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ABSTRACT. We consider homomorphism properties of a random
graph G(n,p), where p is a function of n. A core H is great if for
all e € E(H), there is some homomorphism from H —e to H that is
not onto. Great cores arise in the study of uniquely H-colourable
graphs, where two inequivalent definitions arise for general cores
H. For a large range of p, we prove that with probability tending
to 1l asn — 0o, G € G(n,p) is a core that is not great. Further,
we give a construction of infinitely many non-great cores where the
two definitions of uniquely H-colourable coincide.

1. INTRODUCTION

In recent years there has been much research interest in homomor-
phisms of graphs. The book [3] is both an excellent reference for back-
ground on graph homomorphism theory, and a record of the growing
corpus of work on the subject. In the present article, our focus is
on uniquely H-colourable graphs, where H is a finite core (that is,
every homomorphism from H to itself is onto, and so is an automor-
phism). There are two natural definitions of a uniquely H-colourable
graph. Following [1, 6, 7], a graph G is uniquely H-colourable if G is
H-colourable so that every homomorphism from G to H is onto, and
for all homomorphisms f, h from G to H, there is an automorphism g
of H so that f = gh. On the other hand, a graph G is weakly uniquely
H-colourable if a similar definition holds, but with ¢ only required
to be a bijection from V' (H) to itself. The class of weakly uniquely
H-colourable graphs is written Cy,(H). For many familiar cores H
such as cliques, odd cycles, odd wheels, and the Petersen graph, the
two notions of uniquely H-colourable coincide. However, as discussed
in [1], there are infinitely many examples of graphs H where the class
of weakly uniquely H-colourable graphs strictly contains the class of
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uniquely H-colourable graphs. Following the notation in [1], a core H
is good if the two notions uniquely colourable coincide; H is great if for
all e € E(H), there is some homomorphism from H — e to H that is
not onto (or equivalently, not injective).

In [1], it was proved that every great core is good, but the converse
fails for the Petersen graph. Great cores have the following algebraic
characterization related to the first homomorphism theorem. We first
give some notation. Define Hom(H, G) to be the set of homomorphisms
from H into G. Given f € Hom(G, H), define ker(f) = {(z,y) €
V(G) x V(G) : f(z) = f(y)}. Then ker(f) is an equivalence relation
whose equivalence classes, called colour blocks, are independent sets
partitioning V(G). If f € Hom(G, H) is surjective, then the quotient
graph G/ ker(f) has vertices the colour blocks of ker(f), and two colour
blocks B and C' are joined if and only if there is some vertex in B joined
to some vertex in C. The natural map ny : V(G/ker(f)) — V(H)
defined by n¢(f~*(z)) = x is a well-defined homomorphism. The class
Cwu(H) satisfies the first homomorphism theorem if for all G € C,,(H)
and all f: Hom(G, H), the homomorphism 7 : V(G/ker(f)) — V(H)

is an isomorphism.

Theorem 1. [1] Let H be a core graph.

(1) The class Cyu(H) satisfies the first homomorphism theorem if
and only if H is great.
(2) If H is great, then H is good.

Despite Theorem 1, the classification of which cores are great seems
difficult. A more tractable problem is the classification of great cores
restricted to random graphs. As proved in [3], with probability tending
to 1 as n tends to infinity G € G(n,1/2) is a core. Hence, a natural
problem is to determine which random graphs are great cores. This
problem applies more generally to random graphs G(n,p), where p is
a function of n.

We consider the problem of which G(n, p) are great with probability
tending to 1 as n — oo. Our first result is Theorem 2, which proves
that if n='/31log®n < p = p(n) < 1 —n""31og®n, then with probability
tending to 1 as n — oo, G € G(n,p) is a core that is not great. This
result is somewhat surprising, since most examples of well-known cores
are great. The fact that the random graph is a core in this range of p
generalizes the result for p = 1/2 proved in [3]. Our methods do not
determine the probability that G € G(n,1/2) is a good core. We leave
this as an open problem.

