Multiple Linear Regression

e is used to relate a continuous response (or depen-
dent) variable Y to several explanatory (or inde-
pendent) (or predictor) variables X1, X, ..., X}

e assumes a linear relationship between mean of Y
and the X's with additive normal errors

e X,; is the value of independent variable j for
subject .

e Y, is the value of the dependent variable for sub-
jecti, 1 =1,2,...,n.

e Statistical model

Yi =00+ 51 Xi1 + BoXio+ ...+ B Xir + €

the errors are assumed to be a sample from N (0, o?)



Example 1: The data set height.mtw can be found
on WebCT, in the data files folder. The variables in the
data set include Y (height of student), X; (height of
same sex parent), X5 (height of opposite sex parent),
and sex of the student (X3 = 1 for males; X3 = 0 for
females).

The following minitab output gives the various Pear-
son correlations for different pairs.

Results for: HEIGHTS.MTW
MTB > corr cl-c4

Student heig Height of sa Height

Height of sa 0.641
0.000

Height of op -0.193 -0.408
0.205 0.005

Male or Fema 0.692 0.606
0.000 0.000

Cell Contents: Pearson correlation
P-Value

of op

-0.539
0.000
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There are a number of possible regression models,
including regressions on single or multiple independent
variables.

As with simple linear regression, parameters are es-
timated by least squares. Details of estimation and
statistical inference to be discussed later.
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Student height versus height of same sex par-
ent

Yi=0o+ 51X +e
MTIB > regress cl 1 c2

The regression equation is
Student height = 30.7 + 0.557 Height of same sex parent

Predictor Coef SE Coef T P
Constant 30.702 6.765 4.54 0.000
Ht of same sex parent 0.55667 0.1017 5.47 0.000

S = 2.74051 R-Sq = 41.1% R-Sq(adj) = 39.7%
Analysis of Variance

Source DF SS MS F P
Regression 1 225.07 225.07 29.97 0.000
Residual Error 43 322.95 7.51

Total 44 548.02



Student height versus height of opposite sex
parent

Yi= 0o+ b1 X2+ €
MIB > regress cl1 1 c3

The regression equation is
Student height = 81.9 - 0.209 Height of opposite sex pa:

Predictor Coef SE Coef T P
Constant 81.89 11.06 7.40 0.000
Ht opposite sex parent -0.2094 0.1626 -1.29 0.205

S = 3.50309 R-Sq = 3.74 R-Sq(adj) = 1.5}
Analysis of Variance

Source DF SS MS F P
Regression 1 20.34 20.34 1.66 0.205
Residual Error 43 527.68 12.27

Total 44 548.02



The regression equation is

Student height = 22.7 4+ 0.586 Height of same
sex parent + 0.090 Height of opposite sex parent

Yi = Bo+ 51 Xi1 + B2 X0 + €

MIB > regress cl 2 c2 c3

Predictor Coef
Constant 22.66
Ht same sex parent 0.5859

Ht opposite sex parent 0.0897

SE

0
0

Coef T P
14.30 1.59 0.120
.1122 5.22 0.000
.1403 0.64 0.526

S = 2.75953 R-Sq = 41.6% R-Sq(adj) = 38.9Y%

Analysis of Variance

Source DF SS MS
Regression 2 228.19 114.09
Residual Error 42 319.83 7.62

Total 44 548.02

F P
14.98 0.000



The regression equation is Student height =
21.5 + 0.338 Height of same sex parent 4+ 0.325
Height of opposite sex parent 4+ 4.44 Male or Fe-
male ( 1=M, 0 = F)

Yi = Bo + 51 Xi1 + B2 Xio + 83 X3 + €

MIB > regress cl 3 c2 c3 c4

Predictor Coef SE Coef T P
Constant 21.50 11.70 1.84 0.073
Ht same sex parent 0.3375 0.1061 3.18 0.003

Ht opposite sex parent 0.3249 0.1254 2.59 0.013
Male/Female (1=M,0=F) 4.4446 0.9534 4.66 0.000

