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Simple Linear Regression - some theory and formulas

1. Model and Parameter Estimation

(a) Suppose our data consist of a collection of n pairs (xi, yi), where xi is an observed
value of variable X and yi is the corresponding observation of random variable Y .
The simple linear regression model

yi = β0 + β1xi + εi

expresses the relationship between variables X and Y . Here β0 denotes the intercept
and β1 the slope of the regression line.

(b) Values for β0 and β1 are estimated from the data by the method of least squares.

(c) From the many straight lines that could be drawn through our data, we find the line
that minimizes the sum of squared residuals, where a residual is the vertical distance
between a point (xi, yi) and the regression line.

(d) Values β̂0 and β̂1 denote the estimates for β0 and β1 that minimize the sum of squared
residuals, or error sum of squares(SSE). The estimates are called least squares esti-
mates.

SSE =
n
∑

i=1

e2
i =

n
∑

i=1

(yi − β0 − β1xi)
2

(e) SSE is minimized when the partial derivatives of the SSE with respect to the un-
knowns (β0 and β1) are set to zero: ∂SSE

∂β0

= 0 and ∂SSE
∂β1

= 0. (You need multivariable

calculus [eg Math 2001] to understand the theoretical details, so we will just take
this as a given.) These two conditions result in the two so-called “normal equations”.

nβ0 + β1

n
∑

i=1

xi =
n
∑

i=1

yi

β0

n
∑

i=1

xi + β1

n
∑

i=1

x2
i =

n
∑

i=1

xiyi

(f) The two normal equations are solved simultaneously to obtain estimates of β0 and
β1. These estimates are:

β̂1 =

∑n
i=1(yi − ȳ)(xi − x̄)
∑n

i=1(xi − x̄)2
=

n
∑n

i=1 xiyi − (
∑n

i=1 xi) (
∑n

i=1 yi)

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2

β̂0 = ȳ − β̂1x̄

Looking at the formula for β̂1, and recalling the formula for the correlation coefficient
r, it is easy to see that β̂1 = rsx/sy.

(g) The error variance, σ2, is estimated as

σ̂2 =
SSE

n − 2
=

∑

(yi − ŷi)
2

n − 2
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The following example shows the calculations as they would be carried out by hand,
in gruesome detail.

eg: To study the effect of ozone pollution on soybean yield, data were collected at
four ozone dose levels and the resulting soybean seed yield monitored. Ozone dose
levels (in ppm)were reported as the average ozone concentration during the growing
season. Soybean yield was reported in grams per plant.

X Y
Ozone(ppm) Yield (gm/plant)
.02 242
.07 237
.11 231
.15 201

• Estimated values for β0 and β1 are now computed from the data

X Y X2 Y 2 XY
.02 242 .0004 58564 4.84
.07 237 .0049 56169 16.59
.11 231 .0121 53361 25.41
.15 201 .0225 40401 30.15

• Column sums:
∑

xi = .35,
∑

yi = 911,
∑

x2
i = .0399,

∑

y2
i = 208, 495, and

∑

xiyi = 76.99

• Means: x̄ = .0875 and ȳ = 227.95

• Intermediate terms:

SSxx =
∑

i

(xi − x̄)2 =
∑

i

x2
i −

(
∑

xi)
2

n
= .0399 −

(.35)2

4
= .009275

SSxy =
∑

i

(xi−x̄)(yi−ȳ) =
∑

i

xiyi−
(
∑

xi)(
∑

yi)

n
= 76.99−

.35(911)

4
= −2.7225

• β̂1 = SSxy

SSxx
= −293.531, β̂0 = ȳ − β̂1x̄ = 227.95 − (−293.531)(.0875) = 253.434

(h) the least squares regression equation which characterizes the linear relationship be-
tween soybean yield and ozone dose is

ŷi = 253.434 − 293.531xi

(i) The error variance, σ2, is estimated as MSE.

