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Abstract. We consider the game of Cops and Robber played
on finite and countably infinite connected graphs. The length of
games is considered on cop-win graphs, leading to the new param-
eter called the search-time of the graph. While the search-time
is bounded above by the number of vertices, we prove an upper
bound of half the number of vertices for a large class of graphs
including chordal graphs. Examples are given of cop-win graphs
which have unique corners and have search-time within a small ad-
ditive constant of the number of vertices. We consider the ratio of
the search-time to the number of vertices, and extend this notion
of search-time density to infinite graphs. For the infinite random
graph, the search-time density can be any real number in [0, 1].
We also consider the search-time when more than one cop is re-
quired to win. We show that for the fixed number of cops, the
search-time can be calculated by polynomial algorithm, but it is
NP-complete to decide, whether k cops can capture the robber in
no more than t moves for every fixed t.

1. Introduction

Cops and Robber is a vertex pursuit game played on a graph G =
(V, E) (we also use V (G) and E(G)). All graphs we consider are simple,
undirected, and countable (although usually finite) and we assume they
are connected since it is enough to consider connected components,
mutatis mutandis. The closed neighborhood of a vertex v ∈ V is
denoted N [v]; it consists of v together with the vertices joined to v.
There are two players, a set of k cops (or searchers) C, where k >
0 is a fixed cardinal, and the robber R. The cops begin the game
by occupying a set of k vertices, and the cops and the robber move
alternately, the cop beginning. More than one cop is allowed to occupy
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a vertex, and the players may pass; that is, remain on their current
vertex (this is known as the passive version of the game; in an active

version each player must use an edge on a move). A move in a given
round for either player consists of a pass or moving to an adjacent
vertex initial positioning is thought of as move 0). The players know
each others’ current locations. The cops win and the game ends if at
least one of the cops occupies the same vertex as the robber; otherwise,
R wins. As placing a cop on each vertex guarantees that the cops win,
we may define the cop number, written c(G), the minimum cardinality
of a set of cops that have a winning strategy on G. A strategy is simply a
mapping σp : V k×V −→ V which tells the player (either the robber, or
the set of cops) p what the next move is, based on the players’ current
positions. Obviously, a strategy is winning if it allows the player to
win, no matter what the opponent’s moves are.

The graphs with cop number 1, the cop-win graphs, were first char-
acterised in [17] and [18]. Before proceeding, it is useful to introduce
some notation. Consider a graph G whose vertex set is {v1, v2, . . . , vn}.
For i = 1, . . . , n, define Gi to be the subgraph induced by {vi, . . . , vn}.
Similarly, for a vertex vj, define Ni(vj) = N(vj) ∩ {vi, . . . , vn}. The
finite cop-win graphs are exactly those graphs with a dismantling or-

dering ; that is, a linear ordering (xj : 1 ≤ j ≤ n) of the vertices so
that for each 1 ≤ i ≤ n, there is a i < j ≤ n such that Ni[xi] ⊆ Ni[xj].
The characterisation comes from the observation that the robber’s last
move must be from a vertex whose neighbourhood is contained in that
of the cop’s current vertex, together with the fact that a retract of a
cop-win graph is cop-win. There is no known structural characterisa-
tion of graphs with cop number 2 or higher. For a survey of results on
the cop number and related search parameters for graphs, see [2].

If c(G) = k, then how many moves does it take for the k cops to win?
To be more precise, the length of a game is the number of rounds it
takes (not including the initial or 0th round) to capture the robber (it
is infinite if the robber can indefinitely evade capture). We say that a
play of the game with c(G) cops is optimal if its length is the minimum
over all possible games played by the cops, assuming the robber is
trying to evade capture for as long as possible. There may be many
optimal plays possible (for example, on P4, the cop may start on either
vertex of the centre), but the length of an optimal game is an invariant
of G. We denote this invariant st(G), which we call the search-time of
G. The search-time of G may be viewed as the temporal counterpart of
the cop number. The search-time is in part motivated by the fact that
in real-world networks with limited resources, not only the number of
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cops, but the time it takes to capture the robber on the network is of
practical importance.

