A NOTE ON UNIQUELY H-COLOURABLE GRAPHS
ANTHONY BONATO

ABSTRACT. For a graph H, we compare two notions of uniquely
H-colourable graphs, where one is defined via automorphisms, the
second by vertex partitions. We prove that the two notions of
uniquely H-colourable are not identical for all H, and we give a
condition for when they are identical. The condition is related to
the first homomorphism theorem from algebra.

1. INTRODUCTION

A homomorphism from G to H is an edge-preserving vertex-mapping.
If there is a homomorphism from G to H, then we say that G is H-
colourable. For background and notation on graph homomorphisms,
the reader is directed to [6]. Uniquely H-colourable graphs, where H
is a fixed finite graph, have been studied by many authors; see, for
example, [1, 2, 4, 9, 10]. The usual definition of uniquely H-colourable
uses automorphisms of H, and as such, makes no explicit mention of
vertex partitions. To be more explicit, recall that a graph H is a core
if every endomorphism of H is an automorphism. For a core H, G is
uniquely H-colourable if G is H-colourable, every homomorphism from
G to H is surjective, and for all homomorphisms f,h from G to H,
there is an automorphism g of H so that f = gh. We denote the class
of uniquely H-colourable graphs by C,(H).

Given a homomorphism f from G to H, define ker(f) = {(z,y) €
V(G) x V(G) : f(z) = f(y)}. Then ker(f) is an equivalence relation
whose equivalence classes, called colour blocks, are independent sets
partitioning V(G). A graph G is weakly uniquely H-colourable if the
last condition in the definition of uniquely G-colourable is replaced
by: for all homomorphisms f,h from G to H, ker(f) = ker(h). The
class of weakly uniquely H-colourable graphs is written C,(H). It is
straightforward to see that C,(H) C Cly,(H). The classical notion of
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uniquely n-colourable graph introduced in [6] corresponds to weakly
uniquely K,-colourable graphs. Further, C,(K,) = Cy,(K,).
However, perhaps surprisingly, there are cores H such that C,(H) ;Cé
Cyu(H). We demonstrate that there are infinitely many graphs H with
this property; see Theorem 2. If C,(H) = Cyu(H), then we say that
the core H is good; otherwise, we say that H is bad. Our goal in this
short note is to present a condition for a core to be good that applies
to a large number of cases; see Theorem 3 (2). We give an equivalent
algebraic formulation of this condition in Theorem 3 (1). For related
work on H-colourings and properties of cores, the reader is directed to

7, 8.

2. GOOD, GREAT, AND BAD CORES

All graphs we consider are finite, undirected, and simple. Define
Hom(G, H) be the set of homomorphisms from G into H. The monoid
Hom(H, H) of endomorphisms of H under composition is denoted
End(H). We write Aut(H) for the group of automorphisms of H un-
der composition. If X is a set, then we write Sym(X) for the set of
bijections from X to itself.

Before we can give examples of bad cores, we need the following
straightforward lemma.

Lemma 1. Let H be a core graph. Then G € Cy.(H) if and only if G
is H-colourable, every element of Hom(G, H) is surjective, and for all
f,h € Hom(G, H), there is a g € Sym(V(H)) so that f = gh.

Proof. Assume |V (H)| = n, for some n > 1. For the forward direction,
fix f,h € Hom(G, H). Label the colour blocks of ker(f) as By, ..., B,.
For each 1 < i < n, choose b; € B;. Define g : V(H) — V(H) by
g(h(b;)) = f(b;). Then g is well-defined as ker(f) = ker(h) and as h is
surjective. As f is surjective, it follows that g is surjective, and hence,
g € Sym(V(H)). As f = gh, the forward direction follows.

For the converse, let f,h € Hom(G, H). By hypothesis, there is
a g € Sym(V(H)) so that f = gh. Then for z,y € V(G), f(z) =
f(y) if and only if g7' f(z) = g~ f(y). But the latter is equivalent to
h(z) = h(y). Hence, (z,y) € ker(f) if and only if (z,y) € ker(h), so
ker(f) = ker(h). O

For an integer n > 2, let G = Ks, o with 1,2 fixed distinct vertices
of G. Define a graph H, as follows. Let G; and G5 be two disjoint
copies of G, so that the vertices of Gy are {2’ : © € V(G)}. The vertices
of H, are the vertices of G; and G, along with three new vertices a,
b, and c. The edges of H,, include the edges of G; and G5; the vertex
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a is joined to every vertex in V(G7) U V(G2) and no other vertex; the
vertex b is joined to vertices in {c} U V(G;) and no other vertex; the
vertex ¢ is joined to vertices in {b} U V(H;3) and no other vertex; the
only edge “between” V(G;) and V(G3) is 12'. See Figure 1 for H,.

If z is a vertex of GG, then G — x is the graph that results when x
is deleted. A nontrivial graph is critical if x(G — z) < x(G) for all
z € V(G).

Theorem 2. Fach graph H, is a bad core.

Proof. The graph H = H,, is critical with x(H) = 2n. Hence, H is a
core. Define J by deleting the edge 12/, so that 1 and 2 have the same
neighbors in J. Then J is critical with x(J) = 2n.

