
THE SEARCH FOR N-E.C. GRAPHS

ANTHONY BONATO

Abstract. Almost all finite graphs have the n-e.c. adjacency prop-
erty, although until recently few explicit examples of such graphs
were known. We survey some recently discovered families of ex-
plicit finite n-e.c. graphs, and present a new construction of strongly
regular n-e.c. arising from affine planes.

1. Introduction

Adjacency properties of graphs were first discovered and investigated
by Erdős, Rényi [22] in their generative work on random graphs. An
adjacency property is a global property of a graph asserting that for
every set S of vertices of some fixed type, there is a vertex joined
to some of the vertices of S in a prescribed way. The so-called n-e.c.
adjacency property has received much recent attention, and is the focus
of this survey. For a positive integer n, a graph is n-existentially closed
or n-e.c., if for all disjoint sets of vertices A and B with |A ∪ B| = n
(one of A or B can be empty), there is a vertex z not in A∪B joined to
each vertex of A and no vertex of B. We say that z is correctly joined to
A and B. Hence, for all n-subsets S of vertices, there exist 2n vertices
joined to S in all possible ways.

For example, a 1-e.c. graph is one with neither isolated nor universal
vertices. A graph is 2-e.c. if for each pair of distinct vertices a and
b, there are four vertices not equalling a and b joined to them in all
possible ways. See Figure 2 for an example of a 2-e.c. graph.

Although the n-e.c. property is straightforward to define, it is not
obvious from the definition that graphs with the property exist. How-
ever, as first proved in [22], almost all finite graphs are n-e.c. We sketch
a proof here for completeness. For a positive integer m, the probability
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space G(m, 1
2
) consists of graphs with vertices {0, . . . , m − 1} so that

two distinct vertices are joined independently and with probability 1
2
.

Theorem 1. Fix an integer n > 1. With probability 1 as m → ∞,
G(m, 1

2
) satisfies the n-e.c. property.

Proof. Fix an n-set X of vertices, and fix subsets A and B of X with
A∪B = X. For a given z /∈ X, the probability z is not correctly joined
to A and B is

1− 1

2

n

.

The probability that no node of G is correctly joined to A and B is
therefore (

1− 1

2

n
)m−n

.

As there are
(

m
n

)
choices for X and 2n choices of A and B in X, the

probability that G(m, 12) is not n-e.c. is at most
(

m

n

)
2n

(
1− 1

2

n
)m−n

which tends to 0 as m →∞. ¤
Theorem 1 implies that there are many examples of n-e.c. graphs

(note also that it easily generalizes by replacing 1
2

with any fixed real
number p ∈ (0, 1)). Despite this fact, until recently only one ex-
plicit family of n-e.c. graphs was known: the Paley graphs (see Section
3). This paradoxical quality of n-e.c. graphs being both common and
rare has intrigued many researchers with differing backgrounds such as
graph theorists, logicians, design theorists, probabilists, and geometers.

If a graph is n-e.c. for all n, then the graph is called e.c. (note that any
e.c. graph is infinite). Any two countable e.c. graphs are isomorphic;
the isomorphic type is named the infinite random or Rado graph, and
is written R. An important result of Erdős and Rényi [22] states that
with probability 1, a countably infinite random graph is isomorphic to
R. The (deterministic) graph R has been the focus of much research
activity. See [15] for a survey on R.

With the example of R in mind, if a finite graph G is n-e.c., then G
may be viewed as a finitary version of R. Hence, the n-e.c. properties are
one deterministic measure of randomness in a graph. Other notions of
randomness in graphs were proposed and thoroughly investigated. Two
such notions (which we will not discuss here) are quasi-randomness [20]
and pseudo-randomness [37]. Many of the graphs in this survey - such
as Paley graphs - satisfy these properties. However, these randomness
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properties do not necessarily imply the n-e.c. properties. Examples are
given in [17] which are pseudo-random but not 4-e.c. For additional
information on pseudo-randomness and similar properties in graphs,
the interested reader is directed to the surveys [19] and [32].

In the last few years, many new explicit families of finite n-e.c. graphs
were discovered. Our goal in this survey is to summarize some of the
recent constructions of explicit n-e.c. graphs. The techniques used in
these constructions are diverse, emanating from probability theory and
random graphs, finite geometry, number theory, design theory, and
matrix theory. This diversity makes the topic of n-e.c. graphs both
challenging and rewarding. More constructions of n-e.c. graphs likely
remain undiscovered, and it is our desire that this survey will help
foster work in this area.

