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A graph G is inexhaustible if whenever a vertex of G is deleted the remaining graph
is isomorphic to G. We address a question of Cameron [6], who asked which countable
graphs are inexhaustible. In particular, we prove that there are continuum many countable
inexhaustible graphs with properties in common with the infinite random graph, including
adjacency properties and universality. Locally finite inexhaustible graphs and forests are
investigated, as is a semigroup structure on the class of inexhaustible graphs. We extend
a result of [7] on homogeneous inexhaustible graphs to pseudo-homogeneous inexhaustible
graphs.

1. Introduction

In [6], Cameron concludes Section 1.1 with the following problem: which
countable graphs G have the property that deleting any vertex of G results
in a graph that is isomorphic to G? (This is equivalent to asking which
G have the property that deleting any finite subset of vertices of G re-
sults in a graph isomorphic to G.) The countable null and complete graphs
both trivially satisfy this property. Graphs with the stated property were
named inexhaustible by Fräıssé [8], and have been studied by Pouzet [13],
and El-Zahar and Sauer [7] (in [7] inexhaustible graphs are called strongly
inexhaustible). Unfortunately, there are 2ℵ0 -many countable inexhaustible
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graphs (see Subsection 3.1 below), so Cameron’s problem may have no sim-
ple resolution. Nevertheless, inexhaustible homogeneous graphs (a graph is
homogeneous if every isomorphism between finite induced subgraphs is in-
duced by an automorphism) have been classified in [7]. (The result in [7]
applies to classes in any relational language.) However, since there are ℵ0-
many countable homogeneous graphs (see [12]), the overall classification of
the countable inexhaustible graphs is far from complete.

A nontrivial example of a countable inexhaustible graph is the infinite
random graph R. In fact, R satisfies the stronger pigeonhole property : for
each partition of V (R) into sets A and B, the subgraph induced by at
least one of A or B is isomorphic to R (see [3] and [5] for more on this
property). In this article, in our attempt to answer Cameron’s question, we
provide a series of negative results which we believe demonstrate that the
class of all inexhaustible graphs, written I, is “unclassifiable”. We supply
2ℵ0-many examples of countable inexhaustible graphs which share many of
the properties of R (universality, adjacency properties, existence of one- and
two-way hamiltonian paths) but none of which are isomorphic to R (see
Theorem 4.1). We prove that I is not first-order axiomatizable and is not
closed under unions of chains (see Theorem 4.2). We prove in Theorems 2.1
and 2.2 that I supports a semigroup structure that fails to possess many of
the familiar properties of semigroups. We consider locally finite countable
inexhaustible graphs in Section 3, where a characterization of certain classes
of inexhaustible forests seems tractable; see Theorem 3.5.

In Section 5, we present a classification of the countable pseudo-
homogeneous graphs in I. This gives a generalization of Theorem 2 of [7]
to pseudo-homogeneous graphs, and allows us to prove in Theorem 5.4 that
the pseudo-homogeneous G-colourable graphs are inexhaustible.

All our graphs are simple and countable, and will be considered up to
isomorphism. If G is a graph and S ⊆V (G), the induced subgraph of G on
S is written G �S. If G is an induced subgraph of H, we say that H is an
extension of G or that H extends G; we write G≤H. For S⊆V (G), G−S is
the graph formed by deleting every vertex in S and all edges in G incident
with vertices in S; if S={x}, we write G−S=G−x. For graphs A≤G,H
so that V (G)∩V (H) =V (A), the union of G,H over A, written G∪H, is
the graph formed by taking the union of the vertices and edges of G and
H. The disjoint union of G and H is written G
H. The chordless circuit
of order n is denoted Cn (Cn is also called the chordless cycle of order n).
For background on relational structures we direct the reader to Fräıssé [8];
for background in model theory the reader is directed to Hodges [10]. The
age of a countable graph, written age(G), is the set of isomorphism types
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of finite induced subgraphs of G. The cardinality of the natural numbers
is written ℵ0 and 2ℵ0 is the cardinality of the real numbers. For cardinals
α,β, define α ·G to be the disjoint union of α-many copies of G, Kα to be
the complete graph of order α, and Kα,β to be the complete bipartite graph
with vertex classes of orders α and β.

2. The substitution monoid

Let G and H be graphs, and let {Hx :x∈V (G)} be a set of disjoint copies
of H indexed by V (G). We form a new graph, G◦H, the substitution of H
into G, by deleting each vertex x of G and replacing x with Hx, so that a
vertex of Hx is joined to a vertex of Hy if and only if x and y are joined in
G. Substitution may be thought of as an operation on the class of countable
graphs G; it is easy to see that this operation is associative and has a unit,
the trivial graphK1. Hence, (G,◦) is a monoid, which we call the substitution
monoid, denoted by G. (We note that substitution is often referred to as the
lexicographic product of G and H.)

