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Abstract

Motivated by models for real-world networks such as the web graph, we consider digraphs formed
by adding new vertices joined to a fixed constant m number of existing vertices of prescribed type.
We consider a certain on-line random construction of a countably infinite graph with out-degree
m, and show that with probability 1 the construction gives rise to a unique isomorphism type. We
study algebraic properties of these so-called random semi-directed graphs; in particular, we prove
that their automorphism groups embed all countable groups.

1. Introduction

In the last decade, there has been an enormous amount of research surrounding complex net-
works such as the web graph. The web graph has vertices representing web pages, and edges
representing the links between pages. Many technological, social, biological networks have prop-
erties similar to those present in the web, such as power law degree distributions (the proportion
of vertices of degree k is approximately k−β , where β > 1 is a fixed real number) and the small
world property (which implies that distances, measured either by diameter or average distance, are
of smaller order than the order of the graph). For example, power laws and the small world prop-
erty have been observed in protein-protein interaction networks, and networks formed by scientific
collaborators. For more details on properties of the web graph and other complex networks, the
reader is directed to the survey [3] and the books [4, 10].

A large number of stochastic models for complex networks have been proposed. For example, in
the preferential attachment model, new vertices are born over time which have a greater probability
to join to high degree vertices. It was proved in [1] with high probability that the in-degree
distribution of graphs in the preferential attachment model follows a power law with exponent
β = 3. The graphs in the preferential attachment models have the property that each vertex has
exactly m out-neighbours. Constant out-degree is in fact, a common assumption in other models
of complex networks; see, for example, [10, 16]. Hence, models of complex networks often generate
directed graphs satisfying the following properties.

(1) On-line: digraphs are generated over a countably infinite set of discrete time-steps, with
a countable (either finite or countably infinite) set of vertices born at each time-step. At
time 0, a fixed initial digraph H is given.

(2) Constant out-degree: new vertices have edges directed only to existing vertices, and for
m > 0 a fixed integer, there are exactly m such edges.

A digraph G satisfying these two properties is called semi-directed with initial graph H and
constant out-degree m; we sometimes refer to G simply as semi-directed. The moniker “semi-
directed” comes from [2] (see p. 17). It emphasizes that the orientation of edges in a semi-directed
graph canonically arises according to time: new vertices may only point to vertices born at earlier
time-steps. Note that semi-directed graphs have no infinite directed path emanating from any
vertex.
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In this paper, we consider the infinite semi-directed graphs that result when time tends to
infinity. Analyzing models by considering the infinite limit is a common technique in the natural
sciences. In particular, the existence of a unique limit indicates coherent behaviour of the model,
while many distinct limits suggest a sensitivity to initial conditions that is an indicator of chaos. In
[5, 6, 15], infinite limits of graphs generated by models of the web graph were investigated. Limits
generated by on-line graph processes were, in fact, studied by Fräıssé [12] and others decades prior
to birth of the internet.

One of the most studied example of an infinite limit graph arising from a stochastic model is
the infinite random graph. The probability space G(N, p) consists of graphs with vertices N, so that
each distinct pair of integers is joined independently with a fixed probability p ∈ (0, 1). Erdős and
Rényi discovered that with probability 1, all G ∈ G(N, p) are isomorphic. The unique isomorphism
type of countably infinite e.c. graph is named the infinite random graph, or the Rado graph, and is
written R; see the survey [8].

Define a deterministic graph R∗ as follows. Let R0 be a K1. Assume that for a nonnegative
integer t ≥ 0, the graph Rt is defined and finite. To form Rt+1, for each subset S ⊆ V (Rt)
(possibly empty) add a vertex zS joined only to the vertices of S. The sets {V (Rt) : t ∈ N} and
{E(Rt) : t ∈ N} are well-ordered sets or chains. We define

V (R∗) =
⋃

t∈N
V (Rt), E(R∗) =

⋃

t∈N
E(Rt).

We write limt→∞Rt = R∗, and say that R∗ is the limit of the chain (Rt : t ∈ N). The notion of
limit extends to any chain (Gt : t ∈ N) of graphs.