Apart from their theoretical interest, adjacency properties have re-
cently emerged as an important tool in research on real-world networks.
Several evolutionary random models for the evolution of the web graph
and other self-organizing networks have been proposed. The n-e.c.
property and its variants have been used in [12] and [31] to analyze
the graphs generated by the models, and to help find distinguishing
properties of the models.

After an introduction to n-e.c. graphs and a summary of background
material in Section 2, we will focus on three categories of constructions:
Paley graphs and their variants (Section 3), graphs defined using com-
binatorial designs and matrices (Section 4), and graphs arising from
finite geometry (Section 5). In Section 5, we construct a new family of
explicit strongly regular n-e.c. graphs derived from affine planes; the
proof of the n-e.c. property for this family is elementary.

As a disclaimer, while we present a thorough overview of several re-
cent constructions of n-e.c. graphs, we cannot guarantee that this sur-
vey is exhaustive. A useful reference for background topics from graph
theory, design theory, and geometry is [14]. All graphs considered are
simple, undirected, and finite unless otherwise stated. All logarithms
are in base e.

2. Background on N-e.c. graphs

While adjacency properties similar to n-e.c. were first studied by
Erdős and Rényi, the notion of an existentially closed graph (or more
generally, a first-order existentially closed structure) was introduced by
the logician Abraham Robinson in the 1960s. Existentially closure may
be thought of as a generalization of algebraic closure in field theory.
(The moniker n-e.c. structure was first explicitly used in the author’s
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Ph.D. thesis [7]; see also [8]). While a formal definition of e.c. graph
is outside the scope of this survey, an important fact is that a graph is
e.c. if and only if it is n-e.c. for all n. The n-e.c. properties and related
adjacency properties also play a role in finite model theory, and were
used in [23, 25] to prove the zero-one law in the first-order theory of
graphs. For more on existentially closed structures and zero-one laws,
see [28].

If a graph G has the n-e.c. property, then G possesses other struc-
tural properties summarized in the following theorem (whose proof is
straightforward, and so is omitted). The complement of a graph G is
denoted by G, and the chromatic and clique numbers of G are denoted
by χ(G), ω(G), respectively. Given a vertex x, the induced subgraph
formed by deleting x is denoted by G − x, and N(x) = {y ∈ V (G) :
xy ∈ E(G)}, N c(x) = {y ∈ V (G) : x 6= y and xy ∈ E(G)}. If S is a
set of vertices in G, then we write G ¹ S for the subgraph induced by
S in G.

Theorem 2. Fix n a positive integer, and let G be an n-e.c. graph.

(1) The graph G is m-e.c., for all 1 ≤ m ≤ n− 1.
(2) The graph G has order at least n + 2n, and has at least n2n−1

many edges.
(3) The graph G is n-e.c.
(4) Each graph of order at most n + 1 embeds in G. In particular,

χ(G), ω(G) ≥ n + 1.
(5) If n > 1, then for each vertex x of G, each of the graphs

G− x,G ¹ N(x), and G ¹ N c(x)

are (n− 1)-e.c.

For each positive integer n, define mec(n) to be the minimum order
of an n-e.c. graph. It is straightforward to see that mec(1) = 4. There
are exactly three non-isomorphic 1-e.c. graphs of order 4: 2K2, C4, and
P4; see Figure 1. By Theorem 2 (5), mec(2) ≥ 9. For two graphs G

Figure 1. The 1-e.c. graphs of minimum order.

and H, the Cartesian product of G and H, written G¤H, has vertices
V (G)×V (H) and edges (a, b)(c, d) ∈ E(G¤H) if and only if ac ∈ E(G)
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and b = d, or a = c and bd ∈ E(H). The graph K3¤K3 is shown in
Figure 2. In [13] it was first noted that mec(2) = 9 and K3¤K3 is 2-e.c.

Figure 2. The unique 2-e.c. graph of minimum order.

In [9] it was observed that K3¤K3 is in fact the unique isomorphism
type of 2-e.c. graph of order 9.

