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Abstract

Let n be a positive integer. A tournament is called n-existentially closed (or n-e.c.) if for every subset S of n vertices and for every
subset T of S, there is a vertex x /∈ S which is directed toward every vertex in T and directed away from every vertex in S\T . We
prove that there is a 2-e.c. tournament with k vertices if and only if k ≥ 7 and k �= 8, and give explicit examples for all such orders
k. We also give a replication operation which preserves the 2-e.c. property.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A tournament is a directed graph with exactly one arc between each pair of distinct vertices. Consider the following
adjacency property for tournaments.

Definition 1. Let n be a positive integer. A tournament is called n-existentially closed or n-e.c. if for every n-element
subset S of the vertices, and for every subset T of S, there is a vertex x /∈ S which is directed toward every vertex in T
and directed away from every vertex in S\T . (Note that T may be empty.)

Adjacency properties of tournaments were studied in [3,8,15,18,23]. Much of the research on such properties is
motivated by the fact that while almost all tournaments (with arcs chosen independently and with probability p, where
0 < p < 1 is a fixed real number) are n-e.c. for any fixed positive integer n (see [15]), few explicit examples of such
tournaments are known.

Adjacency properties of graphs were studied by numerous authors; see [9] for a survey.A graph is called n-existentially
closed or n-e.c. if it satisfies the following adjacency property: for every n-element subset S of the vertices, and for every
subset T of S, there is a vertex not in S which is joined to every vertex of T and to no vertex of S\T . The n-e.c. property is of
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Fig. 1. The tournament D7.

interest in part because the countable random graph is n-e.c. for all n�1; in fact, the countable random graph is the
unique (up to isomorphism) countable graph that is n-e.c. for all n�1. The countable random tournament is the analogue
of the random graph for tournaments; see [13]. The countable random tournament is the unique (up to isomorphism)
countable tournament that is n-e.c. for all n�1.

The cases n = 1, 2 for graphs were studied in [9,10,12]. For n > 2, few explicit examples of n-e.c. graphs are known
other than large Paley graphs (see [2,8]). A prolific construction of n-e.c. graphs for all n was recently given in [14].

In the present article, we concentrate on the 2-e.c. adjacency property. Note that a tournament is 2-e.c. if the following
adjacencies hold: for every pair of vertices, u and v, there are four other vertices: one directed toward both u and v,
one directed away from both u and v, one directed toward u and away from v, and one directed toward v and away
from u. In Section 3, we prove that there is a 2-e.c. tournament with k vertices if and only if k�7 and k �= 8, and give
explicit examples for all such orders k.

We consider only finite and simple tournaments. For a tournament G, V (G) denotes its vertex-set and E(G) denotes
its arc-set. The order of G is |V (G)|. We denote an arc directed from x to y by (x, y). For a vertex x ∈ V (G), we define
Nout(x) = {y : (x, y) ∈ E(G)}, and Nin(x) = {y : (y, x) ∈ E(G)}. As usual, a vertex x with Nin(x) = ∅ is called a
source and a vertex x with Nout(x) = ∅ is called a sink. If U ⊆ V (G), G�U is the subgraph of G induced by U ; for
x ∈ V (G), G − x = G�(V (G)\{x}). For basic information on graphs and tournaments, see [4,11].

The Paley tournament of order q, written Dq , where q is a prime power congruent to 3 (mod 4), is the tournament
with vertices the elements of GF(q), the finite field with q elements, and (x, y) ∈ E(Dq) if and only if x − y is a
nonzero quadratic residue. For D7, see Fig. 1. As discussed above for Paley graphs, for a fixed positive n, sufficiently
large Paley tournaments are n-e.c. (see [18]); however, no other explicit families of tournaments with these adjacency
properties are known.

The next lemma follows from the definitions.

Lemma 1. Let G be an n-e.c. tournament for some n > 1. For a fixed v ∈ V (G), the tournaments G − v, G�Nin(v),
and G�Nout(v) are each (n − 1)-e.c.