A graph G is existentially closed or e.c. if for all finite disjoint sets of vertices A and B (one
of which may be empty), there is a vertex z /∈ A∪B joined to all of A and to no vertex of B. By a
back-and-forth argument, R ∼= R∗ is the unique isomorphism type of countably infinite graphs that
is e.c. Further, R is a universal graph: it contains as an induced subgraph an isomorphic copy of
each countable graph.

In the present article, we consider structural and algebraic properties of certain infinite semi-
directed graphs that arise naturally as limits of on-line random processes. Analogous to R, these
so-called random semi-directed graphs have isomorphism types characterized via a set of adjacency
properties (see Theorem 1). As an application of this characterization, random semi-directed graphs
are universal (see Corollary 2). The automorphism group of R has been thoroughly investigated (see
[8]). In Section 3 we show that all countable groups embed in the group of a random semi-directed
graph.

All graphs we consider are simple, directed, and countable. If (x, y) is a directed edge, then y
is an out-neighbour of x. We say that G embeds in H and write G ≤ H if G is isomorphic to an
induced subgraph of H. If S ⊆ V (G), then we write 〈S〉G for the subgraph induced by S (we omit
the subscript G if it is clear from context). The automorphism group (or group) of G is written
Aut(G). We write N for the natural numbers, N+ for the positive integers, and ℵ0 for the cardinality
of N.

The vertices of a semi-directed graph may be ordered in the following way. A vertex x not in
H has height k if there is a directed path of length k from x ending in a vertex of H; vertices in H
have height 0. The height of a finite set S of vertices is the maximum height of a vertex in S.

2. Random semi-directed graphs

We consider the following general framework for limits of semi-directed graphs. A class C of
digraphs closed under isomorphism is good if it contains infinitely many digraphs, and the class is
hereditary : if G ∈ C and H ≤ G, then H ∈ C. For example, the class of all digraphs is good, as the
class of linear orders (that is, transitive tournaments).

For the remainder of the article, fix m > 0 an integer, C a class of good digraphs, and H an
m-vertex digraph in C (which exists as C is good). We define a countably infinite graph Rm,H(C)
as follows. Let R0 be H. Assume that Rt is defined and countable so that R0 ≤ Rt. To form Rt+1,
for each induced subgraph S of Rt that has m vertices and is in C, add a vertex xS that is joined
to each vertex of S and no other vertices in Rt. Define Rm,H(C) = limt→∞Rt. The countably
infinite digraph Rm,H(C) is semi-directed by its construction. The idea behind the definition of
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Rm,H(C) is that all m-sets of vertices S that induce a graph in C are extended: the vertex xS has
its out-neighbours equalling S. Observe that vertices born at time t are exactly the vertices with
height t.

One of our main results is that the isotype of Rm,H(C) may be captured by a set of simple set
of properties. We say that a digraph G is (C,m)-e.c. if for each set A of m-vertices which induces
a graph in C and each finite set B of vertices disjoint from A, there is a vertex z 6∈ A ∪ B so that
(z, a) ∈ E(G) for all a in A, but there are no directed edges between z and vertices of B. The
(C, m)-e.c. property is a directed analogue of the e.c. property, relativized by the parameter m and
by the restriction that 〈A〉 ∈ C.
Theorem 1. A countable digraph G is isomorphic to Rm,H(C) if and only if G is semi-directed
with initial graph H and constant out-degree m, each out-neighbour set induces a subgraph in C,
and G is (C,m)-e.c.

Proof. As the forward direction is immediate, we prove only the reverse direction. Let H ′ be
the initial copy of H in G. The set V (G)\V (H ′) has a special enumeration: an enumeration (xt :
t ∈ N+) of V (G)\(H ′) with the property that if (xi, xj) is a directed edge, then i > j. To see this,
we may choose x1 to be any vertex with height 1. Assuming that {x1, . . . , xt} were chosen, consider
a vertex u of V (G)\(V (H ′)∪{x1, . . . , xt}). If u has out-degree 0 in 〈V (G)\(V (H ′)∪{x1, . . . , xt})〉,
then let xt = u. Otherwise, in 〈V (G)\(V (H ′) ∪ {x1, . . . , xt})〉 there is a maximal directed finite
path from u. The end point v of this path has out-degree 0, and we choose xt = v.