The monoid G has an interesting connection with inexhaustible graphs
as shown by the following theorem. Recall that if A= (A, ·) is a semigroup
then ∅ �=B⊆A is a subsemigroup if B itself is a semigroup; B is a left ideal
if A·B⊆B (a right ideal is defined in a similar fashion). We refer the reader
to Howie [11] for further background on semigroups.

Theorem 2.1. Let I ′⊆G be the subset of countable inexhaustible graphs.
Then I ′=(I ′,◦) is a left ideal of G (thus, a subsemigroup).

Proof. Let G ∈ G, H ∈ I ′ and fix x ∈ V (G ◦H). Then x is in some copy
Hz of H in G ◦H. Let f : Hz − x → Hz be an isomorphism. The map
F : (G◦H)−x→G◦H that is f on Hz −x and the identity otherwise, is an
isomorphism. This establishes that I ′ is a left ideal.

Even though Theorem 2.1 has a simple proof, notice that it supplies
an immediate proof that I ′ is closed under disjoint unions and total joins;
indeed, replacing the vertices of any countable graph by an inexhaustible
graph yields an inexhaustible graph.

The following theorem gives more detailed information about the monoid
I ′. Recall that a semigroup S=(S, ·) is left cancellative if it satisfies

x · y = x · z ⇒ y = z

for all x,y,z∈S. Right cancellative is defined similarly. The semigroup S is
regular if every x∈S is regular, that is, there is a y∈S so that

x · y · x = x.



38 ANTHONY BONATO, DEJAN DELIĆ

An element x ∈ S is idempotent if x · x = x. The semigroup S has a zero
element, 0, if x ·0=0·x=0 for all x∈S. A semigroup is left (right) simple if
it has no proper left (right) ideals.

Theorem 2.2. 1. The class I ′ has no zero element.
2. The class I ′ is neither left nor right simple.
3. The class I ′ is neither left nor right cancellative.
4. The class I ′ is not regular.
5. The class I ′ contains 2ℵ0-many elements that are not a product of finitely

many idempotents.

Proof. (1) Assume that I ′ has a zero element H. Then H must have
infinitely many connected components as Kℵ0 ◦H = H. However, since
Kℵ0 ◦H=H, H is connected of diameter ≤2, which is a contradiction.

(2) Let J be the class of inexhaustible 1-existentially closed or 1-e.c.
graphs: graphs with the property that each vertex is joined to some vertex,
and not joined to a vertex other than itself (see the first paragraph of Sec-
tion 4 below). Note that J is not empty, as the infinite random graph R is
in J , and J �= G since Kℵ0 ∈G \J . Fix G∈ G, and H ∈J . We claim that
G◦H and H ◦G are 1-e.c. To see this, note that any vertex of G◦H is in
some copy of H, and since H is 1-e.c., x is joined to some vertex, and not
joined to a vertex other than itself in that copy. If x is a vertex in H ◦G,
then suppose that x∈Ga for some a∈ V (H). Since H is 1-e.c., then there
are b,c∈V (H) so that ab∈E(H) and ac /∈E(H) and a �=c. Then x is joined
to every vertex of Gb and to no vertex of Gc.

(3) If we let G=Kℵ0 , H=Kℵ0 , and J=Kℵ0,ℵ0 , then G◦H=G◦J is the
complete ℵ0-partite graph, with each vertex class infinite (we leave this as
an exercise). Let H =Kℵ0 , G=Kℵ0 and J be the disjoint union of ℵ0 ·K2

and Kℵ0 . Then J is inexhaustible and H ◦G=J ◦G=ℵ0 ·Kℵ0 .
(4) To show that I ′ is not regular, we show that R is not a regular

element. We prove the stronger property that there is no H ∈ I ′ so that
H ◦R=R.

Certainly H cannot be Kℵ0 , as then H ◦R is disconnected and R is
connected (of diameter 2). Suppose that H has an edge, say ab∈E(H). Fix
x,y ∈ V (Ra) and z ∈ V (Rb). If H ◦R=R, then H ◦R is n-e.c. for all n≥ 1
(see Section 4). In particular, there is a vertex c∈V (H◦R)\{x,y,z} so that
c is joined to x but not to y or z. If c is not in V (Ra), then either c is joined
to both of x and y or to neither x nor y. Therefore, c∈V (Ra). But then c
is joined to z, which is a contradiction.

