
Mutually embeddable graphs and the Tree

Alternative conjecture

Anthony Bonato a

aDepartment of Mathematics
Wilfrid Laurier University

Waterloo, ON
Canada, N2L 3C5

Claude Tardif b

bDepartment of Mathematics and Computer Science
Royal Military College of Canada

PO Box 17000 Stn Forces, Kingston, ON
Canada, K7K 7B4

Abstract

We prove that if a rayless tree T is mutually embeddable and non-isomorphic with
another rayless tree, then T is mutually embeddable and non-isomorphic with in-
finitely many rayless trees. The proof relies on a fixed element theorem of Halin,
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every self-embedding. We state a conjecture that proposes an extension of our result
to all trees.
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1 Introduction

A graph G embeds in a graph H if G is isomorphic to an induced subgraph
of H. If G and H are graphs, then we write G ≤ H if G embeds in H. We
write G ∼ H if G ≤ H and H ≤ G, and we say that G and H are mutually
embeddable.

Mutually embeddable finite graphs are necessarily isomorphic, but this is no
longer the case for infinite graphs. For example, if the graph G is a disjoint
union of cliques, one of each finite cardinality, then G is mutually embeddable
with the graph consisting of a disjoint union of cliques with every even cardi-
nality. In [1], we give many examples of mutually embeddable non-isomorphic
graphs satisfying strong structural properties. On the other hand, the infinite
two-way path is not mutually embeddable with any graph not isomorphic to
it.

Define ME(G) to be the set of isomorphism types of graphs H so that G ∼ H.
Define the cardinal m(G) = |ME(G)|. Note that |ME(G)| ≤ 2|V (G)|, so that
m(G) is well-defined. For instance, with |V (G)| = ℵ0 (that is, the cardinality
of the set of natural numbers), there are examples of graphs where m(G) is
one of 1, ℵ0, or 2ℵ0 . See Figure 1. As first stated in [1], we do not know of

Fig. 1. Examples of countably infinite trees T with m(T ) = 1, ℵ0, and 2ℵ0 , respec-
tively.

any example with m(G) finite but larger than 1. The structure of such graphs
may prove to be intriguing if they exist.

If G and H are mutually embeddable, then composing an embedding of G
into H with an embedding of H into G gives a self-embedding of G. Thus,
the structure of the monoid of self-embeddings of G may help us to determine
the value of m(G). A tree is rayless if it does not embed an infinite path. For
example, each tree in Figure 1 is rayless. Self-embeddings, automorphisms,
and various fixed element properties of rayless trees have been well-studied; for
example, see [2–4,6]. Using such properties we are able to prove the following
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result for rayless trees, and we in fact conjecture an extension to all trees.

Theorem 1 If T is a rayless tree, then m(T ) is 1 or infinite.

Tree Alternative Conjecture. If T is a tree, then m(T ) is 1 or infinite.

The rest of the paper is organized as follows. In Section 2, we prove a version
of the Tree Alternative Conjecture for rooted rayless trees; see Theorem 2. In
the final section we use a fixed element theorem of Halin’s to derive Theorem 1
from Theorem 2. This suggests that if for all graphs G we have that m(G) = 1
or m(G) ≥ ℵ0, then a proof may use interesting fixed element properties of
graphs.

All the graphs we consider are undirected and simple. If graphs G and H are
isomorphic, then we write G ∼= H. We use the notation of [5] for graph theory.
We work within ZFC; no additional set-theoretic axioms will be assumed. The
set of natural numbers, considered as an ordinal, will be written as ω.

2 Mutually embeddability of rooted rayless trees

The class of rooted rayless trees consists of all pairs (T, r), where T is a rayless
tree and r is some fixed vertex of T called the root of T . An embedding of rooted
trees f : (T, r) → (T ′, r′) is an embedding of T into T ′ so that f(r) = r′; we
write (T, r) ≤ (T ′, r′). An isomorphism of rooted trees is a bijective embedding
of rooted trees. If there is an isomorphism of rooted trees (T, r) and (T ′, r′),
then we write (T, r) ∼= (T ′, r′). The cardinal m(T, r) is defined in the obvious
way. The main goal of this section is to prove the following theorem.

Theorem 2 If (T, r) is a rayless rooted tree, then m(T, r) is either 1 or is
infinite.