As G is arbitrary with the given properties, it follows that Rm,H(C) also has a special enu-
meration. Now, let (xt : t ∈ N+) and (yt : t ∈ N+) be special enumerations of V (G)\V (H ′) and
V (Rm,H(C))\V (R0), respectively. We proceed by a back-and-forth argument, with f0 isomorphi-
cally mapping H ′ in G to H at time 0 in Rm,H(C). For a fixed t, suppose that ft is a partial isomor-
phism with domain Xt containing V (H ′)∪{x1, . . . , xt} and range Yt containing V (R0)∪{y1, . . . , yt}.
We will assume as an additional inductive hypothesis that Xt and Yt are closed : all out-neighbours
of vertices in the set are in the set itself.

Suppose first that t + 1 ≥ 1 is odd. In this case, we go forward. Let x be the lowest indexed
vertex of (xt : t ∈ N) not in Xt. As the enumeration is special, the set of out-neighbours St of x are
in Xt. By hypothesis, |St| = m and 〈St〉 ∈ C. As Rm,H(C) satisfies the (C,m)-e.c. property, there
is a vertex y whose out-neighbours are exactly ft(St). Extend ft to ft+1 by mapping x to y, and
let Xt+1 = Xt ∪ {x} and Yt+1 = Yt ∪ {y}. It is straightforward to see that ft+1 is an isomorphism,
and that the sets Xt+1 and Yt+1 are closed.

The case t + 1 is even is similarly proven by going back, and so is omitted. We therefore have
that the union of the chain of partial isomorphisms (ft : t ∈ N)

F =
⋃

t→∞
ft

is an isomorphism of G with Rm,H(C). ¤
Analogous to the situation for R and all countable graphs, the graph Rm,H(C) has the following

universal property.

Corollary 2. If G is a countable semi-directed graph with initial graph H and constant out-degree
m, so that each out-neighbour set of a vertex of G induces a subgraph in C, then G ≤ Rm,H(C).

Proof. Let H ′ be the initial copy of H in G, and let f0 isomorphically map H ′ in G to H at
time 0 in Rm,H(C). As in the proof of Theorem 1, let (xt : t ∈ N+) be a special enumeration of
V (G)\V (H ′).

For a fixed t, suppose that ft is an isomorphism with domain Xt = V (H ′) ∪ {x1, . . . , xt} whose
range is an induced subgraph Yt of Rm,H(C). Consider the vertex xt+1. As the enumeration is
special, the set of m out-neighbours St of xt+1 are in Xt. By hypothesis, St induces a subgraph in
C. It follows that in Rm,H(C), there is a vertex yt+1 not in Yt whose out-neighbours are exactly
ft(St). We extend ft to the isomorphism ft+1 which maps xt+1 to yt+1.

Define
F =

⋃
t→∞

ft.
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Then F witnesses that G ≤ Rm,H(C). ¤
We next introduce a random graph process which we name the Age Dependent Process (ADP).

The parameters of the process are m, C, and H. Start with G0
∼= H with vertices labelled v1, . . . vm.

For t ≥ 1 fixed, assume that a digraph Gt−1 has been defined and there are finitely many vertices
in Gt−1. At time t, add a new vertex vm+t, and choose a set S of m distinct vertices from V (Gt−1)
so that S induces a subgraph of C, where the probability that a vertex vi is included in the set is
exponentially proportional to its height. More precisely, denote

Lt−1 = {(j1, . . . , jm) ∈ Nm : 〈vj1 , . . . , vjm
〉 ∈ C,

vj1 , . . . , vjm ∈ V (Gt−1) are distinct}.
For each S = {vi1 , . . . , vim

} where (i1, . . . , im) ∈ Lt−1, define

µ(S) = 2−(i1+···+im)

and
Nt =

∑

(j1,...,jm)∈Lt−1

2−(j1+j2+···+jm).