Definition 2. A tournament G is n-e.c. minimal if G has the smallest number of vertices among all n-e.c. tournaments.
An n-e.c. tournament is critical if deleting any vertex leaves a tournament which is not n-e.c.

Clearly, an n-e.c. minimal tournament is n-e.c. critical. In Section 2, we show that there are exactly two 1-e.c.
critical tournaments up to isomorphism. In Section 4, we give examples of 2-e.c. critical tournaments of all possible
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orders k�7 and k �= 8. Vertex-criticality for various properties has been studied by many authors, including Berge
[6,5,7,1,17,20–22,24,25].

2. The 1-e.c. critical tournaments

We make the following trivial observations.

Remark 1. A tournament is 1-e.c. if and only if it has no source or sink.

Remark 2. A tournament with a directed hamilton cycle is 1-e.c.

The tournament D3 is the directed circuit on three vertices. It is easy to see that D3 is the unique (up to isomorphism)
1-e.c. minimal tournament, and thus, it is 1-e.c. critical. Define T6 to be the tournament consisting of two copies of D3,
with arcs oriented from the first copy to the second. It is straightforward to check that T6 is 1-e.c. critical.

Theorem 2. The only 1-e.c. critical tournaments (up to isomorphism) are D3 and T6.

Proof. Let G be a 1-e.c. critical tournament. We first observe that a strongly connected component S of G has exactly
three vertices. To see this, suppose that S has at least k�4 vertices. By a theorem of Moon [19], S has a directed circuit
C of length k − 1. Deleting the vertex that C misses in S leaves a 1-e.c. tournament, which is a contradiction.

We claim that if G has exactly one or two strongly connected components, then G is isomorphic to D3 or T6,
respectively. Assume to the contrary that G has r �3 strongly connected components. From G we construct an auxiliary
tournament G′, whose vertices are the strongly connected components of G with the induced adjacencies. Note that
G′ is isomorphic to the r-element linear order. Let u be a vertex of G′ that is neither a least nor greatest element. If we
delete a vertex x in the strongly connected component of G corresponding to u, then the remaining graph G − x, is
1-e.c., which is a contradiction. �

3. Examples of 2-e.c. tournaments

In this section, our main theorem is the following.

Theorem 3. There is a 2-e.c. tournament with k vertices if and only if k�7 and k �= 8.

To prove Theorem 3, we first prove the following theorem.

Theorem 4. There is a unique (up to isomorphism) 2-e.c. minimal tournament, the Paley tournament D7.

Proof. Let G be a 2-e.c. tournament. Then since the unique minimal 1-e.c. tournament has three vertices, |V (G)|�7 by
Lemma 1. Suppose now |V (G)|=7, say V (G)={1, 2, 3, 4, 5, 6, 7}. Say Nin(7)={1, 2, 3}, (1, 2), (2, 3), (3, 1) ∈ E(G);
Nout(7)={4, 5, 6}; (4, 6), (6, 5), (5, 4) ∈ E(G). See Fig. 2(a).Vertex 1 currently has outdegree two, but needs outdegree
three, so without loss of generality, assume that (1, 4) ∈ E(G). Then by considering the degrees of 1 and 4, we get
(5, 1), (6, 1) ∈ E(G) and (4, 2), (4, 3) ∈ E(G). See Fig. 2(b). Since Nin(1) = {3, 5, 6} and (6, 5) ∈ E(G), it follows
that (5, 3), (3, 6) ∈ E(G). See Fig. 2(c). Then, for degree of 5, (2, 5) ∈ E(G), and then for degree of 2, (6, 2) ∈ E(G).
See Fig. 2(d). Then f : V (G) → V (D7) is an isomorphism, where f (1) = 0, f (2) = 5, f (3) = 4, f (4) = 6,

f (5) = 1, f (6) = 2 and f (7) = 3. �

Given a 2-e.c. tournament, another 2-e.c. tournament with two more vertices can be constructed using a “tournament
version” of the replication operation which was instrumental in [9].