By Theorem 2 (5), mec(3) ≥ 19. However, a 19-vertex 3 -e.c. graph
would be 9-regular, and so mec(3) ≥ 20. A computer search of [34]
showed that in fact, mec(3) ≥ 22. A computer search of [9] found two
non-isomorphic 3-e.c. graphs of order 28 (although others may exist).
Hence, 22 ≤ mec(3) ≤ 28. The exact determination of mec(n) where
n ≥ 3 is a difficult open problem.

For n > 1, by Theorem 2 (5) we have that mec(n) ≥ 2mec(n−1)+1.
In particular, mec(n) = Ω(2n). The proof of Theorem 1 shows that
mec(n) = O(2nn2). Hence,

lim
n→∞

mec(n)1/n = 2.

Another open problem surrounding the function mec(n) is to determine
whether

lim
n→∞

mec(n)

2n

exists, and if so, to find its value.

3. Paley graphs and their variants

Most of the known explicit n-e.c. graphs are strongly regular. A k
-regular graph G with v vertices, so that each pair of joined vertices
has exactly λ common neighbours, and each pair of non-joined vertices
has exactly µ common neighbours is called a strongly regular graph; we
say that G is a SRG(v, k, λ, µ).

The first family of explicit graphs that were discovered to contain n
-e.c. members for all n were Paley graphs. Paley graphs are defined
over certain finite fields, and it has long been observed that they satisfy
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many of the properties of the random graph G(n, 1
2
) (for instance, they

are quasi-random in the sense of [20]). The Paley graph of order q, for
a prime power q ≡ 1 (mod 4), is the graph Pq whose vertices are the
elements of the finite field GF(q) in which two distinct vertices x and y
are joined if and only if x− y is a square in GF(q). For example, P5 is
isomorphic to the 5 -cycle, while P9 is isomorphic to the graph K3¤K3

of Figure 2.
Paley graphs have many properties as described in the following

theorem, proved using properties of finite fields.

Theorem 3. Fix q a prime power with q ≡ 1 (mod 4).

(1) The graph Pq is a SRG(q, q−1
2

, q−5
4

, q−1
4

).

(2) The graph Pq is self-complementary ; that is Pq
∼= Pq.

(3) The graph Pq is symmetric; that is, it is vertex- and edge-
transitive.

As proved in [4, 6], sufficiently large Paley graphs are n-e.c.

Theorem 4. If q > n222n−2, then Pq is n-e.c.

The proofs of Theorem 4 in [4, 6] each use a famous result from
number theory on character sum estimates, namely Weil’s proof of the
Riemann hypothesis over finite fields. For a proof of the following
theorem and additional background, see [36].

Theorem 5. Let χ be a nontrivial character of order d over GF(q).
Suppose that f(x) is a polynomial over GF(q) with exactly m distinct
zeros and is not of the form c(g(x))d, where c ∈ GF(q) and g(x) is a
polynomial over GF(q). Then∣∣∣∣∣∣

∑

x∈GF(q)

χ(f(x))

∣∣∣∣∣∣
≤ (m− 1)q1/2.

Proofs of Theorem 4 using Theorem 5 are similar to those given
by Graham and Spencer [26] for tournaments. If we consider q ≡ 3
(mod 4) in the definition of Paley graphs, then we obtain a tournament

called the Paley tournament
−→
Pq. An n-e.c. tournament is defined in

an analogous way to an n-e.c. graph. A proof that sufficiently large
Paley tournaments are n-e.c. was given in [26]. See Figure 3 for the

2-e.c. tournament
−→
P7 (which is the unique isomorphism type of 2-e.c.

tournament of order 7; see [10]).
Paley graphs may be generalized in several ways. One such variation

of Paley graphs was given in [2]. The vertices are the elements of GF(q),

with q a prime power. A cubic Paley graph P
(3)
q of order q ≡ 1 (mod 3)
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Figure 3. The unique 2-e.c. tournament of minimum

order,
−→
P7.

has vertices joined if their difference is the cube of an element of GF(q).

A quadruple Paley graph P
(4)
q of order q ≡ 1 (mod 8) has vertices joined

if their difference is the fourth power of an element of GF(q). The
following result from [2] was proved using character sum estimates.

Theorem 6. (1) If q > (2n22n−1−22n+1)2n√q+3n2−n32n−1, then

P
(3)
q is n-e.c.

(2) If q > (2n22n−1− 22n +1)3n√q +4n3−n42n−1, then P
(4)
q is n-e.c.