Before we give a proof of Theorem 2, we first introduce the following notation
that will simplify matters. Let {(Ti, ri) : i ∈ I} be a family of rayless rooted
trees, and let r be a vertex not in V (Ti), for all i ∈ I. Define

∑

i∈I

(Ti, ri)

to be the rooted tree (T, r) which has as its root the vertex r, so that r is
joined to each root ri of Ti, for all i ∈ I. We say that (T, r) is the sum of the
(Ti, ri), and each (Ti, ri) is a summand of (T, r).
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Note that if (T, r) is a rooted tree, then

(T, r) =
∑

i∈I

(Ti, ri),

where the summands Ti are the connected components of T − r, and ri is the
unique vertex of Ti joined to r. Further, this representation of (T, r) is unique,
up to a permutation of the summands. Clearly, (T, r) is rayless if and only if
each summand of (T, r) is rayless.

If
f :

∑

i∈I

(Ti, ri) →
∑

j∈J

(Tj, rj)

is an embedding, then f induces an injection from I into J , written f̂ , defined
so that if i ∈ I, f̂(i) is the unique j ∈ J such that f(Ti, ri) ≤ (Tj, rj). If f is

an isomorphism, then f̂ is a bijection.

We next prove two lemmas about rooted trees that will be used in the proof
of Theorem 2.

Lemma 1 Let
(T, r) =

∑

i∈I

(Ti, ri)

be a rooted tree such that for some k ∈ I, m(Tk, rk) = α ≥ ℵ0. Then m(T, r) ≥
α.

PROOF. Let
ME(Tk, rk) = {(Tk,n, rk,n) : n ∈ α}.

Define the rayless rooted tree

(Tn, r) =
∑

i∈I

(Xi, xi),

where

(Xi, xi) =





(Ti, ri) if (Ti, ri) � (Tk, rk);

(Tk,n, rk,n) if (Ti, ri) ∼ (Tk, rk).

Note that for all n ∈ α, we have (Tn, r) ∼ (T, r) since (Xi, xi) ∼ (Ti, ri) for
all i ∈ I. For m 6= n, (Tm, r) � (Tn, r), since (Tn, r) contains summands of the
form (Tk,n, rk,n) and (Tm, r) does not. Hence, the family {(Tn, r) : n ∈ α} is a
witness to m(T, r) ≥ α. 2

Lemma 2 Let
(T, r) =

∑

i∈I

(Ti, ri)
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be a rooted tree such that m(Ti, ri) = 1, for every i ∈ I. Then m(T, r) = 1 or
m(T, r) ≥ ℵ0.

PROOF. If m(T, r) = 1, then there is nothing to prove. Suppose for a con-
tradiction that 1 < m(T, r) < ℵ0, and let

(T ′, r′) =
∑

j∈J

(T ′
j , r

′
j)

be a rooted tree not isomorphic to (T, r) such that (T ′, r′) ∼ (T, r). Fix em-
beddings f : (T, r) → (T ′, r′), g : (T ′, r′) → (T, r), and consider the injections
f̂ : I → J , ĝ : J → I. We first prove the following claim.

Claim If for some j∗ ∈ J , the summand (T ′
j∗ , r

′
j∗) of (T ′, r′) is not isomorphic

as a rooted tree to any summand of (T, r), then m(T, r) ≥ ℵ0.

Proof of Claim. Let L = {li : i ∈ ω} be a fixed set disjoint from I. For an
integer n ≥ 1, define Ln = {l1, . . . , ln}, and let L0 = ∅. Define for n ∈ ω

(Sn, r) =
∑

i∈(I∪Ln)

(Xi, xi),

where (Xi, xi) = (Ti, ri) if i ∈ I, and (Xi, xi) = (T ′
j∗ , r

′
j∗) if i ∈ Ln. Then

(S0, r) = (T, r) and (Sn, r) ≤ (Sn+1, r) for all n ≥ 0. We show that (Sn+1, r) ≤
(Sn, r).