Definition 3. Let G be a tournament and let (a, b) ∈ E(G). Add two new vertices a′, b′ such that a′ has the same
adjacencies to vertices of G other than b as a does, b′ has the same adjacencies to vertices of G other than a as b does,
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Fig. 2. The proof of Theorem 4.

a, b, a′, b′, a is a directed circuit, a and a′ are joined either way and b and b′ are joined either way; that is, a replicate
R = R(G, e) is a tournament with V (R) = V (G) ∪ {a′, b′} and

E(R) = E(G) ∪ {(a′, v) : v ∈ Nout(a)\{b}} ∪ {(v, a′) : v ∈ Nin(a)}
∪ {(b′, v) : v ∈ Nout(b)} ∪ {(v, b′) : v ∈ Nin(b)\{a}}
∪ {(b, a′), (a′, b′), (b′, a)} ∪ {exactly one of (a, a′), (a′, a)}
∪ {exactly one of (b, b′), (b′, b)}.

We observe that for each arc e, there are four nonidentical replicates R(G, e) that we may construct (depending on
how we orient the edges aa′, bb′).

Definition 4. Let G be a tournament, and let n�1 be fixed.

(1) An n-e.c. tournament problem is a 2 × n matrix

(
x1 . . . xn

i1 . . . in

)
,

where {x1, . . . , xn} is an n-element subset of V (G), and for 1�j �n, ij ∈ {↑, ↓}.
(2) A solution to an n-e.c. tournament problem is a vertex z ∈ V (G) such that z ∈ Nin(xj ) if ij= ↑ and z ∈ Nout(xj )

if ij= ↓.

Note that a tournament G is n-e.c. if and only if each n-e.c. tournament problem in G has a solution.

Theorem 5. If G is a 2-e.c. tournament, then for every e ∈ E(G), each replicate R = R(G, e) is 2-e.c.
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Fig. 3. The unique 1-e.c. tournament of order 4.

Proof. Fix e = (a, b) ∈ E(G). Fix distinct x, y ∈ V (R). We show that each problem
(

x
i

y
j

)
, i, j ∈ {↑, ↓} has a

solution in R.
Case 1: |{a′, b′} ∩ {x, y}| = 0. A solution to the problem in G is a solution to the problem in R.
Case 2: |{a′, b′} ∩ {x, y}| = 1.
Assume that x =a′ and y �= b′. First, suppose y =a. If (i, j)= (↑, ↑), an in-neighbour of a in G solves the problem;

if (i, j)= (↓, ↓), an out-neighbour of a in G other than b solves the problem. The vertex b solves
(

a′
↑

a
↓
)

and b′ solves(
a′
↓

a
↑
)

.

If y �= a, first solve
(

a
i

y
j

)
by say, c, in G. If c �= b, then c also solves

(
a′
i

y
j

)
. If c = b, then i= ↓ and y �= b,

so b′ solves
(

a′
↓

y
j

)
.

The case when x = b′ and y �= a′ follows by a similar argument.
Case 3: |{a′, b′} ∩ {x, y}| = 2.

Where z is a solution of
(

a
i

b
j

)
in G, z is a solution of

(
a′
i

b′
j

)
in R. �

Using tournament replication on D7, we obtain 2-e.c. tournaments for any odd order k, k�7. Now we work on
finding 2-e.c. tournaments of all possible even orders.

Theorem 6. There is no 2-e.c. tournament of order 8.

Proof. It is straightforward to see that there is a unique 1-e.c. tournament of order 4; see Fig. 3. Let G be a 2-e.c.
tournament of order 8. Then G has a vertex of degree 4. In fact, the outdegree sequence of G is completely determined.

Claim. G has exactly four vertices of indegree 3 and four vertices of indegree 4.