S =2.25790 R-Sq = 61.9% R-Sq(adj) = 59.1Y
Analysis of Variance

Source DF SS MS F P
Regression 3 339.00 113.00 22.16 0.000
Residual Error 41 209.02 5.10

Total 44 548.02



Multiple Regression Model

e Statistical model:

Yi =00+ 01 X1 + 51 Xio + ... + 51 Xk + €

e Assumptions:

The errors are a sample from N(0,0?)

e Estimation:

The regression parameters are estimated using
least squares. That is, we choose 3y, S1,..., Ok
to minimize

SSE = Z(yz — B0 —xin — ... — 5kfﬂik)2
i=1

e Inferences:

The ANOVA table similar to that for simple linear
regression, with changes to degrees of freedom to
match the number of predictor variables.



Source d.f. SS MS F

Regression | k SSR | MSR=SSR/k F ps=MSF
Residual n-k-1 | SSE | MSE=SSE/(n-k-1)
Total n-1 SST

e SST=SSR+SSE

e Hy: 01 =02=...= 0 =0
H 4: one or more of (31, B2, ..., Bi are non-zero

o p-value = P(Fgn—r—1 > Fops)

e The goodness of fit of the linear regression line is
measured by the coefficient of determination
R?.

SSR
R =~
SST
e R?? is the fraction of the total variability in y

accounted for by the regression line, and ranges
between 0 and 1. R? = 1.00 indicates a perfect
(linear) fit, while R? = 0.00 is a complete lack
of linear fit.



Matrix Methods for Multiple Linear Regression

Yi = Po+ 51 Xi1 + BoXio + ... + B Xik + €

X;; the value of explanatory variable j for subject .

-1 X1 Xi2o oo Xag T Bo
Y;
( Yl \ I Xo1 Xoo ... Xok (1 \
2 1 X331 Xzo ... Xsi B

\ V. / L X X o xae 1\ 5/

or in matrix form

where

(o)

\ e )



and

Xn2




° BO, Bl, Bk denote estimates of the true regres-
sion coefficients By, B31,..., Bx. The estimates min-
imize the sum of squared residuals, or error sum
of squares(SSE). Hence, they are then called least
squares estimates. The error sum of squares is:

SSE = Z Z —(Bo+Brzii+..+Pexik))? = €'e

0SSE

0B;
ditions result in a system of normal equations which

are solved simultaneously to obtain estimates of 3o,
B1, ..., Br. In matrix form the Normal Equations are

e SSE is minimized when all — 0. These con-

(X'X)B = (X'Y)
e A unique solution (when it exists) to the normal
equations is
(%)
G

= (X'X)""(X'Y)

@
|

\ 5/

Least squares estimates are calculated using this equa-
tion.



e [he vector

<o
I

\ 7. /
contains the predicted values, where

A

Y, = Bo + Ble’l + B2X7;2 + ...+ Bk;Xik

In matrix form, the predicted values are given by

Y = X3
e The error variance, o2, is estimated as follows

A2 _ SSE _ Z(yi_fgi)2
gy (s e )

which is the sum of squares for error (SSE) divided
by the error degrees of freedom (n-(k+1)).

e As before, the total sum of squares is > (y; — %),
and the total degrees of freedom is n — 1.

e With these quantities, an ANOVA table can be con-
structed in the same manner as for simple linear re-
gression.



Source df SS MS F

Regression  k SSR  MSR F,,s = MSR/MSE
Error n-k-1 SSE MSE
Total n-1 SST

e The observed value of F'is used to test the overall
utility of the regression model. The formal hypothe-
sesare Hy : 81 = B2 = ... = B =0, vs Hy : at
least 1 of (31, B2, ..., Bk is non-zero.

e The p-value is P(Fi n—k—1 > Fobs).



e Example: Consider the following data set with 8 val-

ues of the response, Y, and four explanatory vari-
ables, X1,X2,X3, and X4.