Let I ′ = {ik : k ∈ ω} be the subset of I defined by i0 = ĝ(j∗), and
im = ĝf̂(im−1) for m ≥ 1. If for some m > 0 we have that im = i0,
then g and f(gf)m−1 induce mutual embeddings between the non-isomorphic
rooted trees (T ′

j∗ , r
′
j∗) and (Tĝ(j∗), rĝ(j∗)), contradicting the hypothesis that

m(Tĝ(j∗), rĝ(j∗)) = 1. Thus, im 6= i0 for all m > 0, and since ĝf̂ : I → I is
injective, we have that im 6= im′ for all m 6= m′. Therefore, we can combine
the restriction of gf to ∑

i∈I′
(Ti, ri)

with the restriction of g to (Xln+1 , xln+1) = (T ′
j∗ , r

′
j∗), and the identity on the

remainder of (Sn+1, r) to obtain an embedding of (Sn+1, r) in (Sn, r). Thus,
we have that (Sn, r) ∼ (S0, r) = (T, r) for all n ≥ 0. Since (Sn, r) contains
exactly n summands isomorphic to (T ′

j∗ , r
′
j∗), the rooted trees (Sn, r), n ∈ ω

are pairwise non-isomorphic. The proof of the claim follows. 2

Consider the set {(Xk, xk) : k ∈ K} of isomorphism types of the rooted trees
(Ti, ri), and let p : I → K be the surjection defined by (Ti, ri) ∼= (Xp(i), xp(i)).
By the Claim, there is a map q : J → K such that (T ′

j , r
′
j)
∼= (Xq(j), xq(j)), for

all j ∈ J . Therefore, m(T ′
j , r

′
j) = 1, for all j ∈ J . If q were not surjective, then
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reversing the role of (T, r) and (T ′, r′), the Claim would give that

m(T, r) = m(T ′, r′) = ℵ0.

Thus, q is surjective since 1 < m(T, r) < ℵ0 by assumption.

We have that
(T, r) =

∑

i∈I

(Xp(i), xp(i))

and
(T ′, r′) =

∑

j∈J

(Xq(j), xq(j)).

Since these two rooted trees are not isomorphic, there exists some k ∈ K
such that |p−1(k)| 6= |q−1(k)|. Without loss of generality, we may assume that
|p−1(k)| < |q−1(k)|. Define

(T ′′, r) =
∑

i∈(I\p−1(k))

(Ti, ri).

We will show that (T ′′, r) ∼ (T, r).

Define
J0 = {j ∈ J : q(j) = k and p(ĝ(j)) 6= k}.

Since |p−1(k)| < |q−1(k)|, we have that J0 6= ∅. We define the sets I0 = ĝ(J0) ⊆
I and Im = ĝf̂(Im−1) ⊆ I for m ≥ 1. Let

I ′ =
⋃

i∈ω

Im.

By reasoning similar to that given in the proof of the Claim, we have that
Im ∩ Im′ = ∅, whenever m 6= m′. Sequences of composition of the maps f and
g demonstrate that (Xk, xk) ≤ (Ti, ri) whenever i ∈ I ′. Moreover for some m,
we have that ∣∣∣∣∣∣

⋃

0≤j≤m−1

Ij

∣∣∣∣∣∣
≥ |p−1(k)|.

Indeed if |p−1(k)| < ℵ0 we can put m = |p−1(k)|, and if |p−1(k)| ≥ ℵ0, then
since |q−1(k) \ J0| ≤ |p−1(k)|, we have |J0| = |q−1(k)| whence

|I0| = |J0| = |q−1(k)| > |p−1(k)|.

For this integer m, define
I ′′ =

⋃

0≤j≤m−1

Ij

and fix an injection φ : p−1(k) → I ′′. We may then combine embeddings
hi : (Ti, ri) → (Tφ(i), rφ(i)), where i ∈ p−1(k), with the restriction of (gf)m to

∑

i∈I′
(Ti, ri)
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and the identity on the remainder of (T, r) to define an embedding of (T, r) in
(T ′′, r). Since (T ′′, r) ≤ (T, r), we then have (T ′′, r) ∼ (T, r). However, since
(T, r) has summands isomorphic to (Xk, xk) and (T ′′, r) does not, the Claim
applied to (T ′′, r) gives that m(T, r) = m(T ′′, r) ≥ ℵ0, which contradicts our
assumption that m(T, r) < ℵ0. 2

With Lemmas 1 and 2 in hand, we now turn to the proof of Theorem 2.