As noted first in [3],

st(G) ≤ |V (G)|c(G)+1.

This upper bound is far from sharp in general; for example, it is not
hard to see that the search-time of a tree is at most

⌊

n
2

⌋

moves. The
goal of the present article is to present some results and examples on
the search-time number of a graph. We focus primarily on the search-
time of cop-win graphs as they are better understood. We prove, in
Theorem 1, that st(G) ≤ |V (G)| − 3 if |V (G)| ≥ 5. In Theorem

2, we prove that the upper bound of
⌊

|V (G)|
2

⌋

applies to a large class

of graphs including connected chordal graphs. Perhaps surprisingly,
there are cop-win graphs of order n whose search-time is within an
additive constant of n. These graphs exhibit the interesting structural
property of possessing a unique corner (that is, a vertex whose closed
neighbourhood is contained in the closed neighbourhood of some other
vertex), see Theorem 3. Using the results of [13], we show in the end
of Section 2 that if the number of cops k is fixed, then it is polynomial
time computable to determine if st(G) ≤ t, for a given t. We consider
the search-time density for the infinite random graph; see Theorem 5.
In the final section, we consider the case when more than one cop is
allowed. We introduce the parameter ct(G) which is smallest number
of cops needed for capture of robber in no more than t steps. We prove
in Theorem 6 that it is NP-complete to determine if ct(G) ≤ k if t is
fixed, even if G is planar or chordal.

2. Cop-win graphs

The parameter st(G) was first considered in [12] in an analysis of
lengths of games for chordal graphs. For more general cop-win graphs,
we have the following upper bound.

Theorem 1. If G is cop-win and |V (G)| ≥ 5, then st(G) ≤ |V (G)|−3.

Proof. As st(G) is finite, the upper bound is trivial in the case when
G is infinite. For G finite, the proof is by induction on |V (G)|, with
the case |V (G)| = 5 following by a direct check of all cop-win graphs of
order 5. Assume that the theorem holds for graphs with n ≥ 5 vertices
and consider a cop-win graph G with n+1 vertices. Hence, G contains
a corner, that is, a vertex u such that there is a vertex v ∈ V (G)\{u}
with the property that N [u] ⊆ N [v]. Since G − u is a retract of G, it
also is cop-win (see [17]).
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There is an optimal game of length n − 3 on G − u. The cop plays
this optimal game in G−u, and whenever R is on u, then C plays as if
he were on v. After at most n−3 moves, either the robber is caught on
G−u, or R is on u and C is on v. But then C can win in one more move,
and so this strategy uses at most n− 2 = (n + 1)− 3 moves. As st(G)
is the length of an optimal game, we have that st(G) ≤ (n+1)−3. �

This improves the result of [9] (see Theorem 1.2.3) that if G is cop-
win, then st(G) ≤ |V (G)| − 1. For many graphs (such as trees) the
bound in Theorem 1 is not sharp. We introduce a new graph class
where the bound for trees applies. If N [x] ⊆ N [y], then we say x is
dominated by y. Two corners a and b are separate if they are dominated
by vertices not equal to either a or b. A graph G is 2-dismantlable if
G is cop-win with a dismantling sequence (x1, x2, . . . , xn) such that

(1) the graph G has at least two separate corners;
(2) for all 3 ≤ i ≤ n−2, the graph Gi induced in G by {xi, . . . , xn})

contains at least two separate corners.

Thus, deleting two corners from a 2-dismantlable graph with at least
four vertices leaves another 2-dismantlable graph. Each connected
chordal graph is 2-dismantlable (as chordal graphs contain at least two
simplicial vertices). However, the 4-wheel (C4 plus a universal vertex)
is 2-dismantlable but not chordal.

Theorem 2. If G is a finite 2-dismantlable graph, then st(G) ≤
⌊

|V (G)|
2

⌋

.

Proof. The proof is by induction on n = |V (G)|. The cases where
n ≤ 3 follow immediately. Suppose that G has n + 1 ≥ 4 vertices and
is 2 -dismantlable. Let a, b be two corners of G, and let H be the 2
-dismantlable graph G − {a, b}. Suppose that x is dominated by x′,
where x is either a or b, and x′ is not equal to a nor b.