(j) Residuals: ε̂i = yi − ŷi = yi − (β̂0 + β̂1 ∗ xi)
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xi yi ŷi ε̂i = yi − ŷi

.02 242 247.563 -5.563

.07 237 232.887 4.113

.11 231 221.146 9.854

.15 201 209.404 -8.404

(k) Residual Sum of Squares (In regression problems, the error sum of squares is
also known as the residual sum of squares).

SSE =
∑

ε̂2
i = (−5.563)2 + (4.113)2 + (9.854)2 + (−8.404)2 = 215.59

(l) Mean Squared Error: MSE = SSE
(n−2)

= 107.80

Statistical inferences - CI’s and tests for the β’s

2. Standard Errors for Regression Coefficients

(a) Regression coefficient values, β̂0 and β̂1, are point estimates of the true intercept and
slope, β0 and β1 respectively.

(b) To develop interval estimates (confidence intervals) for β0 and β1, we need to make
assumptions about the errors in the regression model. In partiular, we assume

ε1, ε2, . . . , εn i.i.d N(0, σ2), in which case:

β̂1 ∼ N(β1,
σ2

SSxx
)

(c) The standard deviation of β̂1 is
√

σ2

SSxx

(d) The value of σ2 is unknown, so the estimator MSE is used in its place to produce
the standard error of the estimate β̂1, as

SEβ̂1
=
√

MSE/SSxx

(e) The standard error for estimate β̂0 is given as:

SEβ̂0
=

√

MSE(
1

n
+

x̄2

SSxx
)

(f) • Standard Errors for regression coefficients in the above example are estimated
below.

• SSxx = .009275 and MSE = 107.80

• SEβ̂1
=
√

MSE/SSxx =
√

107.80/.009275 = 107.81

• SEβ̂0
=
√

MSE( 1
n

+ x̄2

SSxx
) =

√

107.80((1/4) + (.0399/.009275)) = 10.77
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3. Confidence Intervals for Regression Coefficients

(a) Confidence intervals are constructed using the standard errors as follows:

β̂i ± tα/2,n−2SEβ̂i

(b) In the example, 95% confidence intervals for β1 and β0 are computed as follows.

• tα/2,n−2 = t.025,2 = 4.303

• For the slope, β1: −293.531 ± 4.303(107.81)

(−757.4, 170.3)

• For the intercept, β0: 253.434 ± 4.303(10.77)

(207.1, 299.8)

4. The correlation between X and Y is estimated by:

r =

∑n
i=1(yi − ȳ)(xi − x̄)

√

∑n
i=1(xi − x̄)2

∑n
i=1(yi − ȳ)2

An alternative expression is given by

r = β̂1

√

∑n
i=1(xi − x̄)2

√

∑n
i=1(yi − ȳ)2

or

r = β̂1

√
SSxx

√

SSyy

where SSxx =
∑n

i=1(xi − x̄)2 and SSyy =
∑n

i=1(yi − ȳ)2 are the sums of squares of the
X’s and Y’s, respectively. Note that SSyy = SST , the total sum of squares. Note that
√

SSxx√
SSyy

= sx

sy
, the ratio of the standard deviations of the X’s and the Y ’s.

• The correlation coefficient lies in the interval [-1,+1].

• If the relationship beween Y and X is perfectly linear and increasing, the correlation
will be +1.

• If the relationship is perfectly linear and decreasing, the correlation will be +1. If
there is no

• linear relationship between X and Y, the correlation is 0.

• In the example, r = β̂1

√
SSxx√
SSyy

= −293.531
√

.009275√
1016.49

= −.887
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5. Goodness of fit of the regression line is measured by the coefficient of determination,
R2. For simple linear regression R2 = r2.

R2 =
SSR

SST

The Regression Sum of Squares (SSR) is similar to the Treatment Sum of Squares in an

ANOVA problem. It is given by SSR =
SS2

xy

SSxx
. Alternative ways of calculating the residual

sum of squares are to use the additivity relationship (SSR + SSE = SST), or to use one
of the following formulas.