(5) We will demonstrate in Section 3 below that there are 2ℵ0-many
countable inexhaustible forests. Let F be a fixed countable inexhaustible
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forest that has at least one edge. We show that F is not a product of idem-
potents, and thereby prove item (5).

Claim. For any graphs G1, . . . ,Gn, we have that Gi≤G1 ◦· · ·◦Gn, for each
1≤ i≤n.

The claim follows by induction. If n= 1, then there is nothing to prove,
so consider n=2. For each x∈V (G1), (G2)x is a copy of G2. If we choose a
transversal from (V ((G2)x) : x∈V (G1)) (that is, choose exactly one vertex
from each set V ((G2)x)), then the subgraph induced by the transversal is
G1. The case for n≥3 is similar to the case n=2, using the associativity of
substitution, and so is omitted.

Now suppose that F = G1 ◦· · · ◦Gn, for some Gi∈I ′ so that Gi ◦Gi =Gi

for all i ∈ {1, . . . ,n}. Let j ∈ {1, . . . ,n} be the first index so that Gj �=Kℵ0

(there is such an index, otherwise F is null, contrary to the hypothesis). Let
ab∈E(Gj) be fixed. Since Gj◦Gj =Gj , the vertices a and b in both (Gj)a and
(Gj)b are all pairwise joined, so that K4 is a subgraph of Gj◦Gj =Gj . By the
Claim, Gj ≤F , so that F contains a copy of K4. This is a contradiction.

We believe that Theorem 2.2 supports the view expressed in the Intro-
duction that I ′ is a badly behaved class: from a semigroup-theoretic view,
I ′ fails to have many of the basic properties a semigroup can have. An in-
teresting problem that we cannot solve is to classify the idempotents of I ′.

3. The locally finite case

Throughout this section, G will always be a countable locally finite graph
(that is, each vertex of G has finite degree).

Definition 3.1. 1. The age-closure of G is the disjoint union of ℵ0-many
copies of each finite induced subgraph of G.

2. The graph G is age-closed if there are induced subgraphs G′ and H of G,
with G′ isomorphic to the age-closure of G, such that G is the disjoint
union of G′ and H.

In other words, G is age-closed if G contains an induced subgraph G′

isomorphic to the age-closure of G with the property that there is no edge
between a vertex of G′ and a vertex not in G′.

We consider the following example, which will both illustrate the notion
of an age-closed graph, and help motivate the next theorem. Let G be the
infinite one-way path. The graph G is not age-closed, since K1 is an induced
subgraph of G, but each copy H of K1 in G is joined to vertices not in H.
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The age-closure of G, written G′, consists of the disjoint union of infinitely
many copies of each finite path. Note that G is not inexhaustible, but the
disjoint union of G and G′ is age-closed and inexhaustible.

Recall that if x∈V (G) then the neighbour set of x, written N(x), is the
set of all vertices joined to x. The elements of N(x) are called the neighbours
of x.

Theorem 3.2. If G is inexhaustible then G is age-closed. The converse
holds if G has no infinite components.

Proof. If S is a finite induced subgraph of G, then consider

T =
( ⋃

x∈V (S)

N(x)
)
\ S.

Then T is finite, so G−T ∼=G. Hence, G contains a “disjoint” copy of S: for
all x∈V (G)\V (S), x is not incident with a vertex of S. If there were only
finitely many disjoint copies of S, then we could delete these and obtain a
graph containing no disjoint copy of S, which is a contradiction.

For the converse, we enumerate the finite distinct induced subgraphs of G
as (Si : i≥1), in such a way that the orders of the Si are monotone increasing
(this is possible as there are only finitely many graphs of any given order).
In particular, S1 =K1. Since G is age-closed, G is isomorphic to ℵ0·(

⊎
i≥1Si)

(
⊎

denotes disjoint union). Fix x∈V (G). Without loss of generality, we can
assume that x∈V (Sj) for some j≥1. If j=1, then deleting x leaves infinitely
many copies of K1 so G−x∼=G. If j >1, then deleting x from Sj results in
some Si with i<j. Since there are infinitely many Si and Sj, G−x∼=G.

Recall that ∆(G) is the supremum of the set of degrees of vertices of G.
For an integer i≥ 0, we define [i]G = {x ∈ V (G) : deg(x) = i} (if G is clear
from context we will simply write [i]).

Theorem 3.3. Let G be an inexhaustible graph. Then for each integer i≥0
that is less than or equal ∆(G), the set [i]G is infinite.

Proof. The proof proceeds by cases.

Case 1. Suppose that ∆(G) is an integer n.

