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Abstract

Domination parameters in random graphs G(n, p), where p is a fixed
real number in (0, 1), are investigated. We show that with probability
tending to 1 as n → ∞, the total and independent domination numbers
concentrate on the domination number of G(n, p).
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1. Introduction

Domination is a central topic in graph theory, with a number of applica-
tions in computer science and engineering. A set S of vertices in a graph G
is a dominating set of G if each vertex not in S is joined to some vertex of S.
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The domination number γ(G) is the minimum cardinality of a dominating
set of G. The concentration of the domination number of random graphs
G(n, p) was investigated in [8]. Other contributions to domination in ran-
dom graph theory include [2, 6, 7]. For background on random graphs and
domination, the reader is directed to [1, 5] and [3, 4], respectively. We say
that an event holds asymptotically almost surely (a.a.s.) if the probability
that it holds tends to 1 as n tends to infinity. All logarithms are in base e
unless otherwise stated, and we use the notation Ln = log1/(1−p) n.

Theorem 1 ([8]). For p ∈ (0, 1) fixed, a.a.s. γ(G(n, p)) equals

bLn − L((Ln)(log n))c + 1 or bLn − L((Ln)(log n))c + 2.

Despite the fact that deterministic graphs of order n may have domination
number equalling Θ(n) (such as a path Pn with γ(Pn) = dn/3e), Theo-
rem 1 demonstrates that a.a.s. G(n, p) has domination number equalling
(1 + o(1))Ln = Θ(log n).

A set S is said to be an independent dominating set of G if S is both
an independent set and a dominating set of G (that is, S is a maximal
independent set). A total dominating set S in a graph G is a subset of V (G)
satisfying that every v ∈ V (G) is joined to at least one vertex in S. The
independent domination number of G, written γi(G), is the minimum order
of an independent dominating set of G; the total domination number, written
γt(G), is defined analogously. It is straightforward to see that γ(G) ≤ γi(G)
and γ(G) ≤ γt(G). However, the domination number may be of much smaller
order than either the independent or total domination numbers; see for
example, [3, 4]. As proved in [9], there are cubic graphs where the difference
between γi and γ is Θ(n).

Our goal in this note is to demonstrate that in G(n, p) with p fixed,
asymptotically the independent and total domination numbers concentrate
on (1 + o(1))Ln. In particular, we prove the following theorems.

Theorem 2. A.a.s. γt(G(n, p)) equals

bLn − L((Ln)(log n))c + 1 or bLn − L((Ln)(log n))c + 2.

Theorem 3. A.a.s. we have that

bLn − L((Ln)(log n))c + 1 ≤ γi(G(n, p)) ≤ bLnc.
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As the proofs of the theorems are technical—though elementary—we present
them in the next section. For both proofs, we compute the asymptotic
expected value of each domination parameter, and then analyze its variance.
The second moment method (see Chapter 4 of [1], for example) completes
the proofs.

All graphs we consider are finite, undirected, and simple. If A is an
event in a probability space, then we write P(A) for the probability of A in
the space. We use the notation E(X) and V ar(X) for the expected value
and variance of a random variable X on G(n, p), respectively. Throughout,
n is a positive integer, all asymptotics are as n → ∞, and p ∈ (0, 1) is a
fixed real number.

2. Proofs of Theorems 2 and 3

The proofs are presented in the following two subsections. We note the
following facts from [8]. For r ≥ 1, let Xr be the number of dominating sets
of size r. Fix an r-set S1. Denote by S(j) the set of r-sets which intersect
S1 in j elements. Let I1 and Ij be indicator random variables, where the
events I1 = 1 and Ij = 1 represent that S1 and Sj ∈ S(j) are dominating
sets, respectively. Let

A =

(

n

r

) r−1
∑

j=0

(

r

j

)(

n − r

r − j

)

E(I1I
j).

Lemma 4 ([8]). The random variable Xr satisfies the following properties.

(1) E(Xr) =
(n

r

)

(1 − (1 − p)r)n−r.

(2) For r ≥ bLn−L((Ln)(log n))c+2, we have that E (Xr) → ∞ as n → ∞.

(3) For r ≥ bLn − L((Ln)(log n))c + 2,

A ≤ E
2(Xr)

(

1 + 2r(1 − p)r −
r2

n

)

(1 + o(1)) + rg(1)

(

n

r

)

,

where

(2.1) g(1) =
2rnr−1

(r − 1)!
exp

(

n(1 − p)2r−1 − 2(1 − p)r
)

.
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2.1. Proof of Theorem 2

For r a positive integer, the random variable X t
r denotes the number of

total dominating sets of size r. By Chebyshev’s inequality, the proof of
the theorem will follow once we show that E(X t

r) → ∞ as n → ∞, and
V ar(Xt

r) = o(E2(Xt
r)). (See, for example, Section 4.3 of [1].)