We next show that J € Cyu(H) \ Cu(H), which will witness that
H is bad. To see this, note first that J € Cy,(H): clearly J is H-
colourable; since J and H are critical with chromatic number 2n, every
f € Hom(J, H) is surjective; and as |V(J)| = |V(H)|, ker(f) has
only singleton colour blocks, so any two elements of Hom(J, H) have
the same kernel. Let f = id; € Hom(J, H) and define h so that it
interchanges 1 and 2 and fixes all other vertices. Then h € Hom(J, H)
as 1 and 2 have the same neighborsin J. If thereisa g € Aut(H) so that
f = gh, then g interchanges 1 and 2 leaving all other vertices of H fixed.
But 1 and 2 have different neighbours in H, so that g ¢ End(H ), which
is a contradiction. O

By Theorem 2, there are infinitely many bad cores. By a direct
check, each core of order at most 6 is good. Hence, the minimum order
of an bad core is 7, with an explicit example given in Figure 1.
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FIGURE 1. An bad core of minimum order.

Let G and H be graphs and let f € Hom(G, H) be surjective. The
quotient graph G/ker(f) has vertices the colour blocks of ker(f), and
two colour blocks B and C are joined if and only if there is some
vertex in B joined to some vertex in C. Note that the colour blocks
are just the preimages under f of vertices of H. The natural map
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ns: V(G/ker(f)) — V(H) defined by n¢(f~*(z)) = z is a well-defined
homomorphism. Observe that if G € C,,(H), then 7y is a bijection.

The next definition is inspired by the homomorphism theorems that
hold in varieties of algebraic systems. Let H be a core graph. The class
Cuwu(H) satisfies the first homomorphism theorem if for all G € Cy,,(H)
and all f : Hom(G, H), the homomorphism ny : V(G/ ker(f)) — V(H)
is an isomorphism (that is, f is a complete homomorphism). By pre-
ceding remarks we need only show that 7y is an embedding (an injective
homomorphism which preserves non-edges). The classes Cy,(H) sat-
isfying the first homomorphism theorem can be characterized by an
intrinsic condition of H. If e is an edge of H, then H — e is the graph
formed by deleting e. We say that a graph H is great if for alle € E(H),
there is some f € Hom(H —e, H) so that f is not surjective. For exam-
ple, each clique and cycle is great. We now state and prove our main
result.

Theorem 3. Let H be a core graph.

(1) The class Cyu(H) satisfies the first homomorphism theorem if
and only if H is great.
(2) If H is great, then H is good.

Proof. For the forward direction of item (1), to obtain a contradiction
we assume that for alle € E(H), every f € Hom(H —e, H) is surjective,
and therefore, a bijection. Fix f,h € Hom(H — e, H). Hence, ker(f)
and ker(h) have all singleton blocks. In particular,

(1.1) (H—e)/ker(f) = H —e.

The mapping g : V(H) — V(H) defined by g(f(z)) = h(z) is well-
defined and bijective as ker(f) = ker(h) and f is surjective. Hence,
gf = h for some g € Sym(V (H)). As f and h were arbitrary, H — e €
Cwu(H) by Lemma 1. Since C,,,(H) satisfies the first homomorphism
theorem, n; : V((H — e) / ker(f)) — V(H) is an isomorphism, so that
H —e= H by (1.1), which is a contradiction.

For the reverse direction of (1), fix H a great core. Fix G € C,(H)
and h € Hom(G, H). If the natural map n, : V(G/ker(h)) — V(H)
is not an isomorphism, then it is not an embedding. Hence, there
are x,y € V(H) such that zy € E(H) but the colour blocks h~!(x)
and h~'(y) are not joined in G/ker(h). Let ¢ = zy € E(H). Note
that h : V(G) — V(H —e) is a homomorphism. As H is great, there is
some f € Hom(H —e, H) that is not surjective. But then fh: V(G) —
V' (H) is a homomorphism that is not surjective, which contradicts that

G € Cyuu(H).
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For item (2), as H is great, Cy,,(H) satisfies the first homomorphism
theorem by item (1). Fix G € Cyu(H) and fix f,h € Hom(G, H).
Then by Lemma 1 there is a g € Sym(V(H)) so that f = gh. We
show that g € Aut(H). As H is a core, it is enough to show that g €
End(H). To see this, fix zy € E(H). By hypothesis, h~'(x)h 1 (y) €
E(G/ker(h)), so that there is some a € h™!(x) and b € h™!(y) with
ab € E(G). Now f(a) = g(h(a)) = g(x); similarly, f(b) = g(y). As
f is a homomorphism, we have that f(a)f(b) € E(H), and hence,
9(x)g(y) € E(H). 0

Cliques and odd cycles are great cores, and hence, are good by Theo-
rem 3 (2). If G and H are graphs, recall that their join, written G+ H,
is the graph formed by adding edges between each vertex of G and
H. If G is a great core, then an analysis of cases demonstrates that
G + K, is a great core for each n > 1. In particular, the odd wheels
W, for n > 2 are great cores. For a large class of great cores, we
consider a recent construction of [3]. If G is a graph, define C(G) to
be G with edge replaced by a path with 3 edges. As proven in [3], if G
is connected with at least three vertices, then fG is a core if and only
if C(G) is. It is not hard to see that for all graphs G, C(G) is great.

We note that not all good cores are great. Direct checking (which
is tedious, and so omitted) demonstrates that the Petersen graph is a
good but not great core. Hence, the converse of Theorem 3 (2) is false.
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