If [n] is finite, then G−[n] has no vertices of degree n, which contradicts
inexhaustibility. If n=0, then G=Kℵ0 , hence, we may assume that n>0.

Now fix i an integer so that 0≤ i < n. Suppose that [i] is finite with m
elements. If we define S=

⋃
x∈[i]N(x), then S is clearly finite. Suppose that

for all z∈ [n], z is joined to some vertex in S. Then the set of edges incident
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with vertices of S is infinite, which is a contradiction. Hence, there is some
vertex z in [n] not joined to any vertex of S.

Let N(z)={y1, . . . ,yn}. Consider G−{y1, . . . ,yn−i}=H. Then the degree
of z in H is i. But since no yi is in S, each vertex in [i]G has degree i in H.
Hence, in H, the set [i]H has at least m+1 elements, which contradicts the
fact that G∼=H.

Case 2. ∆(G)=ℵ0.
Claim 1. For all i≥0, the set [i] is nonempty.

We prove the claim by induction on i. If i=0, fix x∈V (G). Then x has
degree 0 in G−N(x)∼=G.

Assume that the Claim is true for i. For i+1, consider a vertex z in G of
degree ≥ i+1. Delete sufficiently many neighbours of z, so z then has degree
i+1 in the remaining graph, which is isomorphic to G. The claim follows.

Now, for a fixed i, define S=(
⋃

x∈[i]N(x))\ [i].

Claim 2. There is some j > i and a y ∈ [j] so that y is not joined to any
vertex of S.

Otherwise, by Claim 1 there are infinitely many vertices not in [i] joined
to a vertex of S. But S is finite, so it has only finitely many neighbours.

If [i] is finite, then choose y as in Claim 2. The same contradiction may
be derived as was found in Case 1.

As we mentioned above, the disjoint union of an infinite one-way path
(or a ray) and its age-closure is inexhaustible. However, the disjoint union
of an infinite two-way path (or a double ray) and its age-closure is not in-
exhaustible. To help explain these facts, we recall the following cardinal-
invariant of a locally finite graph:

ε(G) = sup{#infinite components of G− S : S ⊂ V (G); |S| < ℵ0}.

The cardinal ε(G) is the number of ends of G (see [9]). The proof of the
following lemma is left as an exercise.

Lemma 3.4. Let G be an inexhaustible graph with only finitely many in-
finite components G1, . . . ,Gn. Then ε(Gi) = 1, for all 1 ≤ i≤ n (each Gi is
one-ended).

The following theorem characterizes a certain class of locally finite inex-
haustible forests. A vertex of degree 1 is called an end-vertex.
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Theorem 3.5. Let F be a locally finite forest with only finitely many in-
finite components Ti, for 1 ≤ i≤ n. Suppose that each Ti has only finitely
many end-vertices or none. Then F is inexhaustible if and only if each Ti is
a ray and F is age-closed.

Proof. The proof of the reverse direction is straightforward. Let F be in-
exhaustible, and let T =Ti be a component of F .

Case 1. The set [1] is empty in T .

In this case, fix x∈ V (T ). It is easily seen that we can find two infinite
disjoint rays emanating from x, which would contradict Lemma 3.4.

Case 2. The set [1] has a unique element 0.

It is straightforward to see that 0 is the terminal vertex of some ray R.
We label the vertices of R by the natural numbers. If some vertex m>0 has
degree >2 then we can find an infinite ray R′ disjoint from R, which would
contradict Lemma 3.4. Hence, T must be a ray. We argue this way for all
components Ti and obtain the conclusion of the forward direction.

Case 3. The set [1]={x1, . . . ,xr} with r>1.

By König’s lemma there is a ray R with end-vertex x1. Each xi with
2 ≤ i ≤ r is connected to R by a unique path P (i) incident with R at a
unique vertex we name zi. Since ε(T ) = 1 there is no ray disjoint from R
that is incident with any P (i). Hence, each P (i) and its branches not on R
form a finite tree T (i). See Figure 1.
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Figure 1. R and its branches.
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If we delete the vertices in T (i)\{zi} for 2≤ i≤r, then the remaining graph
is a ray. We argue in this manner for each Ti, so each infinite component of
F is a ray.

We cannot answer the following problem: if we drop the condition on the
number of end-vertices in Theorem 3.5, then does the conclusion still hold?

3.1. 2ℵ0 many locally finite inexhaustible forests with infinitely
many infinite components

The following example demonstrates that an extension of Theorem 3.5 to
allow for ℵ0-many infinite components may not be tractable. Let X be a set
of infinite subsets of the natural numbers ≥ 1 with pairwise finite intersec-
tion, so that |X|= 2ℵ0 . For each S ∈X, we define a forest F (S) as follows.
Enumerate S as {si : i≥ 1} with the si strictly increasing. Define F (S)′′ to
consist of ℵ0-many disjoint copies of the following graph F (S)′: consider a
ray R indexed by the natural numbers, so that each i≥ 1 is incident with
exactly si disjoint double rays Ri. See Figure 2.