There is an optimal game on H of length at most
⌊

n−2
2

⌋

. The cop
plays this optimal game in H, and whenever R is on x, then C plays as
if he were on x′. After at most

⌊

n−2
2

⌋

moves, either the robber is caught
on H, or R is on x and C is on x′. But then C can win in one more
move, and so this strategy uses at most

⌊

n−2
2

⌋

+ 1 =
⌊

n
2

⌋

moves. As

st(G) is the length of an optimal game, we have that st(G) ≤
⌊

n
2

⌋

. �

Not every cop-win graph has two corners. For an integer n ≥ 4,
define G(n) by adjoining two vertices x and y joined to each vertex of
a path P with n vertices. Add a vertex z that is joined to y and the
endpoints of P . Then G(n) is cop-win but z is the unique corner of
G(n). See Figure 1.
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Figure 1. The graph G(4).

Using the graph G(4) as a template, we construct an infinite family
of graphs whose search-time is within an additive constant of the upper
bound |V (G)| of Theorem 1. For n ≥ 7, the graph H(n) has vertices
1, . . . , n, where 1, 2, 3, 4, 5, 6, 7 induce G(4) (so that x = 5, y = 3, z = 7,
and the remaining vertices on the path joined to x and y are (from left
to right) 6, 2, 1, 4.) For i > 7, the vertex i is joined to j < i if j equals
one of i − 4, i − 3, and i − 1. We name the vertices 7, 8, . . . , n special.
See Figure 2 for H(11).
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Figure 2. The graph H(11).

Theorem 3. For a fixed integer n ≥ 7, the graphs H(n) have the

following properties.

(1) The graph H(n) is planar.

(2) The graph H(n) is cop-win and has a unique corner.

(3) st(H(n)) = n − 4.
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Proof. To see item (1), we describe a planar drawing of H(n). The
rough idea is to spiral the special vertices around G(4) in an anti-
clockwise fashion. To be more precise, first draw G(4) as in Figure
1. Embed this drawing of G(4) in the unit square in any fixed way,
so that vertex 4 has coordinates (1, 0), 5 has coordinates (1, 0), 6 has
coordinates (−1, 0), and 7 has coordinates (0,−1).

For each vertex i, i ≥ 8, write i as r4 + s, where r ≥ 2 and s is one
of 0, 1, 2, 3. Place r4 + s at coordinate (r, 0) if s = 0, at (0, r) if s = 1,
at (−r, 0) if s = 2, and (0,−r) if s = 3. Hence, we place the special
vertices u around G(4), so u is on the positive or negative arms of the
x- or y-axes depending on the residue of x (mod 4). It is easy to see
that this is a planar drawing of H(n).

For item (2), note that the graph H(n) is cop-win, since we may
dismantle the special vertices in reverse order n, n − 1, . . . , 2, 1. By a
straightforward (and so omitted) induction argument, n is the unique
corner of H(n).

For item (3), we present a strategy S for the cop to win which always
results in a game of length at most n − 4. First note that each vertex
5 ≤ x ≤ n−4 has neighbours exactly {x−4, x−3, x−1, x+1, x+3, x+4}.
So the cop and robber may move to vertices with index 1, 3 or 4 more
or less than their current index.

The strategy S has three parts, with the third part repeated until the
robber is captured (which we will demonstrate eventually happens).

(S1) In the 0th round, place the cop on vertex 1.
(S2) After robber places himself on i > 1 in the 0th round, in the

first round move the cop to j ∈ V (G(4)) with j ∈ {2, 3, 4, 5} so
that such that i ≡ j (mod 4).

(S3) Repeat the following steps until the robber is eventually caught.
(a) If robber moves from i to i + k, then the cop moves from j

to j + k, where k = 1, 3, or 4.
(b) If robber moves from i to i − 1, then cop moves from j to

j + 3.
(c) If robber moves from i to i − 3, then cop moves from j to

j + 1.
(d) If robber moves from i to i − 4, then cop moves from j to

j + 4.

