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Abstract

We continue the study of graphs defined by a certain adjacency
property by investigating the n-existentially closed line-critical graphs.
We classify the 1-e.c. line-critical graphs and give examples of 2-e.c.
line-critical graphs for all orders ≥ 9.

1 Introduction

For a fixed integer n ≥ 1, a graph G is called n-existentially closed or n-e.c.
if for for every n-element subset S of the vertices, and for every subset T
of S, there is a vertex not in S which is joined to every vertex in T and to
no vertex in S \T. N -e.c. graphs were investigated by Caccetta, Erdős, and
Vijayan [4]; they referred to n-e.c. graphs as graphs with property P (n).
Although almost all finite graphs are n-e.c. for a given n (as labelled struc-
tures; see Fagin [6] and Blass and Harary [2]), very few explicit examples
of n-e.c. graphs are known, especially for n > 2, with the exception being
large Paley graphs (see Ananchuen and Caccetta [1]).

Induction is a potent tool when proving results about finite graphs.
Graphs which are critical or minimal with respect to a given property play
an important role in such investigations. In [3] we investigated the n-e.c.
point-critical graphs: n-e.c. graphs which when a single vertex is deleted are

∗Paper presented at the Thirteenth Midwestern Conference on Combinatorics, Cryp-
tography and Computing, Normal, IL, October 1999.

†Research supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

‡Research supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and a Wilfrid Laurier University Grace Anderson Research Fellowship.

1



no longer n-e.c.. In particular, we proved that there is a unique 2-e.c. min-
imal graph, and we found 2-e.c. criticals of all orders ≥ 9. One of the main
tools of [3] was the operation of replicating an edge (see Definition 4 below).
Replicating an edge preserves 2-e.c. and in some situations preserves 2-e.c.
point-criticality.

[3] did not investigate the n-e.c. line-critical or n-e.c.l.c. graphs, which
in this article we abbreviate as n-l.c. graphs: n-e.c. graphs with the property
that when any edge is deleted the remaining graph is not n-e.c.. An easy
exercise is that each n-e.c. graph has a spanning subgraph that is n-l.c..
Therefore, one way to find examples of n-l.c. graphs is to strategically
delete edges in known n-e.c. graphs. In Section 2 we present a complete
classification of the 1-l.c. graphs. In Section 3 we provide explicit examples
of 2-l.c. graphs of all possible orders. Replication again proves valuable,
and in Theorem 5 we find sufficient conditions for replication to preserve
2-l.c..

The countably infinite random graph R is the unique countable graph
that is n-e.c. for all n ≥ 1. As described in [5], R satisfies a first-order
sentence ϕ in the language of graphs if and only if almost all finite graphs
satisfy ϕ. Further, for any vertex x and edge e, R − x and R − e are
isomorphic to R, so that for all n ≥ 1, R is neither n-e.c. point- or line-
critical. We leave it as an exercise to verify that the properties of being
n-e.c. point- and line-critical are first-order definable. Thus, almost no
finite graphs are n-e.c. point- or line-critical.

Throughout, all graphs are finite and simple. For a graph G, V (G) will
denote the vertex-set of G and E(G) will denote its edge-set. (G may be
dropped if it is clear from context.) The order of G is |V (G)|. We denote an
edge by xy, or sometimes (x)(y) to avoid confusion. We recall the following
definition from [3].

Definition 1 Let G be a graph, and let n ≥ 1 be fixed.

1. An n-e.c. problem in G is a 2×n matrix
(

x1 . . . xn

i1 . . . in

)
, where

{x1, . . . , xn} is an n-element subset of V (G), and for 1 ≤ j ≤ n,
ij ∈ {0, 1}.

2. A solution to an n-e.c. problem
(

x1 . . . xn

i1 . . . in

)
is a vertex y ∈

V (G) so that if ij = 1 then yxj ∈ E(G) and if ij = 0 then yxj /∈ E(G)
and y 6= xj .

Observe that a graph G is n-e.c. if and only if each n-e.c. problem in G
has a solution.
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2 The 1-l.c. graphs

As was mentioned in [3], the 1-e.c. minimal graphs are 2K2, C4, and P4;
observe that 2K2 is the only 1-e.c. minimal that is 1-l.c.. Recall that a
graph is a star if it is one of the graphs K1,n, for some n ≥ 1. The following
theorem completely classifies the 1-l.c. graphs, and reveals that they have
a relatively simple structure.