Let v ∈ V (G). Since both G�Nin(v) and G�Nout(v) are 1-e.c., it follows that 3� |Nin(v)|�4. Let x be the number
of vertices of indegree 3, and let y be the number of vertices of indegree 4. Then since the sum of all indegrees is the
number of arcs,

x + y = 8,

3x + 4y = 28.

Solving the system establishes the claim.
Now suppose V (G)={1, . . . , 8}. For each vertex v of G, one of the subgraphs induced by Nin(v) and Nout(v) is D3

and the other is the tournament of Fig. 3.
Without loss of generality, suppose vertex 1 has indegree 4 and the subgraphs induced by Nin(1) and Nout(1) are as

in Fig. 4.
Case 1: Vertex 8 has indegree 3.
Without loss of generality, by the symmetry of 2, 3, and 4 in the directed graph in Fig. 4, (2, 8), (3, 8), (8, 4) ∈ E(G).

Nin(8) = {2, 3, 7} and (2, 3) ∈ E(G), so for G�Nin(8)�D3, also (3, 7), (7, 2) ∈ E(G). Nout(8) = {1, 4, 5, 6} and
(5, 1), (5, 6) ∈ E(G), so (4, 5) ∈ E(G).

Now |Nout(7)|=4, so all remaining arcs meeting 7 must be directed toward 7, so (4, 7) ∈ E(G). Then Nin(7)={3, 4, 6}
and (3, 4) ∈ E(G), so (4, 6), (6, 3) ∈ E(G). The vertices 4, 5, and 8 are in Nin(6), but (8, 5), (4, 5) ∈ E(G) so
|Nin(6)| = 4, so (2, 6) ∈ E(G). Now Nin(6) = {2, 4, 5, 8} and (4, 5), (8, 5) ∈ E(G) so (5, 2) ∈ E(G).
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Fig. 5. G missing one arc.

Now we have all but one arc of G, either (3, 5) or (5, 3). See Fig. 5. If that arc were (3, 5), then Nout(3)={4, 5, 7, 8}
and (4, 5), (7, 5), (8, 5) ∈ E(G) which is a contradiction. Otherwise, if that arc were (5, 3), then Nout(5) = {1, 2, 3, 6}
and (1, 3), (2, 3), (6, 3) ∈ E(G), which is a contradiction.

Case 2: Vertex 8 has indegree 4.
In this case (2, 8), (3, 8), (4, 8) ∈ E(G). Then Nout(8) = {1, 5, 6}, but (5, 1), (6, 1) ∈ E(G), which is a

contradiction. �

To find 2-e.c. tournaments of all possible even orders as described in Theorem 3, it is sufficient to give an example of
a 2-e.c. tournament of order 10, and then use replication. For this, see the tournament R′ in Fig. 6. It is straightforward
to verify that R′ is 2-e.c.: one need only check the vertices 1, 2, and 10 versus each of the other vertices. The details
are tedious and are therefore omitted.

In [12] it was proved that whenever there is a 2-e.c. graph of order m, then there is an 2-e.c. graph of order m+1, and
the question of this type of monotonicity was raised in general for n-e.c. graphs. We remark that the “gap” for 2-e.c.
tournaments supplies the first example of nonmonotonicity of a 2-e.c. property.
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Fig. 6. The tournament R′. Reverse the arc (2, 1) in R(D7, (5, 4)) (where (4, 4′) and (5, 5′) are arcs), and add a new vertex 10 so that
Nin(10) = {2, 3, 5′, 6}. Note that not all arcs are shown.

4. Examples of 2-e.c. critical tournaments

Definition 5. An arc e = (a, b) of tournament G is good if every vertex v �= a, b is the unique solution to some 2-e.c.
tournament problem not involving a or b.

Lemma 7. Let G be a 2-e.c. critical tournament and let arc e = (a, b) be good. Then each replicate R = R(G, e) is a
2-e.c. critical tournament.