Let the cop play with S, and let cop(t) and robber(t) be the positions
of the cop and robber at round t in this game. Note that for all t ≥ 0,
cop(t + 1) > cop(t). We prove by induction that for all t ≥ 1,

(2.1) cop(t) ≡ robber(t − 1) (mod 4).
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The base case of (2.1) follows by (S1) and (S2). Suppose (2.1) holds
for a fixed t ≥ 1. Suppose that cop(t) = j, with robber(t − 1) = i. At
time t, the robber moves to i + m, where m ∈ {−4,−3,−1, 1, 3, 4}.

Then the cop moves at round t+1 to j+m′ for some m′ as instructed
by (S3). It is straightforward to check that i + m ≡ j + m′ (mod 4)
holds for all possible moves of the robber. Hence, the induction step
follows.

It follows that the difference of the indices of the cop and robber is
kept 0 (mod 4), and when the robber goes to a higher or lower index,
the difference is monotonically decreasing. Over time the cop gets
closer and closer to the robber. Note that for all rounds except for the
last one where the robber is captured, cop(t) < robber(t). Eventually
robber(t − 1) = i and cop(t) = j so that i = j + 4. In that case, the
robber can only evade capture by moving to i + 1 (which is not joined
to j). The cop then moves to j + 5 as instructed by (S3a). The index
of the robber will then eventually increase to n, with the robber in the
unique corner n of H(n), with the cop in n−4 (by repeated applications
of (S3a)). The cop will then capture the robber in the next move.

To prove that st(H(n)) = n − 4, we need to show that the robber
can survive this many steps against any strategy of the cop (including
S). To see this, note that the robber may use the lowest indexed vertex
that is available. In round 0, the robber may be placed on a vertex
1, . . . , 6, since no vertex of H(n) dominates all six of these vertices. In
round t ≥ 0, if i = robber(t − 1) ∈ {1, 2, 3, 4}, then in such a case the
robber can always move to a vertex of label at most 7 (we leave the
verification to the reader). If 5 ≤ i ≤ n − 1, then the robber’s moves
are instructed by the following table.

cop(t) robber(t)
i − 4 i + 1
i − 3 i − 1
i − 1 i − 3
i + 1 i − 4
i + 3 i − 4
i + 4 i − 4

Hence, robber(t) ≤ 6 + t for every t ≥ 1, and so the robber cannot be
caught in fewer than n − 4 moves of the cop. �

It is an open problem to find infinitely many cop-win graphs G with
n vertices such that st(G) = n−3. Another open problem is to charac-
terise graphs, called k-cop-win, on which k ≥ 2 cops are necessary and
sufficient to catch a robber. Almost nothing is known about directed
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graphs and cop-and-robber games. In an attempt to close these knowl-
edge gaps, Hahn and MacGillivray [13] provide an algorithmic charac-
terisation whose byproduct is a polynomial (in the number of vertices)
time algorithm for determining if st(G) ≤ k for a given (di)graph G
and a given k. It is based (in retrospect) on the characterisation of
cop-win graphs given in [17] that also applies to infinite graphs. The
idea is to assign an ordinal to each pair of vertices (u, v), indicating
how many rounds the cop at u needs to win if the robber is at v.

Let G be a graph (finite or infinite). Note that in what follows,
“<” means “�”. Define a sequence of order relations <α, α ≤ |V (G)|,
recursively as follows.

• u <0 u for all u ∈ V (G);
• u <α v if for each x ∈ N [u] there is a y ∈ N [v] and a β < α

such that x <β y.

Since <β⊆<α whenever β ≤ α, and, clearly, <|V (G)|+1=<|V (G)|, there is
a least α such that <γ=<α for all γ ≥ α. Set �=<α.

Theorem 4 ([17]). A graph G is cop-win if and only if the relation �
is trivial, that is, u � v for all u, v ∈ V (G)

In [13], an algorithm based on this idea is developed that decides,
in time polynomial in the number of vertices of the (obviously finite)
input graph G, whether or not the graph is k-cop-win (k fixed). From
the labelling (really by the appropriate β) of the vertices one can read
off the length of an optimal game. The problem of deciding whether
the search-time of a graph is at most t is, therefore, polynomial in the
number of vertices of the graph, provided the number k of cops is fixed.