In particular, Nt is the sum of all the µ(S), where S is a subset of cardinality m from V (Gt−1) such
that 〈S〉 ∈ C. The probability that S is chosen from V (Gt−1) equals µ(S)/Nt; this clearly defines a
probability measure on m-subsets S with 〈S〉 ∈ C in Gt. If S is so chosen, then add directed edges
from vm+t to each vertex of S.

Theorem 3. Let G = limt→∞Gt, where Gt is generated by ADP with parameters m, H, and C.
Then with probability 1, G is (C,m)-e.c.

Proof. Fix disjoint finite subsets A and B of V (G) so that |A| = m and 〈A〉 ∈ C. Let A =
{vi1 , . . . , vim}, where the vertex vij was born before vij+1 for all j. Let t0 be an integer greater
than the height of A ∪ B. For each t ≥ t0, let Vt be the event that vt is pointing to exactly all
vertices in A. Note that vt has out-degree m when it is born, so that if Vt occurs, then there are no
edges between vt and any vertex of B. Then the probability that Vt occurs, written P(Vt), equals
2−(i1+···+im)/Nt, where Nt is the normalizing factor defined above.

Note that

Nt ≤
∑

1≤j1<j2<···<jm≤t+m−1

2−(j1+j2+···+jm)

≤



t+m−1∑

j=1

2−j




m

≤ 1,

for all t. Therefore, for all t ≥ t0,

P(Vt) ≥ 2−(i1+···+im) ≥ 2−mt0 .

Hence, the probability that there exists no vertex in G that is joined to all vertices in A and
none of B is at most

P

( ∞⋂
t=t0

Vt

)
=

∞∏
t=t0

(1− P(Vt))

≤ lim
t≥t0

(1− 2−mt0) = 0.

As there are only countably many finite subsets A and B and a countable union of measure 0
events is a measure 0 event, the proof follows. ¤

The following corollary follows immediately from Theorems 1 and 3. It supplies an analogue
of the Erdős and Rényi isomorphism result for R.

Corollary 4. With probability 1, a limit graph generated by ADP with parameters m, H, and C is
isomorphic to Rm,H(C).
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3. The group of Rm,H(C)
The graph R is homogeneous: isomorphisms between finite induced subgraphs extend to auto-

morphisms. The homogeneous graphs were characterized in [17], while the homogeneous digraphs
were characterized in [9]. The graph Rm,H(C) is not homogeneous; it is not even vertex-transitive:
two vertices with different heights are in different orbits of Aut(Rm,H(C)). Hence, the symmetries
exhibited by R and Rm,H(C) are quite different.

Henson [13] proved that Aut(R) embeds (that is, contains subgroups isomorphic to) all count-
able groups. We now prove that the group Aut(Rm,H(C)) shares this property with R. Given a set
X, we use the notation Sym(X) for the group of permutations of X. For a set S of vertices and
automorphism f, f(S) is the image of S under f.

Theorem 5. The group Sym(X) embeds in Aut(Rm,H(C)), where X is countably infinite. In
particular, each countable group embeds in Aut(Rm(C)).

Before we prove Theorem 5 we need the following lemma. The graph Rm,H(C)′ is defined
analogously to Rm,H(C), but at each time-step Rt+1, infinitely many vertices xS are joined to each
induced subgraph of order m from C in Rt.

Lemma 6. The graph Rm,H(C)′ is isomorphic to Rm,H(C).
Proof. It is sufficient to prove that Rm,H(C)′ satisfies the hypotheses of Theorem 1. By its

construction, the graph Rm,H(C)′ is semi-directed with initial graph H and constant out-degree m.
Further, each vertex has its out-neighbour set inducing an m-vertex subgraph in C. To see that
Rm,H(C)′ satisfies the (C,m)-e.c. property, suppose we are given A a set of m-vertices in Rm,H(C)′
which induces a graph in C, and a finite set B of vertices in Rm,H(C)′ disjoint from A. Let t0 be
the height of A ∪B. A vertex joined to A and not to B may be found in Rt0+1. ¤

Proof of Theorem 5. Without loss of generality, by Lemma 6 we will work with Rm,H(C)′
for the remainder of the proof. By Cayley’s theorem, it is sufficient to prove that Sym(X) embeds
in Aut(Rm,H(C)′).