Figure 2. F (S)′.

Define F (S) by first adding to F (S)′′ ℵ0-many disjoint copies of F (S)′−Y
for each finite subset Y of V (F (S)′), and then taking the age-closure. It is
clear that F (S) is locally finite and is inexhaustible. If S and T are distinct
elements of X, then we prove that F (S) and F (T ) are non-isomorphic.

Let {ni : i ≥ 1} = S\T . Then F (S)′ is never a component of F (T ). To
see this, note first that F (S)′ is not isomorphic to F (T )′, since there is no
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vertex x of degree 2n1+2 in F (T )′: otherwise, since each ni≥1, then x would
have to be one of the integers i≥1 on R; but then x would be incident with
n1 double rays Ri, a contradiction. (In particular, there are no vertices of
degree 2ni+2 in F (T )′.) The only other possibility is if F (S)′ is isomorphic
to F (T )′−Y for some finite Y . Deleting Y can only decrease the degrees of
at most finitely many of the vertices of F (T )′. Hence, if we choose j large
enough, there will be no vertex of degree 2nj +2 in F (T )′−Y .

4. Continuum many inexhaustible approximations of R

For a fixed integer n≥1, a graph G is called n-existentially closed or n-e.c.
if for every n-element subset S of the vertices, and for every subset T of
S, there is a vertex not in S which is joined to every vertex in T and to
no vertex in S \ T . The reader will recall that the infinite random graph
R is the unique countable graph that is n-e.c. for all n ≥ 1 (see [5]). A
countable graph which satisfies only finitely many (or equivalently, a single)
n-e.c. conditions is said to be an approximation of R. We recall that R is
universal : it embeds all countable graphs as induced subgraphs. The graph
R is also indivisible: each partition of V (R) into two classes forces one of
the classes to contain the original graph as an induced subgraph. Note that
any extension of R is indivisible and universal. (See [5] for more details on
these and other properties of R.)

The present section is primarily devoted to the proof of the following
theorem.

Theorem 4.1. Let n≥2 be a fixed integer. Then there are 2ℵ0-many non-
isomorphic approximations of R having the following properties:

1. inexhaustibility;
2. n-e.c. but not (n+1)-e.c.;
3. universality;
4. indivisibility;
5. has one- and two-way hamiltonian paths.

Proof. Define C={Ci : i≥n+2}, and define X ={X :X⊆C and |X|= |C\X|=
ℵ0}. Then |X |= 2ℵ0 , and all the elements of C are pairwise non-embeddable.
Fix X∈X and enumerate X as (Cij :j≥1).

Define G(n,X)0 to be the graph
⊎

j≥1Cij 
Kn+1 along with the age-
closure of this graph. As our inductive hypothesis, assume that G(n,X)m

has been defined so that it is countable and contains G(n,X)0 as an induced
subgraph.
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List all the ≤ (m+ 1)-vertex induced subgraphs of G(n,X)m as {Ai :
i≥ 1}. Fix i≥ 1. List all extensions of Ai to an (|Ai|+ 1)-vertex graph as
B1,i, . . . ,Bki,i, except those extensions of Ai which would extend one of the
Cij in G(n,X)0 to a wheel (the new vertex would be joined to all the vertices
of Cij ) or would extend one of the copies of Kn+1 to Kn+2.

Without loss of generality, we may assume that for each 1 ≤ j ≤ k,
V (Bj,i)∩V (G(n,x)m) = V (Ai). Form the union of G(n,X)m and the Bi,j

over Ai to formG(n,X)m+1(i). Form the unions of the graphsG(n,X)m+1(i)
over G(n,X)m to form G(n,X)m+1. The graph G(n,X)m+1 satisfies the in-
ductive hypotheses.

Define

G(n,X) =
⋃

m≥1

G(n,X)m.

By construction, G(n,X)−V (G(n,X)0) is m-e.c. for all m ≥ 1; hence,
G � (V (G(n,X))\V (G(n,X)0) ∼=R. Since R ≤G(n,X), G(n,X) is univer-
sal and indivisible. By construction, G(n,X) is n-e.c.: at each stage of the
construction of G(n,X), all n-vertex subsets are extended in the following
stage of construction in all possible ways.