One absence that motivates the present paper is that of a good (that
is, achievable) bound on the search-time in terms of some known graph
parameters. For example, the diameter might seem a likely candi-
date, but it is shown in [12] that for every natural number k there is
a chordal, diameter 2 finite cop-win graph with search-time k (and, by
compactness, that there are chordal, diameter 2 infinite graphs which
are not cop-win). Other parameters do not bound the search-time,
such as the length of a longest path (consider the complete graph),
or the length of a longest chordless path (consider a graph obtained
from a path by adding a new universal vertex). One might hope to
get a bound in terms of the least l such that vl, . . . , vn induce a com-
plete graph in a finite cop-win graph G with an enumeration of its
vertices as guaranteed by the structural characterisation theorem, but
the last-mentioned counterexample works here as well. The question is
as interesting - and as open - for infinite graphs. Let S be the graph
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obtained from (N, {0i : 0 6= i ∈ N}) by replacing each edge 0i by a path
0v1

i v
2
i . . . vi

i of length i; this is a star with 0 as its centre and paths of
length i (one for each i > 0) as rays. Clearly the robber determines the
length of the game by his choice of his starting vertex. Let SP be the
graph obtained from the ray (one-way infinite path) v0v1v2 . . . by the
addition of a new vertex v adjacent to all the vertices of the ray (call
SDP the graph obtained from the double ray by the same method).
The two graphs SP and SDP provide counterexamples to hypotheses
as to the bounds on the number of moves in terms of the diameter or
of the length of a longest chordless path.

3. Search-time density and infinite graphs

In this section we introduce a new parameter which measures limits
of the ratio of the cop time to the number of vertices over chains of
induced subgraphs. A similar approach was given in [5] for the cop
number.

As proven by Erdős and Rényi [10], with probability 1, a countably
infinite random graph has a unique isomorphism type written R. The
(deterministic) graph R is called the infinite random graph or the Rado

graph. The graph R is the unique isomorphism type of countable graph
satisfying the e.c. property : for all finite disjoint sets of vertices A, B,
there is a vertex z /∈ (A ∪ B) such that z is joined to each vertex of A
and to no vertex of B. From the results of [5], c(R) = ℵ0; that is, R is
infinite-cop-win. By [10], it follows that almost all countably infinite
graphs are infinite-cop-win.

Similar to [5] we consider the density of the search-time parameter,
relative to the number of vertices. A chain of graphs is a sequence
(Gn : n ∈ N), each Gn is an induced subgraph of Gn+1, for all n ∈ N.
Given a chain (Gn : n ∈ N) of induced subgraphs of G, we write
G = limn→∞ Gn if V (G) =

⋃

n∈N
V (Gn) and E(G) =

⋃

n∈N
E(Gn).

Note that every countable graph G is the limit of a chain of finite
graphs, and there are infinitely many distinct chains with limit G.
Suppose that G = limn→∞ Gn, where C = (Gn : n ∈ N) is a fixed chain
of induced subgraphs of G. We say that C is a full chain for G. For
G a finite graph, define the search-time density by

Dst(G) =
st(G)

|V (G)|
.

By Theorem 1, Dst(G) is a rational number in [0, 1). We may extend
the definition of Dst as follows. For a full chain C = (Gn : n ∈ N) in
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G, define

Dst(G, C) = lim
n→∞

Dst(Gn).

We refer to this as the search-time density of G relative to C. For
simplicity, we will always consider G and C where this limit exists.
Note Dst(G, C) is a real number [0, 1].

For example, let C be the chain with Gn isomorphic to Pn, and so the
limit graph G is the infinite one-way path. In this case, Dst(G, C) = 1

2
.

If we let our chain consist of the graphs H(n), for n ≥ 7 (where H(n)
is embedded in obvious way in H(n+1)), then the search-time density
of the limit graph relative to this chain is 1.

For the infinite random graph, we obtain the surprising result that
the search-time density can be any real number in [0, 1].