Another recent variation on Paley graphs was given in [30]. Let
q = pr be a prime power so that q ≡ 1 (mod 4) and p ≡ 3 (mod 4).
Let v be a generator of the multiplicative group of GF(q) (hence, v
is a primitive root of q). Define the graph P ∗(q) to have vertices the
elements of GF(q), with two vertices joined if their difference is of the
form vj where j ≡ 0 or j ≡ 1 (mod 4). Similar to Paley graphs, any
graph P ∗(q) is strongly regular, self-complementary, and symmetric.
Using a character sum estimate, the following result is proven in [30].

Theorem 7. If q = pr is a prime power so that q ≡ 1 (mod 4), p ≡ 3
(mod 4), and q > 8n228n, then P ∗(q) is n-e.c.

4. Matrices and Combinatorial designs

As described in the last section, the proofs of adjacency properties
of Paley graphs and their generalizations exploit non-elementary char-
acter sum estimates similar to Theorem 5. A different approach using
combinatorial matrix theory was given in [11]. A Hadamard matrix
is a square matrix whose entries are either +1 or −1 and whose rows
are mutually orthogonal. As is well-known, the order of a Hadamard
matrix must be 1, 2, or a multiple of 4.
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Let Jn be the n × n matrix of all 1s. A Hadamard matrix H of
order 4n2 is a Bush-type Hadamard matrix if H = [Hij], where Hij are
submatrices (or blocks) of order 2n, Hii = J2n, and HijJ2n = J2nHij,
for i 6= j, 1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n . A symmetric Bush-type Hadamard
matrix of order 4 is shown below.



1 1 1 −1
1 1 −1 1
1 −1 1 1
−1 1 1 1




A symmetric Bush-type Hadamard matrix of order 4n2 is the ∓
adjacency matrix (with −1 for adjacency, +1 for non-adjacency) of a
SRG(4n2, 2n2 − n, n2 − n, n2 − n). By using a result of Kharaghani
which generates a Bush-type Hadamard matrix of order 16n2 from any
Hadamard matrix of order 4n, the following result is proved in [11].

Theorem 8. Let 4n be the order of a Hadamard matrix, with n > 1
odd. Then there is a 3-e.c. SRG(16n2, 8n2 − 2n, 4n2 − 2n, 4n2 − 2n).

While this construction was promising, it unfortunately did not gen-
erate n -e.c. graphs with n > 3. Cameron and Stark [17] provided a
considerable breakthrough by giving a new explicit family of strongly
regular n-e.c. graphs that are not isomorphic to Paley graphs.

To define the graphs of [17] we require some facts from design theory.
Let v and λ be fixed positive integers, and fix k so that 2 ≤ k < v.
Let S = {1, 2, . . . , v}. A 2-( v, k, λ) design (or simply 2-design) is a
collection D of subsets of S called blocks such that

(1) each block has exactly k elements;
(2) each 2-element subset of S is contained in exactly λ blocks.

An affine design is a 2-design such that

(1) every two blocks are disjoint or intersect in a constant number
of points;

(2) each block together with all blocks disjoint from it form a paral-
lel class : set of n mutually disjoint blocks partitioning all points
of the design.

Following results by Fon-der-Flaass on generating strongly regular
graphs from affine designs, the following construction was given in [17].
Fix q a prime power such that q ≡ 3 (mod 4). For the Paley tournament−→
Pq, let Aq be the adjacency matrix of

−→
Pq with (Aq)i,j = 1 if (i, j) is

a directed edge, and (Aq)i,j = −1 if (j, i) is a directed edge (and 0
otherwise). Let Iq be the order q identity matrix, Bq = Aq − Iq, and
let Cq be the order (q + 1) square matrix obtained from Bq by adding
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an initial row of 1’s and a column of 1 ’s. For each q, the last q rows
of Cq are the ±1 incidence matrix of an affine design. Each parallel
class contains two blocks, corresponding to + and −. Let Dq be the
incidence matrix of a design on q+1 points with vertices corresponding
to columns of Cq, and parallel classes corresponding to rows of Cq.

Choose permutations πi, 1 ≤ i ≤ q + 1 independently and uni-
formly at random from the set of all permutations on {1, 2, . . . , q}. Let
S1, . . . ,Sq+1 be affine designs such that the point sets V1, . . . , Vq+1 are
copies of {1, 2, . . . , q+1} and such that the jth row of Mi is the πi(j)th
row of Dq. Let Si = (Vi, Li), and set I = {1, 2, . . . , q + 1}.