However, G(n,X) is not (n+1)-e.c., because there is no vertex in G(n,X)
joined to each vertex in any copy K of Kn+1 in G(n,X)0. (The same ar-
gument holds for all circuits Cij in G(n,X)0.) To see this, note that first,
no such vertex exists in G(n,X)0. Assume that there is no such vertex in
G(n,X)m. By construction, each vertex of G(n,X)m+1 is joined to at most
a proper subset of V (K). (Note that the vertices added in G(n,X)m(i) are
joined only to the vertices of some Ai in G(n,X)m−1 and to no others.)

We show that G(n,X) has a one-way hamiltonian path; the existence of
a two-way path is proved similarly. Enumerate V (G(n,X)) = {xi : i ≥ 1}.
Set P1 to be the induced subgraph by {x1}. Suppose that Pn has been
constructed so that it is a path containing x1, . . . ,xn (and possibly other
vertices), with end-vertices x1 and some other vertex zn. If xn+1 ∈ V (Pn),
then set Pn+1 =Pn with zn+1 =zn.

Consider the case when xn+1 �∈ V (Pn). If xn+1 is joined to zn, then set
Pn+1 =G(n,X) � (V (Pn)∪{zn+1}), and let zn+1 = xn+1. So consider when
xn+1 and zn are not joined. There is some m so that (V (Pn)∪{xn+1}) ⊆
G(n,X)m. Then in G(n,X)m+1 we can find a vertex y joined to zn and
xn+1, and to no other vertices in V (Pn)∪{xn+1} (since this is not one of
the forbidden extensions). Set Pn+1 to be the path Pn along with the edges
zy,yxn+1, with zn+1 =xn+1. The union of the chain of the Pn subgraphs is
a spanning path of G(n,X) with initial vertex x1.
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The remaining desired properties are proven for the graphs G(n,X)
through a series of claims.

Claim 1. If X,Y ∈X and X �=Y , then G(n,X)�G(n,Y ).

Without loss of generality, suppose that Cij ∈ X \ Y . Consider a copy
of Cij in G(n,Y ). Circuits of different orders are pairwise non-embeddable;
further, no circuit is an induced subgraph of a complete graph unless the
circuit is C3. However, each circuit in G(n,Y ) has at least four vertices by
our initial assumptions (recall that n≥2 and the circuits have orders ≥n+2).

Hence, Cij is not an induced subgraph of G(n,Y ) � G(n,Y )0. We can
therefore, find a vertex of G(n,Y ) joined to every vertex in Cij . As this
fails for any Cij in G(n,X)0 by previous discussion, the graphs G(n,X) and
G(n,Y ) cannot be isomorphic.

Claim 2. The graph G(n,X) is inexhaustible.

To see this, first name G = G(n,X), and fix x ∈ V (G). We show that
G−x∼=G.

Case 1. The vertex x is in V (G(n,X)0).

In this case, we observe that by Theorem 3.2, G(n,X)0 ∼=G(n,X)0 −x,
say by an isomorphism f , since G(n,X)0 is locally finite, age-closed, and
with no infinite components. We prove that G∼=G−x by extending f to an
isomorphism via a back-and-forth argument (see Chapter 3 of [10]).

Suppose that we have already chosen a finite A≤G(n,X) not in G(n,X)0

and a finite B ≤G−x not in G(n,X)0− x so that A∪G(n,X)0 and B ∪
G(n,X)0 − x are isomorphic by an isomorphism f ′ extending f . Fix y ∈
V (G) \ (V (G(n,X)0)∪V (A)). By construction, y is joined to only finitely
many vertices T of G(n,X)0; y is joined to the vertices in A in some way. If
we consider D=f(T )∪B, then by construction, we should be able to find a
z extending D in the same way that y extends C=T ∪A. The only possible
obstruction would be if z must extend a circuit or clique in a way forbidden
in the construction of G(n,X). But then if we take preimages of this circuit
or clique, then y would realize a forbidden extension in G(n,X).

The argument for “going back” is similar, noting that since x ∈
V (G(n,X)0) the y chosen will never be x.

Case 2. The vertex x is not in V (G(n,X)0).

The argument is similar to Case 1; this time f is the identity map. The
“going back” argument is similar to Case 1. For the “going forth” argument,
we note that vertices extending a given subset in G(n,X)m are never unique
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(each n-e.c. condition can be witnessed by infinitely many distinct vertices).
This finishes the proof of Claim 2.

We close this section by showing that the class of inexhaustible graphs
(of any order) is badly behaved from another vantage point; namely, we
prove the following lemma. Recall that a class of graphs K is first-order
axiomatizable if there is some language L and some set of L-sentences whose
models are precisely the elements of K.