Proposition 2 A graph G is 1-l.c. iff each component of G is a star and
G has at least two components.

Proof. Sufficiency is easy, so we prove necessity only.

Claim 1: G is 1-l.c. iff G is 1-e.c. and for all e = xy ∈ G, one of x, y is
isolated in G− e.

We prove the forward direction of the claim; the reverse direction is
trivial. Fix e = xy ∈ E(G). Then G − e is not 1-e.c. so there is a 1-e.c.
problem that cannot be solved in G − e, and this 1-e.c. problem must be(

z
1

)
for some z ∈ V (G). But then z must be one of x, y and so the

deletion of e isolates one of x, y.
Fix a connected component, say C, of G.

Claim 2: If |C| ≥ 3 then C has exactly one vertex of degree ≥ 2.

If each vertex of C had degree 1, then C = K2, contrary to assumption.
Now assume that both x, y have degree ≥ 2. We claim that xy ∈ E(G). If
not there is a path with length ≥ 2 and endpoints x, y, so that x is joined
to some vertex x1 6= y on the path, and x1 is joined to y or to some vertex
x2 6= y. As deg(x) ≥ 2, there is some x0 joined to x distinct from x1. If
we delete xx1 then neither x nor x1 is isolated in G − e: x is joined to x0

and x1 is joined to x2 or y. This contradicts Claim 1. Hence, xy ∈ E(G).
Since deg(x), deg(y) ≥ 2, we can find x′ 6= y joined to x and y′ 6= x joined
to y, where y′ may not be x′. Deleting xy leaves neither x nor y isolated in
G− e, and so Claim 2 follows.

From the claim, each component is a star; thus, for the graph to be
1-e.c. it must have at least two components. ¤

3 2-l.c. graphs of all orders

We do not have a complete classification of the 2-l.c. graphs. However,
we have found examples of 2-l.c. graphs of all possible orders. Before we
present these examples we recall some results from [3].
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1. The Cartesian product of K3 with itself, written K3¤K3, is the unique
2-e.c. minimal graph. See Figure 1.
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Figure 1: K3¤K3.

2. Define a graph G = G∗(k) where k is even and k ≥ 6 as follows
(arithmetic is mod 2k): V (G) = {1, . . . , 2k + 1}. Each even vertex i
is joined to all other even vertices except i + k, and is joined to i− 1
and i + 1. Each odd vertex 6= 2k + 1 is joined to i− 1, i + 1, 2k + 1,
and i+k. 2k+1 is joined to all of the odd vertices. Each graph G∗(k)
is 2-e.c. and 2-e.c. critical (when a vertex is deleted, the remaining
graph is not 2-e.c.). We include a table, from [3], which will be useful
later, which proves that G∗(k) is 2-e.c.. By symmetry we may omit
the first two rows of the “2nd only” column.

joined to
vertices both neither 1st only 2nd only
i, j odd 6= 2k + 1 odd/∈ i− 1 if
2k + 1 {i, j, i + k, j 6= i− 2

j + k} i + 1 else
i, j even even/∈ 2k + 1 i− 1 if

{i, j, i + k, j 6= i− 2
j + k} i + 1 else

i even, j − 1 if odd/∈ even/∈ 2k + 1
j odd 6= i 6= j − 1 + k {j, j + k, i− 1, {i, i + k,
2k + 1 j + 1 else i + 1, 2k + 1} j − 1, j + 1}
i odd 6= i + k even/∈ i + 1 odd/∈
2k + 1, {i− 1, i + 1} {i, 2k + 1,
2k + 1 i + k}
i even, i− 1 i + k even6= i + k i + 3
2k + 1
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K3¤K3 is 2-l.c. as it is the unique 2-e.c. minimal graph. We claim that
the following graphs H and J are 2-l.c. of orders 10 and 13, respectively
(see Figures 2 and 3; note that J is a spanning subgraph of G∗(6).)
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Figure 2: The graph H.
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Figure 3: The graph J .

