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Abstract

We prove that if a rayless tree T' is mutually embeddable and non-isomorphic with
another rayless tree, then T is mutually embeddable and non-isomorphic with in-
finitely many rayless trees. The proof relies on a fixed element theorem of Halin,
which states that every rayless tree has either a vertex or an edge that is fixed by
every self-embedding. We state a conjecture that proposes an extension of our result
to all trees.
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1 Introduction

A graph G embeds in a graph H if G is isomorphic to an induced subgraph
of H. If G and H are graphs, then we write G < H if G embeds in H. We
write G ~ H if G < H and H < @, and we say that G and H are mutually
embeddable.

Mutually embeddable finite graphs are necessarily isomorphic, but this is no
longer the case for infinite graphs. For example, if the graph G is a disjoint
union of cliques, one of each finite cardinality, then G is mutually embeddable
with the graph consisting of a disjoint union of cliques with every even cardi-
nality. In [1], we give many examples of mutually embeddable non-isomorphic
graphs satisfying strong structural properties. On the other hand, the infinite
two-way path is not mutually embeddable with any graph not isomorphic to
it.

Define M E(G) to be the set of isomorphism types of graphs H so that G ~ H.
Define the cardinal m(G) = |M E(G)|. Note that |[M E(G)| < 2Vl so that
m(G) is well-defined. For instance, with |V (G)| = Ny (that is, the cardinality
of the set of natural numbers), there are examples of graphs where m(G) is
one of 1, Wy, or 2% See Figure 1. As first stated in [1], we do not know of
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Fig. 1. Examples of countably infinite trees T' with m(T) = 1, g, and 280, respec-
tively.

any example with m(G) finite but larger than 1. The structure of such graphs
may prove to be intriguing if they exist.

If G and H are mutually embeddable, then composing an embedding of G
into H with an embedding of H into G gives a self-embedding of G. Thus,
the structure of the monoid of self-embeddings of G may help us to determine
the value of m(G). A tree is rayless if it does not embed an infinite path. For
example, each tree in Figure 1 is rayless. Self-embeddings, automorphisms,
and various fixed element properties of rayless trees have been well-studied; for
example, see [2-4,6]. Using such properties we are able to prove the following



result for rayless trees, and we in fact conjecture an extension to all trees.

Theorem 1 If T is a rayless tree, then m(T) is 1 or infinite.
Tree Alternative Conjecture. If T is a tree, then m(7T') is 1 or infinite.

The rest of the paper is organized as follows. In Section 2, we prove a version
of the Tree Alternative Conjecture for rooted rayless trees; see Theorem 2. In
the final section we use a fixed element theorem of Halin’s to derive Theorem 1
from Theorem 2. This suggests that if for all graphs G we have that m(G) = 1
or m(G) > Ny, then a proof may use interesting fixed element properties of
graphs.

All the graphs we consider are undirected and simple. If graphs G and H are
isomorphic, then we write G = H. We use the notation of [5] for graph theory.
We work within ZFC; no additional set-theoretic axioms will be assumed. The
set of natural numbers, considered as an ordinal, will be written as w.

2 Mutually embeddability of rooted rayless trees

The class of rooted rayless trees consists of all pairs (7, 1), where T is a rayless
tree and r is some fixed vertex of T called the root of T'. An embedding of rooted
trees f: (T,r) — (T",r') is an embedding of T" into T" so that f(r) = r’; we
write (T, r) < (T',7"). An isomorphism of rooted trees is a bijective embedding
of rooted trees. If there is an isomorphism of rooted trees (7', r) and (1",77),
then we write (7,7) = (1”,7"). The cardinal m(7,r) is defined in the obvious
way. The main goal of this section is to prove the following theorem.

Theorem 2 If (T,r) is a rayless rooted tree, then m(T,r) is either 1 or is
infinite.

Before we give a proof of Theorem 2, we first introduce the following notation
that will simplify matters. Let {(T;,r;) : @ € I} be a family of rayless rooted
trees, and let r be a vertex not in V(7;), for all ¢ € I. Define

Z;(E,n)

to be the rooted tree (7,7) which has as its root the vertex r, so that r is
joined to each root r; of T}, for all i € I. We say that (T, r) is the sum of the
(T;,r;), and each (T;,r;) is a summand of (T, 7).



Note that if (T, r) is a rooted tree, then

(T,r) = >_(Ti,ms),

el

where the summands 7; are the connected components of T'— r, and r; is the
unique vertex of T; joined to r. Further, this representation of (T, r) is unique,
up to a permutation of the summands. Clearly, (T, r) is rayless if and only if
each summand of (T, r) is rayless.

If
fd () = Y (Ty,ry)

iel jeJ
is an embedding, then f induces an injection from I into J, written f , defined
so that if ¢ € I, f(i) is the unique j € J such that f(T;,r;) < (Tj,7;). If f is
an isomorphism, then f is a bijection.

We next prove two lemmas about rooted trees that will be used in the proof
of Theorem 2.

Lemma 1 Let

(T’ 7”) = Z(Tw Ti)
i€l
be a rooted tree such that for some k € I, m(Ty,ry) = a > Ng. Then m(T,r) >
a.