Theorem 5. For all r ∈ [0, 1], there is a full chain C in R such that

Dst(G, R) = r.

Proof. Let (pn : n ∈ N) be a sequence of rationals such that pn ∈
[0, 1) if n ≥ 1, p0 = 0, and limn→∞ pn = r. We construct a chain
C = (Gn : n ∈ N) in G = R such that G = limn→∞ Gn, and with the
property that Dst(G) = pn, and each Gn is cop-win. Enumerate V (G)
as {xn : n ∈ N}.

We proceed inductively on n. For n = 0, let G0 be the subgraph
induced by x0. Then Dst(G0) = 0 = p0.

Fix n ≥ 1, suppose the induction hypothesis holds for all k ≤ n,
and let pn+1 = a

b
, where a, b are positive integers. Further suppose for

an inductive hypothesis that {x0, . . . , xn} ⊆ V (Gn). Without loss of
generality, we may assume that a < b and that gcd(a, b) = 1.

We add vertices to Gn in several ways. First, if necessary, add xn+1

to Gn, to form the graph G′′
n+1. Next, form G′

n+1 by adding a universal
vertex u (u exists by the e.c. property). Then Dst(G

′
n+1) = 1, and say

that |V (G′
n+1)| = b′, where b′ is a positive integer. If 1

b′
= a

b
, then

let Gn+1 = G′
n+1. Otherwise, we add some new vertices to adjust the

parameter Dst(G
′
n+1).

We may add an arbitrary finite number y of endvertices to u. For
some x ≥ 7, by the e.c. property add a copy of H(x) by identifying the
vertex u with 1 and keeping all other vertices disjoint from the existing
ones. This gives the graph Gn+1, with x ≥ 5 and y to be determined.
The graph Gn+1 is cop-win, since H(x) can be dismantled to 1 = u,
and all of G′

n+1 can be dismantled to 1.
We claim that st(Gn+1) = x − 4. To see this place the cop first at

1. If the robber is in G′
n+1, then he is caught in the next round. If

the robber is in H(x), then play S as in the proof of Theorem 3. The
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optimal play for the robber is then also is as in the proof of Theorem
3. As the robber is always on a vertex i ≥ 6, by properties of S he can
never “escape” to 1 and G′

n+1 without being captured in less than x−4
moves. Note that the y endvertices attached to 1 do not increase the
search-time. In this way, the robber can play so that the game takes
x − 4 moves.

Thus,

(3.1) Dst(Gn+1) =
x − 4

b′ + x + y
=

a

b

where x, y are positive integers. We must find positive integer solutions
(x, y) with x ≥ 5 to the Diophantine equation

(b − a)x − ay = b′a + 4b.

As gcd(b − a,−a) = gcd(a, b) and b − a and −a are opposite signs,
we may find infinitely many of the desired (x, y). This completes the
induction step in constructing Gn+1.

As {x0, . . . , xn} ⊆ V (Gn) for all n ∈ N, we have that C=(Gn : n ∈ N)
is a full chain for G. Further,

D(G, C)= lim
n→∞

pn = r.

�

4. More than one cop

The general situation for graphs with cop number greater than 1
appears to be more complex. For example if n ≥ 3, then it can be
shown that

st(Cn) =

{

n−i
4

if n ≡ i (mod 4), i = 0, 1, 2;
n+1

4
if n ≡ 3 (mod 4).

To study the case for more than one cop, we introduce another param-
eter related to the lengths of games. If G is a graph, then let ct(G)
smallest number of cops needed to capture of robber in no more than t
rounds. Then c0(G) = |V (G)|, and c1(G) is the domination number of
G. For chordal (but not general) graphs, ct(G) is t-domination number.

The following result contrasts with the complexity results shown in
Section 2 for the search-time. Consider the following problem.

bounded-time cop number
INSTANCE: A graph G and a nonnegative integer k.
QUESTION: Is ct(G) ≤ k?