We leave it as an exercise to show that H is 2-e.c.. For the line-criticality
of H, we supply the following table that lists a problem that cannot be
solved if the given edge is deleted. Symmetry covers the remaining cases
as 12 ∼ 56, 18 ∼ 45, 19 ∼ 59, 23 ∼ 67, 24 ∼ 68, 28 ∼ 64, (2)(10) ∼ (6)(10),
34 ∼ 78, 39 ∼ 79 and (3)(10) ∼ (7)(10), where e ∼ f means there is an
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automorphism of the graph which maps the ends of e onto the ends of f.

edge deleted 12 18 15 19 23

cannot solve
(

1 8
1 1

) (
1 2
1 1

) (
1 9
1 1

) (
1 5
1 1

)(
3 4
1 1

)

edge deleted 24 28 (2)(10) 34 37

cannot solve
(

4 3
1 1

) (
1 2
1 1

) (
10 1
1 1

)(
4 2
1 1

)(
3 9
1 1

)

edge deleted 39 (3)(10)

cannot solve
(

9 7
1 1

)(
10 2
1 1

)

We verify that J is 2–l.c.; we leave it as an exercise to show that J is
2-e.c.. For line-criticality of J , we supply the following table.

xy deleted (i)(i + 6), (i)(13), (i)(i + 1),
i odd 6= 13 i odd 6= 13 i odd 6= 13

cannot solve
(

i 13
1 1

) (
i + 6 13
1 1

) (
i i− 1
1 1

)

xy deleted (i)(i− 1), (2)(10) (i)(i + 2),
i odd 6= 13 ((4)(12) is similar ) i even

cannot solve
(

i i + 1
1 1

) (
2 8
1 1

) (
i i + 1
1 1

)

3.1 Orders ≥ 17, ≡ 1 (mod 4)

For each even k ≥ 8, define a graph G∗∗(k) which is a spanning subgraph of
G∗(k). All the edges are the same except between even vertices. In G∗∗(k),
an even i is joined to i± 2, and to i + 4l 6= i + k with l ≥ 1 (mod 2k).

Theorem 3 G∗∗(k) is 2-l.c. for each k ≥ 8.

Proof. There are two cases. In the first case, k ≡ 0 (mod 4); here,
i, even, is joined to i + k ± 4 but is not joined to i + k ± 2. In the second
case, k ≡ 2 (mod 4); here, i, even, is not joined to i + k ± 4 and is joined
to i + k± 2. We give the proof for the first case; the second case is similar.

We first show that G∗∗(k) is 2-e.c.. We consider 2-e.c. problems of the

form
(

x y
p q

)
, where p, q ∈ {0, 1}. G∗∗(k) is obtained from G∗(k) by

deleting some edges between even vertices. So for 2-e.c. problems where 1)
x, y are both odd, 2) p, q are both 0, or 3) the solution z in G∗(k) is odd,
a solution in G∗(k) is a solution in G∗∗(k).
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The remaining problems are of the form i)
(

even even
1 1

)
,

ii)
(

even odd 6= 2k + 1
1 1

)
, iii)

(
even odd 6= 2k + 1
1 0

)
, and

iv)
(

even 2k + 1
1 0

)
.

iv)
(

x 2k + 1
1 0

)
, for x even, is solved by x + 2 or any other even

vertex that x is joined to.

iii)
(

x y
1 0

)
, where x is even and y is odd, y 6= 2k + 1, is solved by

any even vertex that x is joined to other than y − 1 and y + 1.

i) Consider
(

x y
1 1

)
where x, y are both even. Without loss of gen-

erality, we can assume that x = 2 and that y ∈ {4, 6, . . . ., k + 2} (the

remaining cases follow by symmetry). We have:
(

2 4
1 1

)
is solved by 3,

(
2 6
1 1

)
is solved by 4. If l ≥ 1, 6 + 4l 6= k + 2, then

(
2 6 + 4l
1 1

)
is

solved by 6 + 4(l− 1). If l ≥ 0, 6 + 4l + 2 6= k + 2 then
(

2 6 + 4l + 2
1 1

)

is solved by 6 + 4l.

(
2 k + 2
1 1

)
is solved by k − 2.

ii) Consider
(

x y
1 1

)
where x is even, y odd 6= 2k + 1.

Without loss of generality, we may assume that x = 2 and y ∈ {3, . . . , k+

1}. For 3 ≤ y ≤ k−1,
(

2 y
1 1

)
is solved by either y−1 or y+1 (depending

on the position of y).
(

2 k + 1
1 1

)
is solved by 1.