In the final section, we consider in Theorem 3 a new deterministic
construction of a large class of good cores that are not great. Theorem 3
indicates that the classification of the good cores is far from complete.
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All graphs in this article are finite, undirected, and simple. If G is
an induced subgraph of H, then we write G < H. Let Ng(x) be the
neighbour set of z in G. The image of a mapping f is written Im(f).
If Ais a set, then Sym(A) is the set of bijective maps from A onto
A. The set of automorphisms of G is denoted by Aut(G) (with the
identity automorphism written as idg). The set of endomorphisms of
G is End(G) = Hom(G, G). We write log z for the natural logarithm
of x.

2. ALMOST ALL GRAPHS ARE CORES THAT ARE NOT GREAT

An event holds asymptotically almost surely (a.a.s.) if it holds with
probability tending to 1 as n — oo, and holds with extreme probability
(w.e.p.) if it holds with probability at least 1 — exp(—©(log®n)) as
n — oo. We will use the stronger notion of w.e.p. in favour of the
more commonly used a.a.s., since it simplifies some of our proofs. If
we consider a polynomial number of events that each hold w.e.p., then
w.e.p. all events hold. To combine this notion with other asymptotic
notation such as O(-) and o(-), we follow the conventions in [5]. The
main result for this section is the following theorem.

Theorem 2. If n=Y3log’n < p < 1 —n"Y3log*n, then w.e.p. the
random graph G € G(n,p) is a core that is not great.

To prove Theorem 2, following the proof of [3], we need several prop-
erties of G(n,p) as described in Lemma 1 below. Some of the proper-
ties (namely, properties a), b), and ¢)) are weaker versions of known
properties of G(n,p). Since the proofs are short we include them for
completeness.

Lemma 1. Ifp = p(n) > n~3log®n, then w.c.p. G € G(n,p) has the
following properties. Let H be either G or G — e, where e is a fixed
edge of G.

(a) The degree of every vertex of H is equal to

pn + O(y/pnlogn) = pn(1 + o(1)).
(b) Every pair of distinct vertices of H have

p’n+ O(/p*nlogn) = p*n(l + o(1)),

many common neighbours.

(¢) All independents sets of H have less than n'/3 vertices.

(d) Each set of k vertices, where k > ko = ko(n) = 0.5n'/3log?n,
induces a subgraph in H with p(’;) (1+O(log™ "' n)) edges.

(e) In each set of k disjoint pairs of vertices (v;,w;), i =1,2,...,k,
where k > ko = ko(n) = 0.5n'/3log® n, there are
(1-(1- p)4)(§)(1 + O(log™ " n)) pairs (i,j) such that at least
one of v;vj, viw;, vyw;, w;w; 1s an edge of H.
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To prove that a property is satisfied by G € G(n,p) w.e.p., we
use the following approach which we illustrate with an example. Let
Y be the number of vertices with degree either strictly greater than
pn + y/nplogn or strictly less than pn — /nplogn. We show that EY
tends to zero faster than the function exp(—©(log®n)) as n — oco. By
Markov’s inequality

P(Y=0)=1-PY >1)>1-EY > 1 —exp(—0(log®n)).

We employ the well-known Chernoff inequalities. For a binomially
distributed random variable X € Bi(n,p) with EX = np

1
(2.1) P(|X —EX| > eEX) < 2exp (—5521[2)() :

where € < 3/2. See, for example, [4].

Proof. The proofs for H equalling G or G — e are similar; we just
give the proofs for G — e. For part a), fix any vertex v of G — e.
Then Edeg(v) = p(n — 1) — O(1) = pn — O(1). Using (2.1) with
e = 0.5logn//Edeg(v), we have that

P(| deg(v) — Edeg(v)| > eE deg(v)) < exp (—Q(log?n)) .

It follows that the expected number of vertices of degree greater than
pn + y/pnlogn or of degree smaller than pn — /nplogn is less than
nexp (—Q(log”n)) = exp (—Q(log”n)). Thus, w.e.p. all vertices have
degree pn 4+ O(,/pnlogn) by Markov’s inequality.

For b), let vy,vy, v1 # v9 be any two vertices of G — e. The ex-
pected number of common neighbours of v; and vy in G — e is equal
to EX = p*(n —2) — O(1) = p*n — O(1). Now, using (2.1) with ¢ =
0.5logn/vVEX, we see that w.e.p. | X — p?n| < \/]%log n. Thus, the
expected number of pairs of vertices having more than p*n+ \/an logn,

or less than p?n — \/% logn common neighbours is bounded from
above by O(n?)exp (—Q(log’n)) = exp (—Q(log”n)) which finishes
the proof of b).