PROOF OF THEOREM 2. Suppose for a contradiction that there exists a
rooted rayless tree (T, r) such that 1 < m(T, r) < ℵ0. By Lemma 1 and Lemma
2, there is some summand (T1, r1) of (T, r) satisfying m(T1, r1) ∈ (1,ℵ0). By
repeated application of Lemma 1 and Lemma 2, we may recursively choose a
sequence ((Ti, ri) : i ∈ ω), with (T0, r0) = (T, r), and where (Ti+1, ri+1) is a
summand of (Ti, ri) such that m(Ti+1, ri+1) ∈ (1,ℵ0). But then the path in T
beginning with r0 and whose remaining vertices are the ri constitutes a ray in
T , which is a contradiction. 2

In fact, it is straightforward to modify the argument to prove that for every
rooted tree (T, r) (not necessarily rayless), we have m(T, r) = 1 or m(T, r) ≥
ℵ0. In the next section, the absence of rays is used more explicitly in the
transition from rooted trees to general trees.

3 Mutually embeddability of rayless trees

Define a fixed vertex u of a graph G to be one with the property that for all
self-embeddings f of G, f(u) = u. Define a fixed edge uv of G to be one with
the property that for all self-embeddings of G, {f(u), f(v)} = {u, v}. The
following “fixed element” theorem was first proved by Halin [2], and will be
used in the proof of Theorem 1.

Theorem 3 If T is a rayless tree, then there is either a vertex or an edge
fixed by every self-embedding of T .

Note that the maps that we refer to as self-embeddings are referred to as
endomorphisms in [2].

PROOF OF THEOREM 1. Suppose that m(T ) ≥ 2. By Theorem 3, there
exists a fixed vertex u or a fixed edge e = uv of T . Consider the rooted tree
(T, u). We will use Theorem 2 and Theorem 3 to prove that in both cases we
have that:

(1) m(T, u) ≥ ℵ0.
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(2) If {(Ti, ui) : i ∈ ω} is a family of pairwise non-isomorphic rooted trees
mutually embeddable with (T, u), then {Ti : i ∈ ω} is a family of rayless
trees mutually embeddable with T , with the additional property that for
all i ∈ ω, there is at most one j ∈ ω such that Ti

∼= Tj.

Once items (1) and (2) are proven, it will follow that m(T ) is infinite, and our
proof of Theorem 1 will be concluded.

To prove item (1), we argue as follows. As m(t) ≥ 2, let T ′ be a rayless tree
that is non-isomorphic and mutually embeddable with T . Then there exists
embeddings f : T → T ′ and g : T ′ → T . If gf(u) = u, then f and g act
as mutual embeddings between the non-isomorphic rooted trees (T, u) and
(T ′, f(u)). Hence, m(T, u) ≥ ℵ0 by Theorem 2.

Otherwise, since gf is a self-embedding of T and gf(u) 6= u, we are dealing
with the case where uv is an edge fixed by all self-embeddings of T , where
gf(u) = v and gf(v) = u. Therefore, f and gfg act as mutual embeddings
between the two rooted trees (T, u) and (T ′, f(u)), which again implies that
m(T ) ≥ ℵ0.

We prove item (2) by contradiction, assuming that there are distinct i, j, k ∈ ω
such that there exist isomorphisms hij : Ti → Tj and hik : Ti → Tk. Since
(Ti, ui), (Tj, uj), and (Tk, uk) are mutually embeddable with (T, u), there exist
embeddings fi : T → Ti, gj : Tj → T , and gk : Tk → T such that

fi(u) = ui, gj(uj) = u, gk(uk) = u. (1)

See Figure 2.

T

T

T

Ti

j k

i

j k

ij ik

f

gg

h h

Fig. 2. Maps in the proof of Theorem 1.

Since (Ti, ui), (Tj, uj), and (Tk, uk) are pairwise non-isomorphic as rooted
trees, we have that hij(ui) 6= uj and hik(ui) 6= uk. This implies by (1) that
gjhijfi(u) 6= u, and that gkhikfi(u) 6= u. Therefore, we are in the case when uv
is a fixed edge of T , and both self-embeddings gjhijfi and gkhikfi interchange
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u and v. Hence,

gjhijfi(v) = u, gkhikfi(v) = u. (2)

Equations (1) and (2) imply that

hij(fi(v)) = gj
−1(u) = uj, hik(fi(v)) = gk

−1(u) = uk. (3)

Equations (1), (2), and (3) together imply that

hikhij
−1(uj) = uk.

Therefore, hikhij
−1 is an isomorphism from Tj to Tk which maps uj to uk,

contradicting the fact that (Tj, uj) and (Tk, uk) are non-isomorphic as rooted
trees. 2
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