes

that the answer for Problem 3 is yes.

We present a problem that in some sense generalizes the RS conjecture.

19Gee Definition 4.1 of [3].
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Problem 1 For which n > w does it follow that:
(3.6) KA)2n—=K(A)= o
for an algebra A of cardinality < n?

McKenzie has shown that such a cardinal cannot be w. If we weaken the problem
by insisting that A be infinite, then we have shown in Chapter 1 that the strongly

inaccessible cardinals would satisfy condition 3.6 in Problem 1.

Another problem is the classification of all residually small varieties of groups??.
Apart from the commutator condition of [7], we know of no other intrinsic charac-

terization of such varieties.

?This problem was mentioned in [20].




Conclusion

A property of mathematical structures may be considered useful if it meets any one

of the following conditions?®!:

1. The property is nontrivial; that is to say, it does not hold in every structure.

2. Whether the property holds in a structure can be determined by some syn-

tactic or semantic criteria.

3. Consideration of the property may lead to new and unexpected results, or

even to new mathematical paradigms.

We claim that residual smallness meets the first two criteria, and is therefore,

a noteworthy property of varieties. Further, it may prove to satisfy the third.

Most varieties are not residually small; hence, residual smallness meets the first
of our criteria. On the basis of our previous exposition, it could be argued that

residual smallness is a rare property of varieties.

Throughout our discussion, we have noted many structural conditions for a
variety to be residual small: the condition for the variety of groups determined by

Ol’shanksii; Taylor’s eleven equivalent conditions for residual smallness; Freese and

21We make no claim that this list is exhaustive.

63




CHAPTER 3. THE QUACKENBUSH AND RS CONJECTURES 64

McKenzie’s commutator condition for congruence modular varieties; McKenzie’s

classification of residually small semigroups, and so on.

In answer to the last of our criteria — namely, whether consideration of residual
smallness has lead to the unexpected - the results are pending. We include a remark

of McKenzie from 1990 which looks hopefully toward the future.

. our interest in discovering whether the [RS] conjecture is valid for all
algebras remains strong. It seems to be a question that had the potential
of forcing us to dream of new things yet unseen. We should not like
to believe that all interesting varieties and phenomena of varieties have

already been discovered. [[20] p. 188]

Now, after the refutation of the RS conjecture, this remark may yet find jus-
tification. Our hope is that the final chapter on residually small varieties is still
unwritten, and echoing McKenzie, that our understanding of varieties will continue

to evolve in new and unforeseen directions.
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