Y X1 X2 X3 X4
78.5 I 26 6 60
74.3 1 29 15 bH2
1043 | 11 56 8 20
37.6 11 31 8 47
95.9 I 52 6 33
109.2 | 11 55 9 22
102.7 | 3 /1 17 6

2.5 1 31 22 44

e Regression model using all four explanatory variables
IS

U= BO + B1X1 + B2X2 + B3X3 + B4X4

e In MINITAB the data are assembled as shown below.

MTB > set cl #Y

DATA> 78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5
DATA> set c2 # X1

DATA> 7 1 11 11 7 11 3 1

DATA> set c3 # X2

DATA> 26 29 56 31 52 55 71 31

DATA> set c4 # X3

DATA> 6 15 8 8 6 9 17 22
DATA> set cb # X4



DATA> 60 52 20 47 33 22 6 44
DATA> end
MTB > print cl-cb

Ci C2 C3 C4 Cb
Row Y X1 X2 X3 X4

1 78.5 7 26 6 60
2 74.3 1 29 15 b2
3 104.3 11 56 8 20
4 8r.6 11 31 8 47
5 95.9 7 b2 6 33
6 109.2 11 b5 9 22
7 102.7 3 71 17 6
8 72.5 1 31 22 44

MIB > copy c1 ml # Y vector
MTB > set c6

DATA> 8(1)

DATA> end



MTB > copy c6 c2 c3 c4 cb m2
MTB > print m2

Matrix M2 # m2 = X matrix

7 26 6 60
1 29 15 562
11 56 8 20
11 31 8 47
7 52 6 33
11 b5 9 22
3 71 17 6
1 31 22 44

e e

To determine the value of the regression coefficients,
the above matrix equation must be solved. To do
so, first requires determination of the elements of
three other important matrices, (X’'X), (X'Y), and
(X'X)~ 1.

MTB > transpose m2 m3
MIB > multiply m3 m2 m4d



MTB > inverse m4d mb
MTB > print mb

Matrix Mb

1880.08 -22.6974 -19.
0.
.1931

-22.70
-19.02
-20.99
-18.57

# mb = inv(X’X)

MIB > multiply m3 ml
MTIB > multiply mb m6
MTB > print m7

Matrix M7

48.5583
1.6154
0.6921
0.0588
0.0150

e The resulting regression model is

A

0.2914
0.2263
0.2622
0.2223

# m7 =D

0
0.
0.1882

0160 -20.9861 -18.5740

2263

2100

m6
m7

0.2622
0.2100
0.2425
0.2059

0.2223
0.1882
0.2059
0.1839

Y =48.5583 4+ 1.6154 X1 + 0.6921 X5 + 0.0588.X3

+0.0150.X 4



e The error variance, o2, is then estimated as M SE
below.

MTIB > multiply m2 m7 m8
MTIB > subtract m8 ml m9
MTIB > transpose m9 ml0
MTB > multiply m10 m9 ml1l

Answer = 28.6406 # SSE

Thisis SSE =" (yi — 9:)° = é€'e.

MTB > let k1 = 8-(4+1) # k1 = n-(k+1)
MTB > let k2 = 1/kl
MTIB > multiply k2 ml11 ml2

Answer = 9.5469 # MSE

e The regression coefficient values estimated above are
point estimates.

e To make confidence intervals, we need to first esti-
mate their standard errors.

e In matrix form, the standard errors are the square-
roots of the diagonal elements of the covariance ma-
trix of the regression coefficients.



e The covariance matrix of the regression coefficients
contains the variances of 60, 61, . ,5k on its diago-
nal, and related statistics call covariances off of the
diagonals.

Cov(B) = o’ [X'X]™

The diagonal elements of this covariance matrix, be-
ginning from the (1,1) position, and proceeding to
theA(k + 1,k —I—Al) position, are, respectively, V(Bo),
VB, VB,

The covariance matrix is estimated by replacing o
in the previous expression by MSE. The square roots
of the diagonal elements in this estimated covariance
matrix are the standard errors of the associated ele-
ments of B

2

MTB > multiply ml12 mb ml3
MTB > print ml3

Matrix M13 # Cov(b)