Lemma 4.2. The class I of inexhaustible graphs (of any order) has the
following properties.

1. I is not first-order axiomatizable.
2. I is not closed under unions of chains.

Proof. a) Our proof relies on some model-theoretic machinery. We show
that I is not closed under elementary substructures (see p. 54 of [10]); this
is sufficient to show I is not first-order axiomatizable. Let T∞ denote the
unique ℵ0-regular tree. For all x∈V (T∞), T∞−x∼=ℵ0 ·T∞; in particular,
T∞ is not inexhaustible.

Suppose that I is closed under the taking of elementary substructures.
Now, T∞ is the unique existentially closed (e.c.) forest. (For background on
e.c. structures the reader is directed to Chapter 8 of [10].) It is well-known
that every infinite forest has a countable e.c. induced forest as an elementary
substructure, and so must have T∞ as an elementary substructure. The
forest ℵ0·T∞ is inexhaustible. Thus, if I were first-order axiomatizable, T∞

would be inexhaustible, which is a contradiction.
b) We construct a union of a chain of graphs isomorphic to T∞, so that

each member of the chain is isomorphic to G0 =ℵ0 ·T∞. Name the compo-
nents of G0 as T (i,j), with i,j ≥ 1. Fix a vertex yi,j in T (i,j). Let x be a
vertex not in V (G0). For n≥1, define Gn to be the supergraph of G0 formed
by adding x to G0 and joining x exactly to the vertices yi,j, with 1≤ i≤n,
for all j ≥ 1. Then Gn

∼=G0, since Gn is a forest with only infinite compo-
nents, infinitely many components, and has each vertex of infinite degree.
Let fn be the identity embedding of Gn into Gn+1. The union of the chain
((Gn,fn) :n≥0) is isomorphic to T∞.

5. Inexhaustible pseudo-homogeneous graphs

The definitive result on inexhaustible homogeneous graphs is the following
theorem. Recall that a class K of finite graphs has the strong amalgamation
property, or (SAP) if for all A,B,C in K and embeddings f :A→B, g :A→C,
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there is a D ∈K and embeddings h :B→D and i :C→D so that hf = ig,
and if b∈V (B), c∈V (C) and h(b)= i(c), then there exists an a∈V (A) such
that b= f(a) and c= g(a). The graph D is called a strong amalgam of B
and C over A. Informally, we can “glue” B and C together over A without
identifying any vertices in B−A with vertices in C−A.

Theorem 5.1 (El-Zahar, Sauer [7]). A countable homogeneous graph G
is inexhaustible if and only if age(G) has (SAP).

From this theorem and the theorem of Lachlan and Woodrow [12], the
countable homogeneous inexhaustible graphs can be given: they are precisely
the disjoint unions of infinite complete graphs, Henson’s Kn-free graphs, for
each integer n≥2, the complements of these, and the infinite random graph.

Fräıssé studied a weakening of homogeneity, which he referred to as
pseudo-homogeneity (see Chapter 11 of [8]). We consider the case when K
is closed under isomorphisms, induced subgraphs and disjoint unions. Let
C be a subclass of K of finite graphs satisfying (SAP), the joint embedding
property (for all A,B ∈C there is a C ∈C so that A,B≤C), and satisfying
cofinality: each finite graph in K can be embedded in a member of C. Fräıssé
proved that there is then a countable graph in K, M , so that M is unique
with the following properties; K in this case is called a pseudo-amalgamation
class.

(PH1). The graph M embeds each graph in C.
(PH2). Each finite S≤M is contained in T ≤M with T ∈C.
(PH3). (amalgamating into) For each G≤M with G∈C and for each graph
H∈C so that G≤H, there is an H ′≤M and an isomorphism f :H→H ′

such that f �G is the identity map on G.

M is referred to as pseudo-homogeneous relative to C and K. Note that
M is homogeneous if C=K.

Definition 5.2. 1. Let A≤B∈K. We say that C≤B avoids A if V (C)∩
V (A)=∅.

2. The class C is special if for each finite A ∈ C, and all S < A, there are
C ′,C ∈C so that A≤C, S≤C ′≤C so that C ′ avoids C � (V (A)\V (S)).
(See Figure 3 below.)

If V (A)={x} we will abuse notation and say that a subgraph avoids x.
Roughly said, C is special if a version of (PH2) holds but with the freedom
to avoid fixed subsets.

Theorem 5.3. A countable pseudo-homogeneous graph G, relative to
classes C⊆K, is inexhaustible if and only if C has (SAP) and is special.
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Figure 3. Item (2) of the definition of a special class.

