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Abstract  

One of the most extensively researched real-world networks is the web graph. 
The web graph has vertices representing web pages, with edges corresponding to 
the links between pages. We describe some of the key properties of the web graph 
and propose models to simulate its evolution. We survey more recent work on 
geometric models, where nodes occupy some geometric space and edges are 
created via a mix of preferential attachment and geometric distance.     
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1. INTRODUCTION 

In the last decade, there has been an enormous amount of research surrounding a particular 

real-world network. The web graph, which we will denote by W, has vertices representing web pages, 

and edges representing the links between pages. Unlike abstract graphs W is an experimental, real-

world graph. The massive, evolving graph W has the following properties: it is a sparse, self-

organizing, small world, and power law network. The network W is not the only real-world graph with 

these properties. Many technological, social, biological networks have properties similar to those 

present in the web. For example, power laws have been observed in protein-protein interaction 

networks, and networks formed by scientific collaborators. For more details on properties of W and 

other self-organizing networks, the reader is directed to the survey [5] or the forthcoming book [6].  

In the next few subsections, we consider some the key properties observed in the web graph. 

We will discuss the order, power law degree distribution, and small world property of W. In Section 2 



 
we survey a few random graph models for the web graph. Our focus is on recent geometric models, 

which incorporate both randomness and geometric position of nodes to define adjacency. Owing to 

space restrictions, proofs are omitted (although references are given). 

 

1.1 The Order of the Web Graph 

 

Even a casual surf on the web reveals that there are an enormous number of web pages and 

links. As W is growing rapidly, it seems difficult to obtain an exact, current estimate of the number of 

web pages. Nevertheless, in 2005, [13] reported that the web graph had about 11.5 billion pages. A 

recent study of Hirate et al. [14] found 53.7 billion web pages, with 34.7 billion pages indexed by the 

search engine Google. 

 

1.2 Power Law Degree Distributions 

 

Arguably the most important property observed in W is its power-law degree distribution. 

Given an undirected graph G of order t and a non-negative integer k, we define  

Nk,t = |{x ∈V(G) : degG (x) = k}|. 

The degree distribution of G is the sequence (Nk,t : 0 ≤ k ≤ Δ(G)), where Δ(G) is the maximum degree 

of G. We say that the degree distribution of G follows a power law if for each degree k, 

β−k
t

N tk ~,  

for a fixed real constant β > 1.  Since W is a massive graph, we are more interested in an approximate 

rather than an exact value. In both real-world networks and graphs generated by theoretical models, the 

power law may only fit for a certain range of degrees, with discrepancies for small or large degree 

vertices. The graph W may clearly be viewed as either a directed or undirected graph. Observe that if G 

is directed graph, then we may discuss power laws for the in- and out-degree distributions in the 

obvious way. 

The empirical study of W began before the turn of the millennium. Based on their crawl of the 

domain of Notre Dame University, Albert, Barabási, and Jeong [2] claimed that the web graph 

exhibited a power law in-degree distribution, with β = 2.1. The exponent of β = 2.1 was further 

corroborated by a larger crawl of the entire web (including 200 million web pages) reported in Broder 
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et al. cite [7].  There was some evidence presented in both studies that the out-degree distribution 

follows a power law with [2] reporting β = 2.45 and [7] reporting β = 2.72. 

 

1.3  The Small World Property 

 

With technologies available such as the e-mail, and cell-phones, the world definitely feels like 

a smaller place. The term small world graphs was first introduced by social scientists Watts and 

Strogatz  [16] in their study of various real-world networks, such as the network of Hollywood movie 

actors.  The diameter of a graph is a well-known and easily defined global measure of distances in a 

graph. Small world graphs G of order t should satisfy  

diam(G) = Θ(log t). 

Despite this condition, data from [7] suggests that diam(W) > 900. In a real sense the diameter of W is 

infinite: simply create a web page p with no links, and ensure that no one knows about it. Then p is an 

isolated vertex in W! 

 

2. MODELS FOR W 

 

Pioneering work on random graphs was first done by Erdős and Rényi [8,9]. We begin by 

recalling the random graph G(n,p). We are given n vertices and a fixed real number parameter p in 

(0,1). For each of the  many distinct pairs of vertices, add an edge between them independently 

with probability p. The probability space G(n,p), in a certain sense, is static or off-line: the number of 

vertices is fixed. Although usually n is taken as very large, and the number of edges is viewed as being 

variable over time, the number of vertices in G(n,p) is off-line. Few techniques or models were 

available before the late 1990's for on-line random graph models. The degrees of vertices are 

binomially distributed. Hence, G(n,p) is not appropriate as a model of the web graph W (after all, the 

study of random graphs predates the inception of the internet by several decades). Nevertheless, 

random graphs supply the mathematical subtext for these new models, and many of the techniques 

used to analyze them are also useful for models of W. 

⎟⎟
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Over the last decade, a large number of rigorous models for the web graph W have been 

proposed. Such models deepen our understanding of the generative mechanisms driving the evolution 

of W, and provide insight into superficially unrelated properties observed in the web. 