R2 = SSR/SST
1 − R2 = (SST − SSR)/SST = SSE/SST

SSE = (1 − R2)SST

R2 is the fraction of the total variability in y accounted for by the linear regression line,
and ranges between 0 and 1. R2 = 1.00 indicates a perfect linear fit, while R2 = 0.00 is
a complete linear non-fit.

In the example:

• SSR =
SS2

xy

SSxx
= (−2.7255)2/.009275 = 800.90

• SST = SSR + SSE = 800.90 + 215.59 = 1016.49

• R2 = SSR/SST = 0.786

• Note that R2 = r2, the square of the correlation coefficient.

• 78.8% of the variability in Y is accounted for by the regression model.

6. Estimating the mean of Y

(a) The estimated mean of Y when x = x∗ is µ̂x∗ = β̂0 + β̂1x
∗.

(b)

µ̂x∗ = β̂0 + β̂1x
∗ ≈ N

(

β0 + β1x
∗, σ2

(

1

n
+

(x∗ − x̄)2

SSxx

))

(c) The standard error of µ̂x∗ is

SEµ̂x∗
=

√

√

√

√MSE

(

1

n
+

(x∗ − x̄)2

SSxx

)

(d) A confidence interval for the mean µx∗ = β0 + β1x
∗ when x = x∗ is given by

µ̂x∗ ± tα/2,n−2SEµ̂x∗

(e) eg. A 95% confidence interval for the mean at x = 0.10 is:

• When x∗ = 0.10, the estimated mean is µ̂.1 = 253.434 − 293.531(0.1) = 224.08
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• SEµ̂.1
=

√

107.8
(

1
4

+ (0.1−.0875)2

.009275

)

= 5.36

• tα/2,n−2 = t.025,2 = 4.303

• margin of error = 4.303(5.36) = 23.08

• 224.08 ± 23.08

• (201 , 247.16)

7. Predicting a New Response Value

We are now interesting in predicting the value of y at a future value x = x∗. In making a
prediction interval for a future observation on y when x = x∗, we need to incorporate
two sources of variation which account for the fact that we are replacing the unknown
mean by the estimate β̂0 + β̂1x

∗, and we are replacing the unknown standard deviation σ
by the estimate

√
MSE .

y − (β̂0 + β̂1x
∗) = (y − (β0 + β1x

∗)) − (β̂0 + β̂1x
∗ − (β0 + β1x

∗))

The first term in brackets on the right hand side of this expression has a N(0, σ2) distri-
bution. From (b) above, the distribution of the second term is

N

(

0, σ2

(

1

n
+

(x∗ − x̄)2

SSxx

))

As y represents a future observation, the distributions of the two terms are independent,
and it follows that the distribution of y − (β̂0 + β̂1x

∗) is

N

(

0, σ2

(

1 +
1

n
+

(x∗ − x̄)2

SSxx

))

(a) The predicted value of y is given by ŷ∗ = β̂0 + β̂1x
∗

(b) The variance of the above distribution is estimated by:

√

√

√

√MSE

(

1 +
1

n
+

(x∗ − x̄)2

SSxx

)

(c) and the prediction interval for y is given by

β̂0 + β̂1x
∗ ± tα/2,n−2

√

√

√

√MSE

(

1 +
1

n
+

(x∗ − x̄)2

SSxx

)

(d) eg. A 95% prediction interval for y when x = 0.10 is:

• For x∗ = 0.10, y∗ = 253.434 − 293.531(0.1) = 224.08

• SEy∗ =

√

107.8
(

1 + 1
4

+ (0.1−.0875)2

.009275

)

= 11.69

• tα/2,n−2 = t.025,2 = 4.303
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• margin of error = 4.303(11.69) = 50.29

• 224.08 ± 50.29

• (173.79, 274.37)