For ¢), note first that it is enough to show that w.e.p. there is no
independent set of order kg = n'/3. Let K = {vy,vy, ..., vy} be any set
of kg vertices of G—e. The probability that set K forms an independent
set is equal to (1 — p)(kQO)_O(l). So the expected number of independent
sets of order kg is bounded from above by

k
(n) (1 _ p>(k20)—0(1) < (%) ’ (1 o n—1/3 10g2 n)%k%(l—i—o(l))
0

ko
13 (2 1 2
~ exp|n glogn+1—§(1+o(1))10g n

< exp (—Q(log’n)),
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and the assertion follows from Markov’s inequality.

For d), let k > 0.5n'3log® n. The expected number of edges among
any set of k vertices of G isequal to EY = p(g) —O(1). Thus, using (2.1)
with £ = 0.5/ log n, the expected number of graphs induced by the sets
of k vertices containing more than EY (1 + ¢), or less than EY (1 — ¢)
edges is bounded from above by

2(Z> exp (_p—(‘;‘) — 0(1)> < 2 <%)kexp (—0.04kn /%)

12log*n

= 2exp (k:(logn +1—logk — 0.04kn_l/3))
< ek
Thus, the expected number of graphs induced by the sets of £ vertices
containing more than p(g)(l + 2¢), or less than p(g)(l — 2¢) edges is
bounded from above by exp(—k) as well.

Finally, the expected number of graphs induced by the sets of £ >
ko(n) vertices containing more than p(%)(1+ 2¢), or less than p(g) (1—
2¢) edges is bounded from above by

n o 7’{0
—k -k _ € B 2
E e < E e =1 e < exp(—Q(log”n)),

k=ko k=ko

which completes the proof of d). Property e) can be proved using a
similar approach used in the proof of property d), and so we omit the
proof. O

Proof of Theorem 2. For a contradiction, suppose that G is great. Then
for all e € E(V), there is a homomorphism f € Hom(G — e, G) such
that f(z) = f(y) = z for some distinct vertices z,y € V(G). So the
edges incident with vertices z or y in G — e must be mapped to edges
incident with z in G; that is, f(A) C B where A = Ng_.(x) UNg_(y),

Note that, using properties a) and b) from Lemma 1 in the case
H=G—-e, wenp.

Al = 2pn(1+0(1)) — p*n(1 4 0(1)) = p(2 — p)n(1 + o(1))
f(A) < |B] = pn(1+o(1)).
Thus, w.e.p.
(2.2) Al = |f(A)] = p(Ll—pn(l+o(1) > (1+o0(1))n*?log*n,

since the function h(p) = p(1 — p) is minimized for p = n=/3log”n (or
p=1—n""31og’n).

For a vertex v € V(G), the set f~!(v) is an independent set in G —e.
So w.e.p. | f~1(v)| < n'/? for any vertex of G by property c¢) in Lemma 1.
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Thus, using this fact and (2.2), it follows that w.e.p. there are
Al = [FA] 1 s

k> > g
vertices vy, vg,...,vx € f(A) such that |f~'(v;)] > 2. To see this,
consider placing |A| balls (vertices of A) in |f(A)| bins (sets f~1(v),
where v € f(A)). Each bin contains at least one ball, and so there
are |A| — | f(A)| remaining balls. Since at most n'/? balls may go into
any one bin, there are at least W;J# many bins which have two or
more balls. According to property e) from Lemma 1, we have that
w.e.p. there are at least (1 — (1 — ( ) (14 of edges each of which
span two distinct colour classes f Yw). As f is a homomorphism,
this gives (1 — (1 — p)*)(5)(1 4 o(1)) many edges among the vertices
U1, Ve, . .., V. Property d) from the lemma implies that w.e.p. there are
at most p(g)(l + 0(1)) such edges. This gives a contradiction since

(1=(1=p))(1+0(1)) = (4p+0(p*))(1+0(1)) = 4p(1+0(1)) > p(1+o(1)).

holds when p is tending to zero with n, and holds for p = O(1).