If K is the class of forests, then K is a pseudo-amalgamation class with C
the class of trees. However, C is not special. To see this, let A be the path with
three vertices a,b,c, and let S be the end-vertices a,c of A. No extension of S
to a tree can avoid b without inducing a circuit. Hence, by Theorem 5.3, the
countable pseudo-homogeneous forest is not inexhaustible. We note that the
countable pseudo-homogeneous forest is the ℵ0-regular tree (see Section 11.6
of [8]), which we have already seen in Section 3 is not inexhaustible.

Proof of Theorem 5.3. (⇒) Let A,B,C∈C so that A≤B,C and V (B)∩
V (C)=V (A). First embed B in G by (PH1), and consider C extending the
copy of A in B. If we delete S = V (B)\V (A), then G−S∼=G, and hence,
G−S is pseudo-homogeneous. By (PH3), we can then amalgamate C into
G−S over A as C ′. Then V (C ′)∩V (B)=V (A) in G. Now by (PH2) for G,
extend B∪C ′ to an induced subgraph of D∈ C; D is a strong amalgam of B
and C over A. (This is essentially the proof of one direction of Theorem 2
in [7].)

Now fix A∈C, and fix S<A. Then A embeds in G by (PH1). If we delete
T =V (A)\V (S), then G−T ∼=G, and hence, G−T is pseudo-homogeneous.
By (PH2) we may extend S in G−T to C ′ ∈ C. Note that C ′ avoids G � T
in G. By (PH2), choose C to be any finite induced subgraph of G in C that
extends C ′∪A.

(⇐) Fix x ∈ V (G). We verify each of the axioms (PHn), n = 1,2,3 for
G−x, and thereby prove that G−x∼=G.

For (PH1), fix A∈C, and embed A in G as A′. If V (A′) does not contain
x, we are done. If V (A′) does contain x, then consider B defined to be the
disjoint union of a copy A′′ of A with G. Since K is closed under unions, B
is in K, so we may extend B � (V (A′)∪V (A′′)) to B′ ∈C. By (PH3) for G,
there is a copy of A′′, say A′′′, in G disjoint from A. Then V (A′′′) does not
contain x.
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For (PH2), consider A∈K embedded in G−x. Extend A to B∈C in G; if
V (B) does not contain x we are done. Otherwise, since C is special we may
find C ′,C ∈ C so that B≤C, A≤C ′ ≤C and V (C ′)∩V (B) = V (A). Using
(PH3) we may embed C into G over B; the copy of C ′ in G avoids x.

For (PH3), consider A,B ∈ C so that A ≤ G− x and A ≤ B. Extend
G�(V (A)∪{x}) to A′ ∈C in G by (PH2). Form a strong amalgam D of A′

and B over A so D is in C. Then we may amalgamate D into G by (PH3).
Then the copy of B≤D extending A in G avoids x.

We note that the age of every homogeneous graph (where K=C) is special
(choose C ′=S and C=A), so we recover a special case of Theorem 2 of [7].
Theorem 5.3 has the following interesting application. For a fixed finite graph
G, we say that H is G-colourable if there is a homomorphism from H into
G (an edge-preserving vertex-mapping). Note that a graph is n-colourable
if and only if it admits a homomorphism into Kn. We may assume that
G is a core: every endomorphism of G is onto. It is well-known (and easy
to show) that the class of all G-colourable graphs, written C(G), is closed
under induced subgraphs and disjoint unions. The graph H is uniquely G-
colourable if H is G-colourable, every homomorphism from H to G is onto,
and for all homomorphisms f,h from H to G, there is an automorphism g
of G so that f = gh. It was proven in [2] that C(G) contains a countable
pseudo-homogeneous graph, M(G), with C in this case being the class of
uniquely G-colourable graphs. (We note that M(G) is homogeneous if and
only if G=K1.) Cofinality holds by the following construction. Let H∈C(G)
and let f :H→G be a fixed homomorphism. Define the fixation of H by f ,
G(H,f), to have vertices V (H)∪V (G), and edges those of H and G, and
additional edges xy, where x ∈ V (H), and y is a neighbour of f(x). Then
G(H,f) is uniquely G-colourable.

Corollary 5.4. For all core graphs G, the graph M(G) is inexhaustible.

Proof. If G=K1, then M(G)=Kℵ0 . Fix a non-trivial core G, and let C be
the class of uniquely G-colourable graphs. By previous remarks, it is enough
to show that C is special. Fix A∈C, and fix S<A. For a fixed homomorphism
f from A into G, let C = G(A,f). Let C ′ = C � (V (G) ∪ V (S)). Then
C ′=G(S,f �S), and so C ′ is the desired uniquely G-colourable extension of
S in C.
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