Proof. Note that: the unique solution of
(

b
↑

b′
↓
)

is a, of
(

b
↓

b′
↑
)

is a, of
(

a
↑

a′
↓

)
is b′, and of

(
a
↓

a′
↑

)
is b. Now let

x ∈ V (R) − {a, a′, b, b′}. By hypothesis, x is the unique solution to some 2-e.c. tournament problem in G. If a′ were
a solution to this problem in R then a would be a solution to it in G, and if b′ were a solution to this problem in R, then
b would be a solution to it in G. Therefore, x is the unique solution to this problem in R. �

Definition 6. In the definition of replication of the arc e = (a, b) in tournament G, we insist that the arc between a
and a′ be (a, a′), and the arc between b and b′ be (b′, b), then we call the replication a type-1 replication, and use a
subscript 1 to indicate the resulting tournament, R1(G, e).

Lemma 8. Let G be a 2-e.c. critical tournament and let e = (a, b) ∈ E(G) be good. Repeatedly replicating e using
type-1 replication gives a 2-e.c. critical tournament.

Proof. Define G0 = G. For k�0, define Gk+1 = R1(Gk, e), and call the replication arc ek+1 = (ak+1, bk+1). Then by
Lemma 5, Gk+1 is a 2-e.c. tournament of order |V (G)| + 2k. We need to show that Gk+1 is 2-e.c. critical.

We proceed by induction on k. Assume Gk is 2-e.c. critical and that for 1�j �k, vertex aj uniquely solves
(

bj

↑
b
↓
)

and vertex bj uniquely solves
(

aj

↓
a
↑
)

. Consider Gk+1.

Since (a, b) is good in G, each vertex v ∈ V (G)\{a, b} is the unique solution to some 2-e.c. tournament problem in
G not involving a or b. In Gk+1, no vertex aj or bj , 1�j �k + 1 can solve this problem, because otherwise, a or b
would have solved it in G.

Vertices ak+1 and bk+1 cannot solve the problems that aj and bj (1�j �k) uniquely solve in the induction hypothesis:
for the aj problem, (bj , ak+1) and (bk+1, b) are arcs of Gk+1; for the bj problem, (bk+1, aj ) and (a, ak+1) are arcs of
Gk+1.

Vertex ak+1 uniquely solves
(

bk+1↑
b
↓
)

since every vertex except ak+1 and a (and b) is directed the same way with

respect to b and bk+1, and a is directed toward b. By a similar argument, vertex bk+1 uniquely solves
(

ak+1↓
a
↑
)

, since

every vertex except bk+1 and b (and a) is directed the same way with respect to a and ak+1, and a is directed toward b.
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Finally, a uniquely solves
(

bk+1↓
b
↑
)

and b uniquely solves
(

ak+1↑
a
↓
)

. �

Using Lemmas 7 and 8, we may construct 2-e.c. critical tournament for all the possible orders k, where k�7 and
k �= 8 as follows. For the odd orders, we note that in D7, (4, 3) is a good arc, as demonstrated by the following table.

Vertex 0 1 2 5 6

Uniquely solves

(
2 5
↓ ↑

) (
0 6
↑ ↑

) (
0 5
↑ ↑

) (
0 2
↓ ↓

) (
0 1
↓ ↓

)

For the even orders, the following tables demonstrate that the tournament R′ (introduced at the end of Section 3) is
2-e.c. critical, and that (0, 6) is a good arc.

Vertex 0 1 2 3 4

Uniquely solves

(
1 2
↓ ↓

) (
5 4
↓ ↑

) (
4 3
↓ ↓

) (
5′ 4′
↓ ↓

) (
5 5′
↓ ↑

)

Vertex 5 6 4′ 5′ 10

Uniquely solves

(
4 4′
↑ ↓

) (
0 1
↓ ↓

) (
5′ 3
↓ ↑

) (
4 4′
↓ ↑

) (
2 5′
↓ ↓

)

We close with the following problem: find examples of n-e.c. tournaments, where n�3, that are not Paley tourna-
ments.
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[12] L. Caccetta, P. Erdős, K. Vijayan, A property of random graphs, Ars Combin. 19 (1985) 287–294.
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