We next show line-criticality of G∗∗(k). The majority of cases are han-
dled in the following table.

xy deleted (i)(i + k), (i)(2k + 1), (i)(i + 1),
i odd 6= 2k + 1 i odd 6= 2k + 1 i odd

cannot solve
(

i 2k + 1
1 1

) (
i i + k
1 1

) (
i i− 1
1 1

)

xy deleted (i)(i− 1), (i)(i + 2),
i odd 6= 2k + 1 i even

cannot solve
(

i i + 1
1 1

) (
i i + 1
1 1

)
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The last case is when i, j are both even and i−j 6≡ ±2 (mod 2k). As before,
by symmetry we may assume i = 2 and j ∈ {6, . . . ., k − 2}. If we delete 26

then we cannot solve
(

2 7
1 1

)
(since k ≥ 8, 7 < 1+ k, so 1 and 3 cannot

solve the problem). If we delete (2)(6 + 4l), where l ≥ 1 and 6 + 4l < 2 + k

then we cannot solve
(

2 6 + 4l − 1
1 1

)
. ¤

3.2 Orders ≡ 0, 2, 3 (mod 4)

We can realize the rest of the odd spectrum of 2-l.c. graphs with the aid of
the following definition that played a crucial role in [3].

Definition 4 Let G be a graph and let e = ab ∈ E(G). The replicate,
R = R(G, e), is the graph with vertices V (G) ∪ {a′, b′} and edges E(G) ∪
{a′b′}∪{a′c : ac ∈ E(G) and c 6= b}∪{b′c : bc ∈ E(G) and c 6= a} (in other
words, add new nodes a′ and b′ and edge a′b′ to G, join a′ to N(a) − {b}
and do the analogous for b′).

As was shown in [3], if G is 2-e.c. then for any e ∈ E(G), R(G, e) is
2-e.c.. We now present conditions for replication to “preserve 2-l.c.”.

Theorem 5 Let G be 2-l.c. and fix e = ab ∈ E(G). Suppose G satisfies:

1. For edges f incident with e,

(a) if f = au, there is a vertex c such that u is the unique solution

to
(

a c
1 1

)
in G;

(b) if f = bu, there is a vertex c such that u is the unique solution

to
(

b c
1 1

)
in G;

2. For edges f = uv, where u, v are distinct from a, b, there exists a vertex

c such that v is the unique solution to
(

u c
1 1

)
in G or there exists

a vertex d such that u is the unique solution to
(

v d
1 1

)
in G.

Then R = R(G, e) is 2-l.c..

Proof. Fix f ∈ E(R). We consider cases based on the location of f.

(i) If f = e, then
(

a a′

1 0

)
is uniquely solved by b in R, so this

problem has no solution in R− f .
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(ii) If f = au, there exists a vertex c such that u is the unique solution

to
(

a c
1 1

)
. This problem cannot be solved in R−f since neither a′ nor

b′ is joined to a. Case (1b) is analogous.
(iii) Suppose f = uv where u, v are distinct from a, b. Suppose Case

(2) holds so there exists a vertex c such that v is the unique solution to(
u c
1 1

)
in G. Suppose this problem is solved by a′ in R. By hypothesis

u 6= a, and since a′c ∈ E(R), u, c 6= a. Thus a solves
(

u c
1 1

)
in G, a

contradiction. Similarly, b′ cannot solve
(

u c
1 1

)
. The other case of (2)

is analogous.
(iv) Suppose f ∈ E(R)− E(G).

a) If f = a′b′ then
(

a′ a
1 0

)
cannot be solved in R− f.

b) Suppose f = a′u for some u ∈ V (G) − {a, b}. Then au ∈ E(G). By

(1a) there is a vertex c 6= u such that u is the unique solution to
(

a c
1 1

)

in G. We claim that
(

a′ c
1 1

)
has no solution in R − f. Otherwise, say

d solves this problem in R − f , so that d 6= u. Then a′d, cd ∈ E(R − f).
Since a′d ∈ E(R), d 6= a, b.