Theorem 6. For each positive integer t, the bounded-time cop
number problem is NP-complete.
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Proof. The problem is in NP since for a given strategy of cops we can
construct a directed rooted tree of all possible moves of the robber
(where the first move is a choice of the initial position) and corre-
sponding moves of the cops. For every vertex of this tree the current
positions of the cops and robber are stored (only initial positions of
cops are stored for the root). This tree is a rooted tree of restricted
size (out-degrees of vertices are restricted by |V (G)|, and distance from
the root to leaves is no more than t). Hence, given the tree it may be
checked in polynomial time whether the strategy of cops is winning.

For the NP-completeness, we reduce the Satisfiability problem
(see [16]) to our problem. Let C be a boolean formula in conjunctive
normal form with variables x1, x2, . . . , xk and clauses C1, C2, . . . , Cm.
From the formula C we construct the graph G(C) as follows. For every
variable xi, introduce vertices xi and xi which are connected by an edge.
A path Pt with one endpoint ui is added, and vertex ui is joined by
edges with xi and xi. For every clause Cj add a path Pt with endpoints
yj and zj. For every literal from Cj, join the vertex yj to xi if this
literal contains a positive occurrence of this variable, and to xi if this
literal contains a negative occurrence.

Suppose that k cops can capture the robber in no more than t steps.
Then for every i = 1, 2, . . . , k, the cops must be placed on either xi

or xi, or on one of vertices of the path with endpoint ui. If a cop
occupies xi, then let xi = true, and xi = false if a cop occupies xi.
If a cop is placed on any other vertex, then the value of xi is chosen
arbitrarily. If some clause Cj is not satisfied by this truth assignment,
then clearly the robber can occupy the vertex zi and avoid capture
in the first t rounds. Conversely, suppose that variables x1, x2, . . . , xk

have a truth assignment for which C has value true. If xi = true, then
at the beginning of the game we place a cop on vertex xi, otherwise
a cop is placed on xi for i = 1, 2, . . . , k. Since each clause contains a
positive literal, each yi is joined to a vertex with a cop. The strategy
for the cops to win is now clear and captures the robber in at most t
rounds, no matter what his strategy is. �

The bounded-time cop number remains NP-complete for planar
graphs and for chordal graphs. The proof of the NP-complexity of the
problem for chordal graphs follows since the t-dominating problem for
chordal graphs is NP-complete (see [8]). For planar graphs, we need a
bit more preliminary work.

Let C be a boolean formula in conjunctive normal form with variables
x1, x2, . . . , xk. Define H(C) to be the bipartite graph with vertices
x1, x2, . . . , xk and C1, C2, . . . , Cm such that xi and Cj are joined if and
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only if clause Cj contains the literal xi or xi. It is known (see [15]) that
Satisfiability (and 3-Satisfiability) remains NP-complete if the
graph H(C) is planar and every variable occurs in no more than four
clauses. We require the following lemma.

Lemma 7. Satisfiability remains NP-complete even when H(C)
has a plane embedding such that if clauses Cr and Cr′ contain xi, and

Cs and Cs′ contain xi, then the edges xiCr and xiCr′ are edges in the

boundary of one face.

Proof. Consider a fixed planar embedding of H(C). Suppose that the
condition of the claim is not fulfilled for a fixed vertex xi. We add
a new variable x′

i and replace xi by x′
i in Cr′ and Cs′. Then clauses

xi ∨ x′ and xi ∨ x′
i are added. Let C ′ be the resulting boolean formula.

It can be easily seen that the given embedding of H(C) can be replaced
by a planar embedding of H(C ′), for which the condition of the claim
for xi and x′

i is satisfied, without violating the condition for the other
vertices. Since (xi ∨x′)∧ (xi ∨x′

i) = true if and only if variables xi and
x′

i have same values, the formula C can be satisfied if and only if C ′

can be satisfied. �

It is not difficult to see that if H(C) satisfies the conditions of
Lemma 7, then G(C) is planar. Thus, the bounded-time cop num-
ber problem remains NP-complete when G(C) is planar.

Theorem 6 contrasts with the complexity of computation of the cop
number (see [3, 11, 13]) and for search-time for both chordal and planar
graphs. It is interesting to note that the value of ct(G) can be calculated
in polynomial time for trees [14, 19], strongly chordal graphs [7], and
interval graphs [1].
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