We first observe that Sym(X) embeds in Aut(R1). To see this, label the vertices of V (R1)\V (R0)
as X = {xi : i ∈ N}. Fix a bijective mapping f : X → X. Define F : R1 → R1 which acts as the
identity on H, and otherwise acts as f on X. As the xi have the same out-neighbours in R1, it follows
that F is an automorphism of R1. Define β : T (X) → Aut(R1) by β(f) = F. It is straightforward
to check that β is an injective group homomorphism.

We next prove that there exists an injective group homomorphism
α : Aut(R1) → Aut(Rm,H(C)′). Once this is established, then αβ : T (X) → Aut(Rm,H(C)′) supplies
an embedding of Sym(X) into Aut(Rm,H(C)′), and the assertion will follow.

Fix j an automorphism of R1. Let J1 = j. For t ≥ 1, assume that Jt is an automorphism of
Rt, and the restriction of Jt to R1 equals J1. Let N+(z) be the set of out-neighbours of a vertex z.
Define Jt+1 by

Jt+1(z) =
{

Jt(z) if z ∈ V (Rt);
xJt(S) if z = xS and S = N+(z).

From the definition of Rt+1 and the fact that Jt ∈ Aut(Rt), it follows that Jt+1 is an automorphism
of Rt+1. Note that Jt+1 restricted to Rt equals Jt.

The map J =
⋃

t∈N Jt is an automorphism of Aut(Rm,H(C)′). Hence, the function α : Aut(R1) →
Aut(Rm,H(C)′) defined by α(j) = J is well-defined. It is straightforward to see that α is injective,
and that α preserves the identity automorphism.

Now fix f, g ∈ Aut(R1) and z ∈ V (RH). We prove by induction on the height t of z that

(1) α(fg)(z) = α(f)α(g)(z).

Equation (1) will establish that α is an embedding of groups, and is immediate if t = 0. Fix
t ≥ 1. Suppose that z has height t+1 and so z is of the form xS , where S = N+(z) ⊆ V (Rt). Then

α(fg)(z) = xα(fg)(S)

= xα(f)α(g)(S)

= α(f)α(g)(z).



6

The second equality follows since the height of S is strictly less than t + 1, and by induction
hypothesis. ¤

The property of extending automorphisms of R1 to automorphisms of all of Aut(Rm,H(C)) in
the proof of Theorem 5 clearly generalizes to any Rt with t ≥ 0. In particular, j ∈ Aut(Rt) extends
to J ∈ Aut(Rm,H(C)), and the map αt : Aut(Rt) → Aut(Rm,H(C)′) defined by αt(j) = J is an
injective group embedding. Although Aut(Rm,H(C)) is not homogeneous, we may refer to the above
property as temporal homogeneity : symmetries of the graphs Rt at time t lift to symmetries of the
entire limit graph.

We consider some computational consequences of Theorem 5. We refer the reader to Hodges
[14] for any terms not explicitly defined.

Corollary 7. The group Aut(Rm,H(C)) does not satisfy any non-trivial group identity. In partic-
ular, Aut(Rm,H(C)) generates the variety of all groups.

Proof. Since every countable group embeds into Aut(Rm,H(C)) by Theorem 5, so does the free
group on a countable set of generators, written F (X). If there were an equation s = t in the
language of groups that is not a consequence of the groups axioms, and satisfied by Aut(Rm,H(C)),
then s = t would be satisfied by F (X), which is a contradiction. ¤

Corollary 8. The universal theory of Aut(Rm,H(C)) is undecidable.

Proof. We first note that the universal theory of Aut(Rm,H(C)) equals the universal theory of
all groups. This follows since every countable group embeds into Aut(Rm,H(C)) by Theorem 5,
every universal sentence true in Aut(Rm,H(C)) will be true in all countable groups and, by the
Löwenheim-Skolem Theorem (see [14]), in all groups.

It is well-known that the universal theory of groups is undecidable. This fact follows this by
the existence of a group with an undecidable word problem; see [7, 18]. Hence, the universal theory
of Aut(Rm,H(C)) is undecidable. ¤
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