To prove that GG is w.e.p. a core, we may proceed in a similar way
in the proof above that GG is not great. For that we can use Lemma 1
with H = G. O

log®n

If p=1, then w.e.p. G € G(n,p) is a clique, and so is a great core.
However, we think that the conclusions of Theorem 2 hold for other
values of p = p(n). This direction will be further explored in the sequel.
Let §(G) and A(G) be the minimum and maximum degrees of vertices
of G, respectively. If §(G) < 1, or G has n vertices and G contains a
vertex of degree n — 2, then G is not a core. We think (although we
cannot prove it at present) that for any p = p(n) such that w.e.p. a
random graph G € G(n, p) satisfies 6(G) > 2 and A(G) < n—3, w.e.p.
G is a core that is not great.

3. A NEW CONSTRUCTION OF GOOD BUT NOT GREAT CORES

The Petersen graph, written P, is an example of a good but not
great core. The graph P was the only such example given in [1]. We
demonstrate that there are infinitely many good but not great cores
in this section. A nontrivial core H is fair if the following properties
hold.

(F1) The graph H is symmetric (that is vertex- and edge-transitive).

(F2) For alle € E(H), H — e is a core, and x(H) = x(H —e).

(F3) For all distinct e, f € E(H), the graph H — {e, f} formed by
deleting e and f from H admits a non-onto homomorphism into
H.
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It can be shown that P is fair. For two graphs G and H, G + H is
the graph formed by adding all edges between disjoint copies of GG and
H. By the results of [2], if G and H are cores, then so is G + H.

Let G and H be graphs and let f € Hom(G, H) be onto. If G
is weakly uniquely H-colourable, then 7y is a bijection and G/ ker(f)
is isomorphic to a spanning subgraph of H. The main result of this
section is the following.

Theorem 3. If H is a fair core, then each of H and the cores H+ K,
forn >1, are good but not great.

Proof. To show that H is not great, we argue by contradiction. For a
fixed e = ab € E(H) assume that the homomorphism f: H —e — H
is not onto. We find a non-onto endomorphism of H — e, contradicting
(F2). Fix x ¢ Im(f). By vertex-transitivity there is an automorphism
g of H so that g(x) = a. Thena & Im(gf). Hence, gf : H—e — H has
an image which induces a subgraph A of H —a. Note that A < H —¢;
let ¢ be the inclusion homomorphism from A into H — e. Then igf is
a non-onto homomorphism of H — e into H — e.

We show that H is good. Let G be a weakly uniquely H-colourable
graph, and let f,h € Hom(G, H). Then there is a g € Sym(V (H)) so
that f = gh. We know that G/ ker(f) = G/ ker(h).

Case 1) ny or ny, is an isomorphism.

We consider when ny, is an isomorphism; the case for n; is similar and
so is omitted. We show g € Aut(H); as H is a core, it is enough to show
that ¢ € End(H). To see this, fix xy € E(H). Then by assumption
there are a € h™'(z) and b € h™'(y) so that ab € E(G). Hence,
fla)f(b) € E(H), as f is a homomorphism, but f(a) = g(h(a)) = g(x)
and f(b) = g(y). But then g(x)g(y) € E(H).

Case 2) G/ ker(f) is isomorphic via 1y to H —e, for some e € E(H),
and G/ ker(h) is isomorphic via n, to H — ¢/, for some ¢’ € E(H).

As H is edge-transitive by (F1) there is an o« € Aut(H) so that
e = «a(€); in particular, « is an isomorphism from H — ¢’ to H — e.
The following facts hold.

(1) f,ah € Hom(G, H — e) and ah is onto H — e;
(2) ker(ah) = ker(h) = ker(f).

By fact (2) there is a ¢’ € Sym(V(H — e)) so that

(3.1) f=dah.