For every i, denote the parallel class of Si corresponding to the jth
row of Mi by symbols Lij, j ∈ I\{i}. For v ∈ Vi, let lij(v) denote
the line in the parallel class Lij which contains v. For every pair i, j
with i 6= j choose an arbitrary bijection σi,j : Lij → Lji from the two
possibilities. It is required that σj,i = σ−1

i,j .
Define a graph G1((Si), (σi,j)) with vertices X =

⋃
i∈I Vi. The sets

Vi are independent. Two vertices u ∈ Vi and v ∈ Vj with i 6= j are
joined if w ∈ σi,j(lij(v)). For sufficiently large q, it is proved in [17] that
G1((Si), (σi,j)) is n-e.c. Further, the construction supplies a prolific or
superexponential number of non-isomorphic examples.

Theorem 9. Suppose that q is a prime power such that q ≡ 3 (mod 4).

There is a function ε(q) = O(q−1 log q) such that there exist 2(q+1
2 )(1−ε(q))

non-isomorphic SRG((q + 1)2, q(q + 1)/2, (q2 − 1)/4, (q2 − 1)/4) which
are n-e.c. whenever q ≥ 16n222n.

A drawback of Theorem 9 is that its proof uses Poisson approxima-
tion theory and is not elementary. In the next section, a geometric
construction of n-e.c. graphs bypasses this difficulty (but does not pro-
vide a prolific number of examples).

4.1. Steiner triple systems. Another direction of research concerns
n-e.c. graphs arising from Steiner triple systems. A Steiner triple sys-
tem of order v, written STS(v) is a 2-(v, 3, 1) design. An STS(v) exists
if and only if v ≡ 1 or v ≡ 3 (mod 6). The block-intersection graph
of a Steiner triple system is a graph whose vertices are the blocks of
the STS(v) with two blocks joined if they have non-empty intersec-

tion. Such a graph is an SRG(v2−v
6

, 3v−9
2

, v+3
2

, 9). In [24] it is shown
that Steiner triple systems with a 3-e.c. block intersection graph are
rare.

Theorem 10. (1) The block-intersection graph of a STS(v) is 2-
e.c. if and only if v ≥ 13.
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(2) If STS(v) has a 3-e.c. block-intersection graph, then v = 19 or
v = 21.

A computer search in [24] found 3-e.c. graphs when v = 19, but none
if v = 21 (although they may exist). McKay and Pike [33] found 2-e.c.
graphs using block-intersection graphs of balanced incomplete block
designs. It is an open problem to construct n-e.c. graphs for n > 3
using block-intersection graphs of designs.

4.2. Matrices and constraints. A recent construction of n-e.c. graphs
using matrices was given in [5], based on certain constructions in com-
binatorial set theory due to Hausdorff [27]. Consider matrices with
r = 2n(n− 1) + 1 rows and c columns, where c is chosen so that

2c ≥ 2r2

(
rc

n− 1

)
.

We define a graph G as follows. The vertices of G are r × c zero-
one matrices, with the property that at least n(n − 1) + 1 rows are
identical and equal to the vector v. The edges are described as follows.
A constraint is given by a pair (A,F ), where A is a set of n− 1 entries
in an r × c matrix, and F is a family of at most n functions from A
to {0, 1}. A vertex V satisfies a constraint (A,F ) if for some f ∈ F,
for all (i, j) ∈ A, Vij = f(i, j). Fix a surjection C from the set of c-
component zero-one vectors onto the set of constraints (such a C exists
by a counting argument). Every vertex V determines a constraint
V ∗ = C(v). There is a directed edge (V,W ) if W satisfies the constraint
V ∗. Let V be joined to W if (V, W ), (W,V ) are either both present or
neither is present.

The graph G has parameters r, c, v, and the surjection C. Hence, we
will we use the notation G(r, c, v, C) for such a graph. The following is
proved in [5] without using the probabilistic method.

Theorem 11. For a fixed n, let r = 2n(n − 1) + 1, c satisfy 2c ≥
2r2( rc

n−1

)
, and let v and C be chosen as above. Then the graph G(r, c, v, C)

is n-e.c.