PROOQOF. Let
ME(Tk,Tk) = {(Tkm,rk’n) n e Oé}.

Define the rayless rooted tree

(T r) = >_(Xi, 24),

i€l

where
(T, ;) if (T5,73) = (Th, 70);

(Timsrn) i (T, i) ~ (Ty, ri)-

(Xiy i) =

Note that for all n € «, we have (T,,,7) ~ (T,r) since (X;, ;) ~ (T}, r;) for
all i € I. For m # n, (T, 1) 2 (T, 1), since (T,,,r) contains summands of the
form (Tjn, k) and (1), ) does not. Hence, the family {(7,,,7) : n € a} is a
witness to m(T,r) > . O

Lemma 2 Let

(Tv T‘) - Z(TM Ti)

el



be a rooted tree such that m(T;,r;) = 1, for everyi € I. Then m(T,r) =1 or
m(T,r) > Ny.

PROOF. If m(T,r) = 1, then there is nothing to prove. Suppose for a con-
tradiction that 1 < m(7T,r) < W, and let

(T",r") = > _(T}.75)

J€J

be a rooted tree not isomorphic to (7,7) such that (77,7") ~ (T,r). Fix em-
beddings f : (T,r) — (1",7'), g : (I",r") — (T, r), and consider the injections
f:I—J,g:J— I. We first prove the following claim.

Claim If for some j* € J, the summand (77.,r%.) of (1",7') is not isomorphic
as a rooted tree to any summand of (7 7") then m(T,r) > Ry.

Proof of Claim. Let L = {l; : i € w} be a fixed set disjoint from I. For an
integer n > 1, define L,, = {ly,...,l,}, and let Ly = ). Define for n € w

(Sp,7) = Z (Xi, x;),

1€(IULy,)

where (X;,x;) = (T;,r;) it i € I, and (X;,2;) = (T}.,r}.) if i € L,,. Then
(So,7) = (T,r) and (Sp,7) < (Spy1,7) for all n > 0. We show that (S,41,7) <
(Sp, 7).

Let I' = {ix : k € w} be the subset of I defined by iy = g(j*), and
U = Qf(im_l) for m > 1. If for some m > 0 we have that i,, = i,
then g and f(gf )m_1 induce mutual embeddings between the non-isomorphic
rooted trees (Tj.,7%.) and (Tj(«),74(+)), contradicting the hypothesis that
m(Ty(j+),r4+)) = 1. Thus, ip, # ig for all m > 0, and since af + 1 — Iis
injective, we have that i,, # i,, for all m # m’. Therefore, we can combine
the restriction of gf to
Z(Tz‘ﬂ”i)

iel’
with the restriction of g to (Xi,,,,71,.,) = (T}, 7)), and the identity on the
remainder of (S,11,7) to obtain an embedding of (S,41,7) in (S,,r). Thus,
we have that (S,,7) ~ (So,7) = (T,r) for all n > 0. Since (S,,r) contains
exactly n summands isomorphic to (T7.,r%.), the rooted trees (S,,7), n € w
are pairwise non-isomorphic. The proof of the claim follows. O

Consider the set {(Xy,zx) : k € K} of isomorphism types of the rooted trees
(T, r;), and let p : I — K be the surjection defined by (75, 7;) = (Xpa), Tp@))-
By the Claim, there is a map ¢ : J — K such that (77, 7)) = (X, 24)), for

]’J

all j € J. Therefore, m(T7,r}) = 1, for all j € J. If ¢ were not surjective, then



reversing the role of (7',r) and (7”,1'), the Claim would give that
m(T,r) =m(T',r") = RNy,
Thus, ¢ is surjective since 1 < m(7T,r) < Xy by assumption.

We have that
(T,r) = Z(Xp(i)v xp(i))

el

(T",7") = > (Xg()s Ta()-
jet
Since these two rooted trees are not isomorphic, there exists some k& € K
such that |[p~1(k)| # |¢~(k)|. Without loss of generality, we may assume that

Ip~ (k)| < |¢g~'(K)|. Define

(T//a T) - Z (Tla Ti)'

i€(I\p~*(k))

and

We will show that (7",r) ~ (T, r).

Define

Jo={j€J:q(G) =k and p(g(4)) # k}.
Since |p~ (k)| < |¢~(k)|, we have that Jy # 0. We define the sets Iy = §(Jy) C
I and I, = Qf(]m_l) C I for m > 1. Let

I'=J In.
(IS
By reasoning similar to that given in the proof of the Claim, we have that
I, NI, =0, whenever m # m/. Sequences of composition of the maps f and
g demonstrate that (Xy, zx) < (T}, ;) whenever i € I'. Moreover for some m,
we have that

> |p~ (k).

U 1

0<j<m—1
Indeed if [p~'(k)| < Ny we can put m = |p~'(k)|, and if |[p~'(k)| > Ry, then
since |¢ (k) \ Jo| < [p7L(k)|, we have |Jo| = |¢~ (k)| whence

[Tol = |Jo| = lg~" (k)| > |p™" (k).