Lemma 5. If r = bLn − L((Ln)(log n))c + 2, then

E(Xt
r) =

(

n

r

)

(1 − (1 − p)r)n−r(1 − (1 − p)r−1)r(1 + o(1)).

Proof. For 1 ≤ j ≤
(n

r

)

, denote by Ej the event that the subgraph induced
by a given r-set Sj has no isolated vertices. We have that

E(Xt
r) =

(

n

r

)

(1 − (1 − p)r)n−r
P(Ej).

It is not hard to show that for all j, P(Ej) ≥ 1 − r(1 − p)r−1, and so
limn→∞ P(Ej) = 1. The proof follows since for r = bLn−L((Ln)(log n))c+2,

lim
n→∞

(1 − (1 − p)r−1)r = 1.

We next show that for a certain value of r, the expected value of X t
r con-

centrates on the expected value of Xr.

Lemma 6. If r = bLn−L((Ln)(log n))c+2, then E(X t
r) = (1+o(1))E(Xr).

Proof. By Lemmas 4 and 5, we have that

E(Xt
r)

E(Xr)
= (1 − (1 − p)r−1)r(1 + o(1)).

Hence,

lim
n→∞

E(Xt
r)

E(Xr)
= lim

n→∞
(1 − (1 − p)r−1)r(1 + o(1)) = 1.

By Lemmas 4 and 6, the proof of the following lemma is immediate.

Lemma 7. If r = bLn−L((Ln)(log n))c + 2, then E(X t
r) → ∞ as n → ∞.
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We now analyze the variance of the random variable X t
r.

Lemma 8. If r = bLn − L((Ln)(log n))c + 2, then V ar(X t
r) = o(E2(Xt

r)).

Proof. For 1 ≤ j ≤
(

n
r

)

, let Ij be the corresponding indicator random
variables. Hence,

Xt
r =

(n

r)
∑

j=1

Ij.

By the linearity of expectation, we have that

(2.2)

E((Xt
r)2) =

(n

r)
∑

j=1

E

(

(

Ij
)2
)

+ 2

(n

r)
∑

j 6=i

E
(

IiIj
)

= E
(

Xt
r

)

+ 2

(n

r)
∑

j 6=i

E
(

IiIj
)

.

We fix an r-set S1. For 0 ≤ j ≤ r− 1, denote by S(j) the set of r-sets which
intersect S1 in j elements. Let I t

1 and Ijt be the indicator random variables,
where the events I t

1 = 1 and Ijt = 1 represent that S1 and Sj ∈ S(j) are
total dominating sets, respectively. Then

2

(n

r)
∑

j 6=i

E(I iIj) =

(

n

r

) r−1
∑

j=0

(

r

j

)(

n − r

r − j

)

E(It
1I

jt).

Together with (2.2), we obtain that

(2.3)
E((Xt

r)2) = E(Xt
r) +

(

n
r

)
∑r−1

j=0

(

r
j

)(

n−r
r−j

)

E(It
1I

jt)

= E
(

Xt
r

)

+ At,

where At =
(

n
r

)
∑r−1

j=0

(

r
j

)(

n−r
r−j

)

E(It
1I

jt). As each total dominating set is a

dominating set, At ≤ A. By Lemmas 4 and 6, we therefore have that

(2.4) At ≤ rg(1)

(

n

r

)

+ (1 + o(1))E2(Xt
r)

(

1 + 2r(1 − p)r −
r2

n

)

,

where g(1) is given in (2.1).
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By (2.3) and (2.4) we have that

(2.5)
V ar(Xt

r)

E2(Xt
r)

≤
1

E(Xt
r)

+ (1 + o(1))

(

2r(1 − p)r −
r2

n

)

+
rg(1)

(n
r

)

E2(Xt
r)

.

To show that V ar(X t
r) = o(E2(Xt

r)), it suffices by Lemma 7 to show that

rg(1)
(n

r

)

E2(Xt
r)

= o(1).