17948.9 -216.689 -181.543 -200.351 -177.324
-216.7 2.782 2.161 2.504 2.122
-181.5 2.161 1.844 2.005 1.797
-200.4 2.504 2.005 2.315 1.965
-177.3 2.122 1.797 1.965 1.756

MTB > let k3 = sqrt(17948.9)



MTB > let k4 = sqrt(2.782)
MTB > let k5 = sqrt(1.844)
MTB > let k6 = sqrt(2.315)
MTB > let k7 = sqrt(1.756)
MTIB > print k3 - k7

K3 133.974 # SEbo

K4 1.66793 # SEbl

K5 1.35794 # SEb2

K6 1.52151 # SEb3

K7 1.32514 # SEb4

To test the hypothesis

Hy : variable X; has no effect, given that all all
other predictor variables are in the model

H, : variable X; has an effect, given that all all
other predictor variables are in the model

alternatively

Hy : variable X; provides no significant additional
reduction in SSE given that all all other predictor
variables are in the model

H,4 : variable X; provides a significant additional
reduction in SSE, given that all all other predictor
variables are in the model

— Calculate the test statistic tops = 3;/s.€.(5;)

— p-value = 2P(tn—1—k > tobs)



e Confidence intervals for the 3; are constructed using
the standard errors computed above, as

Bi + ta/2,n—(k:—|—1)5-6(6i>

(The degrees of freedom for ¢ is the error degrees of
freedom in the ANOVA table, or n — 1 — k)

e Example: 95% confidence intervals for regression co-
efficients are computed using t.0253 = 3.182.

MTB

Matrix M7

> print m7

48.5583
1.6154
0.6921
0.0588
0.0150

MTB
MTB
MTB

K10
K11

MTB
MTB

> let k10 =
> let k11 =
> print k10

474 .862
-377.745

> let k12
> let k13

# m7 =D

48.5583 + 3.182%k3
48.5583 - 3.182%k3
k11

# 957, CI for Beta O

1.6154 + 3.182%*k4
1.6154 - 3.182xk4



MTB

K12
K13

MTB
MTB
MTB

K14
K15

MTB
MTB
MTB

K16
K17

MTB
MTB
MTB

K18
K19

print k12

6.92276
-3.69196

let k14 =
let k15 =
print k14

5.01306
-3.62886

let k16 =
let k17 =
print k16

4.90025
-4.78265

let k18 =
let k19 =
print k18

4.23160
-4.20160

k13

# 957 CI for Beta 1
0.6921 + 3.182xk5
0.6921 - 3.182%kb5
k15

# 957 CI for Beta 2
0.0588 + 3.182xk6
0.0588 - 3.182xk6
k17

# 957 CI for Beta 3
0.0150 + 3.182xk7
0.0150 - 3.182xk7

k19

# 957 CI for Beta 4



The various calculations are tedious in minitab, which
isn't well set up for matrix arithmetic. Here are the
commands for R or Splus. (The course Stat2050
teaches selected aspects of the R and/or Splus pro-
gramming languages. These are the programs of
choice for statisticians in North America and Europe,
and the programs have superb graphics capabilities.)
You can download the freeware program R at cran.r-
project.org.

X<-matrix(c(
1,7,26,6,60,
1,1,29,15,52,
1,11,56,8,20,
1,11,31,8,47,
1,7,52,6,33,
1,11,55,9,22,
1,3,71,17,6,
1,1,31,22,44) ,byrow=T,ncol=5)

y<-c(78.5,74.3,104.3,87.6,95.9,109.2,102.7,72.5)
XpX<-t (X) %*%X # contains Xprime X

XpXi<-solve (XpX) #(Xprime X) inverse
Xpy<-t (X) %x%y #Xprime y

bhat<-XpXi’*/%Xpy #least squares estimates



yhat<-XYx*)bhat  #predicted values

ymyhat<-y-yhat #residuals
SSE<-sum(ymyhat~2) #error sum of squares
MSE<-SSE/(8-1-4) #error mean square

COV<-MSE*XpXi #covariance matrix of beta hat
sqrt (diag(COV)) #standard errors of beta hats

cutting and pasting into R or Splus leads to:

> XpX<-t (X) %*%X
> XpX

[,11 [,2]1 [,3] [,4] [,5]
[1,] 8 52 351 91 284
[2,] 52 472 2381 447 1744
[3,] 351 2381 17345 3983 10361
[4,] 91 447 3983 1279 3142
[5,] 284 1744 10361 3142 12458
>
> XpXi<-solve (XpX)
> XpXi

[,1] [,2] [,3] [,4] [,5]
[1,] 1880.07 -22.697 -19.015 -20.986 -18.574
[2,] -22.69 0.291 0.226 0.262 0.222
[3,] -19.01 0.226 0.193 0.210 0.188
[4,] -20.98 0.262 0.210 0.242 0.205
[65,] -18.57 0.222 0.188 0.205 0.183



> Xpy<-t (X)%*hy
>
> bhat<-XpXi%*%Xpy
> bhat

[,1]
[1,] 48.5583488
[2,] 1.6153626
[3,] 0.6920995
[4,] 0.0587741
[6,] 0.0149964
>

> yhat<-X%x*Jbhat

> ymyhat<-y-yhat

> SSE<-sum(ymyhat~2)

> MSE<-SSE/(8-1-4)

> MSE

[1] 9.546873

>

> COV<-MSExXpXi

> sqrt(diag(COV))

[1] 133.973 1.667 1.357 1.521

1.325



Confidence intervals for the mean, and prediction
intervals

Where x* = (1,z7,z5,...,z%)", a 100(1—a)% con-
fidence interval for the mean of Y at x™ is given
by

X* Bt tojzn_r1VMSE\/x* [X/X]1x*

A 100(1 — a)% prediction interval for Y when x =

%

X IS

X*/B +t0/2,n—k—1V MSE\/l + x* [ X/ X]~1x*

Example:

In the four variable multiple regression, suppose that
we wish to find a 95% confidence interval for the
mean, and a 95% prediction interval for y, when z* =
(1,8,30,10,40).

The syntax of the appropriate minitab “regress” call
iS:

MTB > regress c20 4 c21-c24;
SUBC> pred 8 30 10 40.

Predicted Values for New Observations

New
Obs Fit SE Fit 95%, CI 95% PI
1 83.43 12.59 (43.36, 123.51) (42.17, 124.69)XX



In R or Splus the appropriate commands, with out-
put, are:

#95% CI for mean at x=xstar
xstar<-c(1,8,30,10,40)
ypred<-sum(xstar*bhat)
tcrit<-qt(.975,3)
pu<-tcrit*sqrt (MSE) *sqrt (xstar’*% (XpXi/*/xstar))
ucl<-ypred+pm
lcl<-ypred-pm

lcl
# [,1]
#[1,] 43.3576

ypred
#[1] 83.43183

ucl
# [,1]
#[1,] 123.5061

#95Y, prediction interval for y at x=xstar
pm<-tcrit*sqrt (MSE)*sqrt (1+ xstary*% (XpXiY%*%xstar))
ucl<-ypred+pm

lcl<-ypred-pm

lcl

# [,1]

#[1,] 42.16884

ypred

%#[1] 83.43183

ucl

h [,1]

%[1,] 124.6948



Partial F test for comparing nested
models:

Model 1 - k£ independent variables

Yi = B0+ 51X+ B Xio+ ... 4+ B Xix + €

Model 2 - m < k independent vari-
ables

Y = Bo+ 51 X+ 0o Xio+ ...+ B Xim €

is obtained from model 1, by setting

6m—|—1:ﬁm—|—2:---:ﬁk:0

That is, kK —m of the model 1 parameters
are set to 0 in model 2.

We say that model 2 is nested within the
full model, model 1.



Model SSE MSE Regression  Error

df df
1 SSE, MSE; k n-k-1
2 SSE, MSE, m n-m-1

To test the hypothesis H : B,,41 = Bt =
... = (B, = 0 against the alternative that
at least one of 3,41, Brta, ..., Ok 1S NON-
zero, calculate the test statistic:

(SSEy — SSE)/(k —m)
MSE,

Fobs —

— The p-value for the test is P(Fy_mn—k—1 >
Fobs)-

— The numerator degrees of freedom
for F' is the number of parameters
set to 0 under Hj.