5. Finite geometry

The last constructions of n-e.c. graphs we supply use finite geometry.
The geometric approach, apart from being somewhat more intuitive
than the previous ones exploiting designs and matrices, will supply
elementary constructions and proofs.

Consider an affine plane A of order q, where A is coordinatized over
GF(q), with q a prime power, In particular, A is a 2-(q2, q, 1) design
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(with blocks called lines), and hence, satisfies the property that given a
point x and a line `, there is a unique line parallel to ` that goes through
x. Each line contains exactly q points. The relation of parallelism on
the set of lines is an equivalence relation, and the equivalence classes are
called parallel classes. There are q + 1 parallel classes (corresponding
to points on the lines at infinity). We use the notation pq for the
line between p and q. (Although this notation conflicts with our earlier
notation for edges of a graph, we keep both notations since they are
standard.)

We now consider a construction of strongly regular graphs which
is due to Delsarte and Goethals, and to Turyn; see [35]. Let `∞ be
the (q + 1)-element line at infinity, identified with slopes. Fix S ⊆ `∞.
Define G(q, S, A) to have vertices the points of A, and two vertices p and
q are joined if and only if the line pq has slope in S. It is easy to see that
G(q, S,A) is a SRG(q2, |S|(q−1), q−2+(|S|−1)(|S|−2), |S|(|S|−1)).
Let G(q, A) be the family of graphs G(q, S, A) for all choices of S; if
0 ≤ k ≤ q + 1 is fixed, then write G(q, k, A) for the subfamily of all
graphs in G(q, A) where |S| = k. For a fixed k, G(q, k, A) may contain
non-isomorphic members (in general, this is nontrivial to determine;
see [16]).

Fix A, an affine plane of even order q ≥ 8 coordinatized by GF(2k)
(hence, A is Desarguesian). Choose S to be any fixed set of q

2
slopes

in l∞. It follows that G is a SRG(q2, q(q−1)
2

, q(q−2)
4

, q(q−2)
4

) (which is a
Latin square graph). For infinitely many values of q, it is an exercise to
show that the parameters for the graphs in G(q, q

2
, A) are different than

those in Theorem 9. The graphs in G(q, q
2
, A) are well-known examples

of quasi-random graphs; see [20].
We may consider G(q, q

2
, A) as an equiprobable probability space of

cardinality
(

q+1
q
2

)
: each point of the probability space corresponds to

a choice of S with |S| = q
2
. With this view, the following result was

proven in [3].

Theorem 12. Let q be a power of 2 and fix n a positive integer. With
probability 1 as q →∞, G(q, q

2
, A) is n-e.c.

The proof of Theorem 12 is the first elementary one that an explicit
family has strongly regular n-e.c. members for all positive integers n.
The approach is, however, randomized. Not all the graphs G(q, q

2
, A)

are n-e.c. even for large q as described in the following result from [3].

Theorem 13. Let q ≥ 8 be a power of 2.

(1) All graphs G ∈ G(q, q
2
, A) are 3-e.c.

(2) For all n ≥ 4, there is a G ∈ G(q, q
2
, A) that is not n-e.c.
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We now give a new construction of explicit n-e.c. graphs. Our
method generates strongly regular n-e.c. graphs. Let A be an affine
plane with q2 points. For a fixed p ∈ (0, 1), choose m ∈ `∞ to be in
S independently with probability p; with the remaining probability, m
is in the complement of S. This makes G(q, A) into a probability space
which we denote Gp(q, A). While |S| is a random variable, all choices of
S give rise to a strongly regular graph. We prove the following result.

Theorem 14. Fix p ∈ (0, 1) and n a positive integer. With probability
1 as q →∞, Gp(q, A) is n-e.c.

Proof. Fix disjoint sets of vertices X and Y in G, with |X ∪ Y | = n.
Let U = X ∪Y. We prove that for large q, with probability 1 there is a
vertex z correctly joined to X and Y. To accomplish this, we construct
a set PU of points, disjoint from U, such that with probability 1, z is
in PU . We set s =

⌈
qb

⌉
, where b < 1 is fixed.

Fix a point v of A. The projection from v onto l∞, is the map πv :
A\{v} → `∞ taking a point x to the intersection of vx with `∞. Hence,
πv(x) is the slope of the line vx. If V is a set of points, then let πv(V ) =⋃

x∈V πv(x).
For sufficiently large q, we inductively construct a set of points PU

distinct from U with the following properties.