If c = b then d 6= a′, b′ so that ad ∈ E(G). Hence,
(

a b
1 1

)
is solved

by d 6= u in G, which is a contradiction.
We therefore assume that c 6= b. If d = b′ then cb′ ∈ E(R) so that

cb ∈ E(G) as c 6= a, b. But then
(

a c
1 1

)
is solved by b 6= u in G, which

is a contradiction. Thus, d 6= b′ and so ad ∈ E(G); therefore, d 6= u solves(
a c
1 1

)
in G, which is a contradiction. ¤

We leave it to the reader to check that the conditions of Theorem 5 are
satisfied by K3¤K3 when e = 15 (or, for any other edge, since K3¤K3 is
edge-transitive). For J, we claim the conditions of Theorem 5 hold when
e = 17. The verification of this is similar to the case for K3¤K3 except
for the edges (2)(10) and (4)(12). (2)(10) is not incident with 17, so we

show (2). But 10 is the unique solution of
(

2 8
1 1

)
. (4)(12) is handled

similarly.
For G∗∗(k) we let e = (1)(1+k). We leave it to the reader to verify that

the conditions of Theorem 5 hold for all edges f = xy when one of x or y
is odd. Hence, we verify the conditions of the Theorem only for x, y both
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even. We can assume x = 2, and 4 ≤ y ≤ 2 + k. Note that 4 is the unique

solution for
(

2 3
1 1

)
and 6 is the unique solution for

(
2 7
1 1

)
(using

the fact that k ≥ 8). We now consider edges of the from (2, 6 + 4l), with
l ≥ 1, 6 + 4l 6= 2 + k.

Case 1. k ≡ 0 (mod 4).

We claim that y = 6+4l is the unique solution to
(

2 7 + 4l
1 1

)
. Now

7+4l is joined to 6+4l, 8+4l, 2k +1, and 7+4l+k. Note that 7+4l+k is
joined to 2 only if (all arithmetic mod 2k) either i) 7+4l + k ≡ 1 ≡ 1+2k,
or ii) 7 + 4l + k ≡ 3 ≡ 3 + 2k. For i) 6 + 4l ≡ k. But 2 is not joined to k in
Case 1. As 2 is not joined to 8 + 4l or 2k + 1 our claim follows.

For ii) 6 + 4l ≡ 2 + k, which is not joined to 2.
Case 2. k ≡ 2 (mod 4).

We claim that y = 6+4l is the unique solution to
(

2 5 + 4l
1 1

)
. The

argument is similar to that of Case 1 and so is omitted. Hence, we have
found 2-l.c. graphs of all odd orders ≥ 9.

For even orders, we rely on the following lemma. Fix G and e = ab ∈
E(G). Define R1(G, e) = R(G, e), and Rn+1(G, e) = R(Rn(G, e), e); the
replicated edge in Rn+1(G, e) is denoted en+1 = an+1bn+1.

Lemma 6 If G is 2-l.c. and G and e ∈ E(G) satisfy the conditions of
Theorem 5, then Rn(G, e) is 2-l.c. for each n ≥ 1.

Proof. We prove the lemma by induction on n ≥ 1; the case for
n = 1 follows by Theorem 5. Assume Rn = Rn(G, e) is 2-l.c. and for each

1 ≤ j ≤ n, aj is the unique solution of
(

bj b
1 0

)
and bj is the unique

solution of
(

aj a
1 0

)
.

Fix an edge f in Rn+1 = Rn+1(G, e); we show that R − f is not 2-
e.c.. The cases when f is one of the edges {e, e1, . . . , en} follow by remarks
at the end of the preceding paragraph. an+1 is the unique solution of(

bn+1 b
1 0

)
, and so R− en+1 is not 2-e.c..

Case i) f ∈ E(G)− {e}.
The argument in this case is similar to Cases ii) to iii) in the proof of

Theorem 5, replacing the roles of a′ and b′ by aj and bj , respectively, and
using the facts that each of aj and bj are not joined to a, b nor any of the
ak, bk when k 6= j.

Case ii) f ∈ E(R)− (E(G) ∪ {e1, . . . , en+1}).
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The argument in this case is similar to that of Case iv) of Theorem 5,
again using the fact that each aj and bj are not joined to a, b nor any of
the ak, bk when k 6= j. ¤

For examples of 2-l.c. graphs of even orders, we first note that from the
above tables, H satisfies the conditions of Theorem 5 with e = 15. Now use
Lemma 6 to replicate the edge 15 in H repeatedly.

Since the complement of an n-e.c. graph is n-e.c., the complements of
our 2-l.c. graphs are 2-e.c. graphs that are critical the “other” way: adding
an edge that is not already there results in a graph that is not 2-e.c.. We
thank the anonymous referee for this and other useful remarks.
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