We first show that ¢’ € Aut(H —e). As H — e is a core by (F2), it
is enough to show that ¢’ € End(H — e). Let vy € F(H — ¢e). Then
a ' (r)a"(y) € E(H —¢€') as « is an isomorphism. But then by the
hypotheses of Case 2, h'a ' (z)hta~'(y) € E(G/ker(h)) which is
equivalent to (ah)™'(z)(ah) " (y) € E(G/ker(h)). Let a € (ah)™!(x)
and b € (ah)™!(y) be chosen so that ab € E(G). As f € Hom(G, H—e),
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fla)f(b) € E(H —e¢). By (3.1) f(a) = ¢'(x), f(b) = ¢'(y) so that
9'(z)g'(y) € E(H —e).

We now claim that ¢’ € Aut(H). Let e = ab. As ¢’ € Aut(H — e),
g’ preserves degrees. Since H is vertex-transitive, it is regular say
of degree d. But then a and b are the only vertices of H — e with
degree d — 1. Hence, in H — e, {¢'(a), ¢ (b)} = {a,b}. But then ¢
preserves edges in H: the edge ab is preserved, and edges of the form
xy, where {x,y} # {a,b}, are preserved (as ¢ € Aut(H — ¢)). Hence,
¢ € End(H) = Aut(H). But then f = (¢'a)h, where ¢'a € Aut(H).

Case 3) H/ ker(f) is isomorphic to H — S, where S is a set of edges,
|S| > 2.

In this case, G is not even weakly uniquely H-colourable. To see this,
note that by assumption, f € Hom(G, H —5). By (F3), there is a non-
surjective homomorphism &k : H — S — H. But then kf € Hom(G, H)
is non-surjective. This contradiction finishes the proof that H is good.

Fix n > 1. We show that J = H + K, is good but not great. To see
that J is not great, since H is not great, there is an edge e = ab € E(H)
so that each element of Hom(H —e, H) is onto. Fix f € Hom(J —e, J);
we show f is onto. To the contrary, assume that there is an = &
Im(f). If x € V(H), then we use the vertex-transitivity of H to find
g € Aut(H) so that g(x) = a. Note that ¢’ = (gUidk,) € Aut(J)
and a € I'm(¢'f). Now using an argument parallel to the one which
showed that H is not great, we can find an endomorphism of J — e
which is not onto, contradicting that J — e is a core by (F2) (note that
J—e=(H—-e)+ K,). lf v € V(K,), then f is a homomorphism of
J—einto H+K,,_;. But then x(H—e)+n = x(J—e) < x(H+K,—1) =
X(H) +n — 1, contradicting that x(H — e) = x(H) (by (F2)).

To show J is good, we use the same case analysis as in the proof
that H is good. We use the fact that if g € Aut(H) then (g Uidk,) €
Aut(J).

Case 1 is similar to Case 1 for H. In Case 2 the first subcase is if e or
¢’ are not in H (we use the notation as in the argument above that H is
good). Then we can find a non-surjective homomorphism from G into
J, which contradicts that G is weakly uniquely J-colourable. (Observe
that if we delete an edge between H and K, or in K, the resulting
graph is not a core.) The second subcase occurs when e, e’ € E(H).
This subcase is related to the argument for H. Define a € Aut(H) as
before, and let o = (o Uidg,) € Aut(J). Then o’ is an isomorphism
from J —¢€' to J —e. Thereis a ¢ € Sym(V(J —e)) so that f = ¢g'a’h.
The same argument as before shows that ¢’ € Aut(J — e). We argue
that ¢ € Aut(J). Recall that H is d-regular, so d < |V(H)| — 1,
and if d = |V(H)| — 1 then H would be a complete graph, which is
impossible since no complete graph is fair. Therefore, d < |V(H)| — 1.
If e = ab, then deg(a) = deg(b) = d—1+n. If 2 € V(H)\{a,b},
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then deg(z) = d+n. If y € V(K,), then deg(y) = [V(H)|+n—-1 >
d—1-+n. Hence, a, b are the only vertices of J — e of degree d — 1+ n,
so {¢'(a),g'(b)} = {a,b}. The rest of the argument now runs parallel
to the argument in Case 2 in the proof that H is good. Case 3 fails in
a similar fashion to the first subcase of Case 2 and so is omitted. [J

As P is fair, by Theorem 3, each of the graphs P + K, are good but
not great cores. Theorem 3 helps demonstrate that the classification
of the good cores is far from complete. For example, we do not know
if the Kneser graphs are good.
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