 

2.1 Preferential Attachment Models 

 

Arguably the most important web graph models are ones incorporating some form of 

preferential attachment. The first evolving graph model explicitly designed to model W was given by 

Barabási, Albert [3]. The idea behind their model is an intuitively pleasing one: new vertices are more 

likely to join to existing vertices with high degree. In a slogan, the rich get richer. This model is now 

referred to as an example of a preferential attachment (or PA model). Barabási and Albert gave a 

heuristic description and analysis of their PA model (using mean field theory from physics), and 

concluded that it generates graphs whose in-degree distribution follows a power law with exponent β = 

3. Although their proof was not rigorous, their important work set the stage for most of the 

mathematics regarding the modelling W to come. A rigorous analysis of the PA model was first given 

in [4]. 

 

2.2 Geometric Models for the Web Graph 

 

While the web graph does not live in physical space, W may be viewed as occupying what 

might be called a topic-space, where pages are closer if they have common topics. For example, two 

news websites would be closer in topic space than a page on golf and one on graph theory. One 

approach to modelling W is to exploit a geometric model. In geometric random graph models, vertices 

are identified with points in some geometric space S, and edges are determined via a mixture of 

probabilistic rules and the position of vertices in S. Such models have been extensively studied; see the 

book [15] for more about them. We consider two models for the web graph, recently proposed in [1] 

and [11]. 

An interesting geometric model for the web graph was designed by Flaxman, Frieze, and Vera 

(see [11] and also [10,12]). In their PA model, new vertices may only join to vertices within a certain 

distance apart, and edges are then chosen by preferential attachment. We give an informal description 

of the model. The graphs they generate occupy the surface of a 3-dimensional sphere S with surface 



 
area 1. For a point u on S and r > 0,  we consider the spherical cap BBr(u)  of radius r centred at u, 

defined as 

{x ε  S: ||x-u|| ≤ r}, 

where || · || is the Euclidean norm in R3. Note that r is fixed, and we will let Ar be the area of BBr(u). The 

parameters of the model consist of a positive integer m, a positive real number r, and α ≥ 0 which 

controls the number of loops. Define G0 to be K1. To define Gt+1, choose a vertex xt+1 uniformly at 

random (u.a.r.) from S, and add it to Gt+1. As in any PA model neighbours of xt+1 are chosen via 

preferential attachment, but with the additional restriction that they are chosen only from within 

BrB (xt+1). 

This mix of preferential attachment and geometry leads to a power law, as described in the 

following theorem. The probability of an event A in a probability space is denoted by Pr(A), while the 

expected value of a random variable X is written E(X). 

 

Theorem 2.1. [11]  Assume that 0 < β < 1/2 and α  > 2 are constants and r ~ tβ - 1/2log t. 

1. If m is sufficiently large, then there exist constants c, γ, ε >0 such that for all k = k(t) 

≥  m,  

),(
N 1)1(tk, γα −+− +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
tOkC

t kE  

where Ck = Ck(m,α) tends to a constant C(m,α) depending only on m and α as k → ∞ . 

 

2. The random variable Nk,t concentrates around its expected value via the following 

inequality: 

        ).exp(
NN 1tk,tk, εγ tt
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In addition to the power law degree distribution exhibited by Theorem 2.1, the graphs Gt 

provably low diameter verifying one part of the small world property. An event holds asymptotically 

almost surely (a.a.s.) in a probability space if the probability it is satisfied tends to 1 as t → ∞. 

 

Theorem 2.2. [11] If α ≥ 0, r ≥ t-1/2log t, and m ≥ Klog t where K is sufficiently large, then 

a.a.s. Gt has diameter O(log t/r). 
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A novel feature of the model is that it has sparse cuts, which is a property observed in W. 

Theorem 2.3. [11] If α ≥ 0, and r = o(1), then a.a.s. V(Gt) can be partitioned into sets T1 and T2 

so that |Ti | ~ t/2, and there are at most rtmπ4  edges between T1 and T2. 

 

The Spatial Preferred Attachment (SPA) geometric web graph model [1] was proposed as an 

alternative to the geometric models of [10,11,12]. In the SPA model, each vertex is placed in space and 

surrounded by an influence region. The area of the influence region is determined by the in-degree of 

the vertex. Unlike the models of [10,11,12], in each time-step all regions decrease in area as a function 

of time. A new vertex v can only link to an existing vertex u if v falls within the influence region of u. 

If v falls within the influence region of u, then v will link to u with probability p. Hence, the SPA 

model utilizes the preferential attachment principle, but only implicitly: vertices with high in-degree 

have a large region of influence, and therefore are more likely to attract new links. 

We emphasize two features that distinguish the SPA model from previous models. First, a 

new vertex can choose its links purely based on local information. The influence region of a vertex can 

be seen as the region where a web page is visible: only web pages that are close enough (in topic) to 

fall within the influence region will be aware of the give page, and thus have a possibility to link to it. 