For this integer m, define

I//: U IJ

0<j<m—1
and fix an injection ¢ : p~(k) — I”. We may then combine embeddings
hi : (T;,1:) — (Tp)s o)), where ¢ € p~t(k), with the restriction of (gf)™ to

Z(Ti’ri)

icl’



and the identity on the remainder of (7', 7) to define an embedding of (T, r) in
(T",r). Since (T",r) < (T,r), we then have (T",r) ~ (T,r). However, since
(T, r) has summands isomorphic to (X, zx) and (7, r) does not, the Claim
applied to (1", r) gives that m(T,r) = m(T",r) > Ny, which contradicts our
assumption that m(7,r) < Xy. O

With Lemmas 1 and 2 in hand, we now turn to the proof of Theorem 2.

PROOF OF THEOREM 2. Suppose for a contradiction that there exists a
rooted rayless tree (7, ) such that 1 < m(T,r) < Rg. By Lemma 1 and Lemma
2, there is some summand (77, 7) of (T, r) satisfying m(7T1,7m1) € (1,R). By
repeated application of Lemma 1 and Lemma 2, we may recursively choose a
sequence ((T;,r;) : 1 € w), with (To,70) = (T, r), and where (Tj41,7;41) is a
summand of (7}, r;) such that m(T;41,7:41) € (1,Xg). But then the path in T
beginning with r¢ and whose remaining vertices are the r; constitutes a ray in
T, which is a contradiction. O

In fact, it is straightforward to modify the argument to prove that for every
rooted tree (T, r) (not necessarily rayless), we have m(T,r) =1 or m(T,r) >
Ny. In the next section, the absence of rays is used more explicitly in the
transition from rooted trees to general trees.

3 Mutually embeddability of rayless trees

Define a fized vertex u of a graph G to be one with the property that for all
self-embeddings f of G, f(u) = u. Define a fized edge uv of G to be one with
the property that for all self-embeddings of G, {f(u), f(v)} = {u,v}. The
following “fixed element” theorem was first proved by Halin [2], and will be
used in the proof of Theorem 1.

Theorem 3 If T is a rayless tree, then there is either a vertex or an edge
fized by every self-embedding of T'.

Note that the maps that we refer to as self-embeddings are referred to as
endomorphisms in [2].

PROOF OF THEOREM 1. Suppose that m(7") > 2. By Theorem 3, there
exists a fixed vertex u or a fixed edge e = uv of T'. Consider the rooted tree
(T, u). We will use Theorem 2 and Theorem 3 to prove that in both cases we
have that:

(1) m(T,u) > Ny.



(2) If {(T3,u;) : i € w} is a family of pairwise non-isomorphic rooted trees
mutually embeddable with (7, u), then {7} : i € w} is a family of rayless
trees mutually embeddable with T, with the additional property that for
all ¢ € w, there is at most one j € w such that T; = Tj.

Once items (1) and (2) are proven, it will follow that m(T") is infinite, and our
proof of Theorem 1 will be concluded.

To prove item (1), we argue as follows. As m(t) > 2, let 77 be a rayless tree
that is non-isomorphic and mutually embeddable with 7. Then there exists
embeddings f : T — T" and g : T" — T. If gf(u) = u, then f and g act
as mutual embeddings between the non-isomorphic rooted trees (T,u) and
(T", f(u)). Hence, m(T,u) > Ry by Theorem 2.

Otherwise, since gf is a self-embedding of T" and ¢f(u) # u, we are dealing
with the case where uv is an edge fixed by all self-embeddings of T', where
gf(u) = v and gf(v) = u. Therefore, f and gfg act as mutual embeddings
between the two rooted trees (7',u) and (7", f(u)), which again implies that
m(T) > .

We prove item (2) by contradiction, assuming that there are distinct 4, j, k € w
such that there exist isomorphisms h;; : T; — T and hy, : T; — Tj. Since

(T;,w;), (T3, ), and (T, uy) are mutually embeddable with (T, u), there exist
embeddings f; : T'— T;, g; : T; — T', and g, : T, — T such that

filu) = wi, gj(uy) =u, gr(ux) = u. (1)

See Figure 2.

T h

’Tk
g
-

Fig. 2. Maps in the proof of Theorem 1.
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Since (T;,uw;), (T;,u;), and (T, uy) are pairwise non-isomorphic as rooted
trees, we have that h;;(u;) # u; and hip(w;) # wg. This implies by (1) that
gjhi; fi(w) # u, and that gih fi(u) # u. Therefore, we are in the case when uv
is a fixed edge of T', and both self-embeddings g;h;; f; and gih f; interchange



u and v. Hence,

gihij fi(v) = u, grhafi(v) = u. (2)

Equations (1) and (2) imply that

hij(fi(0) = g5 (u) = u;, hae(fi(v)) = gr~ " (1) = w. (3)

Equations (1), (2), and (3) together imply that

hikhij_l(uj) = Ug-

Therefore, hikhij_l is an isomorphism from 7} to Tj which maps u; to u,
contradicting the fact that (7}, u;) and (T}, u) are non-isomorphic as rooted
trees. O
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