For sufficiently large n we have that

rg(1)
(n

r

)

E
2(Xt

r)
=

r × 2r nr−1

(r−1)! exp
(

n
(

(1 − p)2r−1 − 2(1 − p)r
))

(

n
r

) (

(1 − (1 − p)r)n−r (1 − (1 − p)r−1)r
)2 (1 + o(1))

≤
3r3

n

(

1 − 2(1 − p)r + (1 − p)2r−1
)n

(1 − (1 − p)r)2n−2r (1 − (1 − p)r−1)2r (1 + o(1))

≤
3r3

n

(

1+
p(1 − p)2r−1

(1 − (1 − p)r)2

)n−r(

1+
2p(1 − p)r−1

(1 − (1 − p)r−1)2

)r

(1 + o(1)),

where the first equality follows by (2.1) and since exp(x) ∼ 1 + x if x is
close to 0.

Since 1 + x ≤ exp(x) for x ≥ 0, we obtain that

rg(1)
(n

r

)

E2(Xt
r)

≤
3r3

n
exp

(

(n − r)p(1 − p)2r−1

(1 − (1 − p)r)2 +
2rp(1 − p)r−1

(1 − (1 − p)r−1)2

)

(1 + o(1))

≤
3r3

n
exp

(

(1 + o(1))p
(Ln)(log n))2

n

)

(1 + o(1)) = o(1),

as r = bLn − L((Ln)(log n))c + 2.

2.2. Proof of Theorem 3

We use the following lemma, whose proof is straightforward and so is omit-
ted. For r ≥ 1, let XI

r be the random variable which denotes the number of
independent dominating sets of size r.
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Lemma 9. (1) For all r ≥ 1

E(XI
r ) =

(

n

r

)

(1 − (1 − p)r)n−r(1 − p)(
r

2
).

(2) Let λ ∈ ( 1
2 , 1) be fixed. For bLnc+ 1 ≤ r ≤ b2λLnc, as n → ∞ we have

that E(XI
r ) → ∞.

Our final lemma estimates the variance of X I
r .

Lemma 10. Let p ∈ (0, 1) and λ ∈ ( 1
2 , 1) be fixed. For bLnc + 1 ≤ r ≤

b2λLnc,

V ar
(

XI
r

)

= E
2(XI

r )O

(

(log n)4

n1−λ

)

.

By Chebyshev’s inequality and Lemmas 9 and 10, we have that

P(γi(G) > r) = P(XI
r = 0) ≤ P(|XI

r − E(XI
r )| ≥ E(XI

r ))

≤
V ar(XI

r )

E2 (XI
r )

= o(1).

The assertion of Theorem 3 follows, therefore, once we prove Lemma 10.

Proof of Lemma 10. We denote by E((X I
r )2) the expectation of the

number of ordered pairs of independent domination sets of size r in G ∈
G(n, p). The expectation satisfies

(2.6)
E

(

(

XI
r

)2
)

=
∑

j

(

n

r

)(

r

j

)(

n − r

r − j

)

(1 − (1 − p)r)2(n−2r+j)

×
(

1 − (1 − p)r−j
)2(r−j)

(1 − p)2(
r

2
)−(j

2
).

The explanations for the terms in the equation (2.6) are as follows. The
vertices of the first independent dominating set S1 may be chosen in

(n
r

)

ways. The independent dominating sets S1 and S2 may have j elements
in common. These vertices may be chosen in

(r
j

)

ways. The rest of r − j

vertices of S2 may have to be chosen from V (G)\S1, which gives the
(n−r

r−j

)

term. Every vertex not in S1 ∪ S2 must be joined to one of S1 and one of
S2, and so we obtain the term (1− (1−p)r)2(n−2r+j). Every vertex in S1\S2
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must be joined to one of S2\S1, and every vertex in S2\S1 must be joined
to one of S1\S2, and so we have the term (1 − (1 − p)r−j)2(r−j). Both sets
S1 and S2 are independent, which supplies the last term.

Observe that (1 − p)r−j ≥ (1 − p)r. Hence, by (2.6) and Lemma 9 (1),
we have that

(2.7)

E

(

(

XI
r

)2
)

≤ E
2
(

XI
r

) 1
(n

r

)

(

(

n − r

r

)

+ r

(

n − r

r − 1

)

+
r
∑

j=2

(

r

j

)(

n − r

r − j

)

(1 − p)−(j

2
)

)

.

By the choice of r it follows that

(2.8)

1
(n

r

)

((

n − r

r

)

+ r

(

n − r

r − 1

))

=

(

1 −
r2

n

)(

1 + O

(

(log n)4

n2

))

+
r2

n
+ O

(

(log n)3

n2

)

= 1 + O

(

(log n)4

n2

)

,

and

(2.9)
1
(n

r

)

r
∑

j=2

(

r

j

)(

n − r

r − j

)

(1 − p)−(j

2
) = O

(

(log n)4

n1−λ

)

.

By (2.7), (2.8), and (2.9) the assertion follows.
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