— The denominator degrees of freedom
for F' is the error degrees of freedom
for the “bigger” model.



Types of (Linear) Regression Models

Curve
— Conc = fy + Pt + fat?
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Two nonparallel lines

— Conc = 60—|—61t2m€—|—62X—|—63t2m6*
X, where X = 0 for Males, 1 for Fe-

males
S /M
0 10 20 30 40 50 60
. Time
Two continuous predictors
First order

— Conc = By + Bitime + BaDose
— effect of dose constant over time
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Interaction

— Conc = By+ Bitime—+ Ba Dose+ (33 %
time x dose

— effect of dose changes with time

0.5
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Conc
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0.2
O
1
o
[y

0.1

Conc =.09 + .0015*t + 1.1*dose + .0185*t*dose
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One-Way Analysis of Variance using
Regression

We can carry out any Analysis of Variance using
multiple regression, by suitable definition of the

independent variables.

Recall Example: A group of 32 rats were ran-

domly assigned to each of 4 diets labelled (A,B,C,and

D). The response is the liver weight as a per-
centage of body weight. Two rats escaped and

another died, resulting in the following data

A B C D
342 317 334 3.65
396 3.63 3.72 3.93
387 338 3.81 3.77
419 347 3.66 4.18
3.8 339 355 421
3.76 341 351 3.88
3.84 3.55 3.96

3.44 3.91
Anova Model:
Xij = li + €ij

Assumptions e;; are independent N(0,0?), 4

j:1,2,...,m

1,2,...

7a’7



Indicator Variables

Define a — 1 indicator variables to identify the a
groups

Index the subjects using a single index ¢, 7 =1,...,n
Let

X;1 = 1 if subject 7 is in group 1, and 0 otherwise.
X2 = 1 if subject 7 is in group 2, and 0 otherwise.

X3 = 1 if subject 7 is in group 3, and 0 otherwise.

Xia—1 = 1 if subject 2 is in group a — 1, and 0
otherwise.

Regression Model :

Yi=00+ 01 Xi1+ BeXia+ ...+ Ba-1Xia—1+ €

Table of Means
Group ANOVA Regression

mean mean
1 p1 Bo + b1
2 42 Bo + B2

a—1 ta—1 Bo + Ba—1
a Ha /30



Equivalent ANOVA and regression hypotheses.

Ho:pr=p2=...= laq

HO:/61:/32:...:6G_1



MTB > oneway cl c2
One-way ANOVA: C1 versus C2

Source DF SS MS F P
C2 3 1.1649 0.3883 10.84 0.000
Error 25 0.8954 0.0358

Total 28 2.0603

S = 0.1893 R-Sq = 56.547 R-Sq(adj) = 51.32
MTB > indicator c2 c3-cb6
MTB > print c2 c3-c6

Data Display

Row C2 C3 C4 C5 C6

1 1 1 O O O
2 1 1 O O O
3 1 1 O O O
7 1 1 O O O
8 2 0 1 O O
9 2 0 1 O O
10 2 O 1 O O
18 3 0 O 1 0
19 3 0 O 1 0

20 3 0 O 1 0

28 4 0 0 O 1



29 4 0 O O 1
MIB > regress cl 3 c3-cb
Regression Analysis: C1 versus C3, C4, Cb5

The regression equation is
Cl =3.94 - 0.133 C3 - 0.506 C4 - 0.338 C5

Predictor Coef SE Coef T P
Constant 3.93625 0.06691 58.83 0.000
C3 -0.13339 0.09795 -1.36 0.185
C4 -0.50625 0.09463 -5.35 0.000
C5 -0.3379 0.1022 -3.31 0.003

S = 0.1892563 R-Sq = 56.5)% R-Sq(adj) = 51.3%
Analysis of Variance

Source DF SS MS F P
Regression 3 1.16490 0.38830 10.84 0.000
Residual Error 25 0.89541 0.03582

Total 28 2.06032