Further, a new vertex links independently to each vertex visible to it. It follows that the new vertex 

needs no knowledge of the invisible part of the graph (such as in-degree of other vertices, or total 

number of vertices or links) to determine its neighbourhood. Second, since a new vertex links to each 

visible vertex independently, the out-degree is not constant. 

We now give the formal definition of the SPA model. Let S be the surface of the sphere of 

area 1 in R3. The SPA model has parameters A1, A2, p ≥ 0 such that p in (0,1], A1 ≤ 1, and A2 ≥ 0. Let  

Gt = (Vt,Et), and Vt  S. Let d⊆ -(v,t) be the in-degree of vertex v in Gt. We define the influence region 

of vertex v at time t ≥ 1, written R(v,t), to be the cap around v with area 

t
At)(v,dA  |t)R(v,| 2

-
1 +

= , 

or R(v,t) = S if the right-hand-side is greater than 1. 

The random process begins at t = 0, with G0 equalling the empty graph, and we let G1 be K1. 

Time-step t, t ≥ 2, is defined to be the transition between Gt-1 and Gt. At the beginning of each time-

step t, a new vertex vt is chosen uniformly at random from S, and added to Vt-1 to create Vt. Next, 

independently, for each vertex u in Vt-1 such that vt in R(u,t-1), a directed edge (vt,u) is created with 

probability p. Thus, the probability that a link (vt,u) is added in time-step t equals p|R(u,t-1)|.  
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The model easily generalizes to other metric spaces. See Figure 2.1 for a drawing and degree 

distribution (as a log-log plot, and so revealing the characteristic straight line fit of a power law) of a 

graph generated by a simulation of the SPA model. In the simulation, vertices were drawn on the unit 

square with 5,000 vertices, p = A1  = 1, and A2 = 0. 
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Fig 2.1 A simulation of the SPA model. 

 

For an integer n ≥ 0, define  
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The main result of [1] is that with high probability a graph Gt generated by the SPA model has an in-

degree distribution that follows a power law in-degree distribution with exponent 1+1/(pA1), with 

concentration up to . If pAfkt 1 = 10/11, then the power law in-degree exponent is 2.1, the same as 

observed in the web graph (as described in Section 1.2 above).  

 

 

Theorem 2.4. [1] Fix p in (0,1]. Then for any k ≥ 0, 

E(Nk,t) = ckt(1+o(1)), 

where 

c0 = 1/(1+pA2), 

and for 1≤ k ≤ t, 
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For k = 0, … , kf,  a.a.s. 

E(Nk,t)= ckt(1+o(1)). 

 

Since it can be shown that  

))1(1())/(11( 1 ockc pA
k += +−  

for some constant c, Theorem 2.4 shows that for large k, the proportion 
t

tk,N follows a power law with 

exponent 1+1/(pA1), with concentration for all values of k up to kf.  

The proof of Theorem 2.4 in [1] follows by using a relaxation of the well-known Azuma-

Hoeffding martingale techniques. The random variables Nk,t do not a priori satisfy the c-Lipschitz 

condition where c is positive integer: it is possible that a new node may fall into many overlapping 

regions of influence.  It is shown in [1] that the deviation from the c-Lipschitz condition occurs with 

exponentially small probability, which is enough to guarantee concentration around the expectation of 

Nk,t (for values of k up to kf). 

With positive probability a new node will land in an area of S not covered by any influence 

regions, and thus have out-degree zero. Therefore, the underlying undirected graph of Gt is not 

connected. In fact, we expect that for the majority of distinct pairs u,v, there will not be a directed path 

from u to v. Since this is a property also observed in the web graph, it does not detract from the SPA 

model, but rather suggests that we should consider another parameter other than diameter to indicate a 

small world property. Thus, we focus on the (geometric) distance, in S, spanned by the links. 

For a pair of points u,v in S, let L(u,v) be the length of the shortest curve embedded in the 

surface of S that connects u and v. Define 

∑
∈

=
tit Evv

itt vvLL
),(

).,(  

That is, Lt is the sum of the lengths of new edges added at time t in the SPA model. Note that Lt is a 

continuous random variable. 

 

Theorem 2.5. [1]  Suppose that pA1> 2/3. Then  
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Theorem 2.5 contrasts with the analogous result for graphs generated with a similar process to 

the SPA model, but where all influence regions have area d/t for d > 0 a constant. We call this a 

threshold model. In the threshold model, E(Lt) decreases much faster than for the SPA model with p 

large, such as when p > 2/3 and A1 = 1. For example, if pA1 = 1, then E(Lt) = O(1). We refer to this 

property of the SPA model as the geometric small world property. 

 

Theorem 2.6. [1] In the threshold model with areas of influence d/t, where d is a constant, 

there is a constant c so that 

.~)( 2/1−ctLtE  

 

It is likely that the maximum length of a directed path at time t in the SPA model is O(log t). 

This conjecture, along with an analysis of sparse cuts, is left for future work. 
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