(1) If p ∈ PU , then |πp(U)| = n.
(2) For all distinct p and q in PU , πp(U) ∩ πq(U) = ∅.
(3) |PU | = s.

Define PU,1 by choosing any point p1 /∈ U that is not on a line joining
two points of U. For large q

n +

(
n

2

)
(q − 2) < q2,

so we may find such a p1.
For a fixed positive i ≤ s−1, suppose that PU,i has been constructed

for large q, with PU,i containing PU,1, and |PU,i| = i. We would like to
choose pi+1 /∈ U to be a point that is

(i) not on a line joining two points of U , and

(ii) not on a line joining a point of U to a point in
⋃i

j=1 πpj
(U).

Condition i) rules out
(

n
2

)
lines, while ii) rules out ni + n(n − 1)i

lines. For large q

n +

(
n

2

)
(q − 2) + ni(q − 1) + n(n− 1)i(q − 2) < n2qb+1 < q2,

so we may find a suitable pi+1 satisfying items 1) and 2). Add pi+1 to
PU,i to form PU,i+1. Define PU =

⋃s
i=1 PU,i so |PU | = s.
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For a fixed U = X ∪ Y, we estimate the probability that none of the
vertices of PU are correctly joined to X and Y. Suppose that m = |X|
and n−m = |Y |. By item 1), note that any z in PU has the property
that zx and zy have distinct slopes, where x, y are distinct points of U.
Note also that zx is an edge of G if and only if πz(x) ∈ S. Therefore,
the probability that a given z in PU is not joined correctly to X and
Y is the positive constant

(5.1) pn = 1− pm(1− p)n−m.

By item (2) in the defining properties of PU , any two distinct points
of PU induce disjoint slope sets in `∞. In particular, the probability
(5.1) independently holds for any choice of z in Pu. Hence, the proba-

bility that no z in PU is correctly joined to X and Y is (pn)dqbe. The
probability that Gp(q, A) is not n-e.c. is therefore at most

(
q2

n

)
2n(pn)dqbe = O(n log(2q2) + qb log(pn)),

which tends to 0 as q →∞. ¤

We note first that this randomized construction of n-e.c. graphs may
be generalized to higher dimensional affine spaces. The line at infinity
is replaced by the hyperplane H∞ at infinity (whose points are vectors
of co-dimension 1). We may choose vectors in H∞ independently with
fixed probability to obtain a probability space of regular (though not
necessarily strongly regular) graphs over the affine space. An n-e.c.
result analogous to Theorem 14 holds for these graphs; the details will
appear in a forthcoming paper.

As a second remark concerning Theorem 14, if elements of S are
chosen independently with probability p, then the expected cardinality
of S is p(q + 1). By the Chernoff bounds (see, for example, Section 2.1
of [29]), with probability tending to 1 as n tends to infinity, a graph
in Gp(q, A) is strongly regular with degree concentrated around p(q +
1). Hence, if p = 1/2 with q a power of 2, the space Gp(q, A) has
distribution similar to the space G(q, q

2
, A). If p 6= 1/2, then with high

probability, graphs in Gp(q, A) are n-e.c. and have different expected
strongly regular parameters than the graphs in G(q, q

2
, A), or Paley

graphs.
We finish with a variant on the problem of finding explicit n-e.c.

graphs. For triangle-free graphs, the natural version of the n-e.c prop-
erty requires that the set A must be independent. To be more precise,
a graph is n-saturated if for all disjoint sets of vertices A and B with
|A∪B| = n (one of A or B can be empty) such that A is independent,
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there is a vertex z not in A ∪ B joined to each vertex of A and no
vertex of B. The countable universal homogeneous triangle-free graph
is n-saturated for all n, but it is an open problem whether finite n-
saturated triangle-free graphs exist for all n. See [18] for further back-
ground on this problem. For a related property of triangle-free graphs,
see [1].

The existence of finite n-saturated graphs is an important problem in
the first-order logic of discrete structures: it is related to the problem
involving the approximation of infinite structures by finite ones. Prob-
abilistic arguments (which proved useful in the existence proofs of n
-e.c. graphs) do not seem to apply. It can be shown that the Higman-
Sims graph (the unique isomorphism type of SRG(100, 22, 0, 6)) is 3
-saturated, but no strongly regular 4-saturated triangle-free graphs ex-
ist.
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