
Multiple Linear Regression

• is used to relate a continuous response (or depen-
dent) variable Y to several explanatory (or inde-
pendent) (or predictor) variables X1, X2, . . . , Xk

• assumes a linear relationship between mean of Y

and the X’s with additive normal errors

• Xij is the value of independent variable j for
subject i.

• Yi is the value of the dependent variable for sub-
ject i, i = 1, 2, . . . , n.

• Statistical model

Yi = β0 + β1Xi1 + β2Xi2 + . . . + βkXik + εi

the errors are assumed to be a sample from N(0, σ2)



Example 1: The data set height.mtw can be found
on WebCT, in the data files folder. The variables in the
data set include Y (height of student), X1 (height of
same sex parent), X2 (height of opposite sex parent),
and sex of the student (X3 = 1 for males; X3 = 0 for
females).

The following minitab output gives the various Pear-
son correlations for different pairs.

Results for: HEIGHTS.MTW

MTB > corr c1-c4

Student heig Height of sa Height of op

Height of sa 0.641

0.000

Height of op -0.193 -0.408

0.205 0.005

Male or Fema 0.692 0.606 -0.539

0.000 0.000 0.000

Cell Contents: Pearson correlation

P-Value



There are a number of possible regression models,
including regressions on single or multiple independent
variables.

As with simple linear regression, parameters are es-
timated by least squares. Details of estimation and
statistical inference to be discussed later.

















Student height versus height of same sex par-
ent

Yi = β0 + β1Xi1 + εi

MTB > regress c1 1 c2

The regression equation is

Student height = 30.7 + 0.557 Height of same sex parent

Predictor Coef SE Coef T P

Constant 30.702 6.765 4.54 0.000

Ht of same sex parent 0.5567 0.1017 5.47 0.000

S = 2.74051 R-Sq = 41.1% R-Sq(adj) = 39.7%

Analysis of Variance

Source DF SS MS F P

Regression 1 225.07 225.07 29.97 0.000

Residual Error 43 322.95 7.51

Total 44 548.02



Student height versus height of opposite sex
parent

Yi = β0 + β1Xi2 + εi

MTB > regress c1 1 c3

The regression equation is

Student height = 81.9 - 0.209 Height of opposite sex parent

Predictor Coef SE Coef T P

Constant 81.89 11.06 7.40 0.000

Ht opposite sex parent -0.2094 0.1626 -1.29 0.205

S = 3.50309 R-Sq = 3.7% R-Sq(adj) = 1.5%

Analysis of Variance

Source DF SS MS F P

Regression 1 20.34 20.34 1.66 0.205

Residual Error 43 527.68 12.27

Total 44 548.02



The regression equation is
Student height = 22.7 + 0.586 Height of same

sex parent + 0.090 Height of opposite sex parent

Yi = β0 + β1Xi1 + β2Xi2 + εi

MTB > regress c1 2 c2 c3

Predictor Coef SE Coef T P

Constant 22.66 14.30 1.59 0.120

Ht same sex parent 0.5859 0.1122 5.22 0.000

Ht opposite sex parent 0.0897 0.1403 0.64 0.526

S = 2.75953 R-Sq = 41.6% R-Sq(adj) = 38.9%

Analysis of Variance

Source DF SS MS F P

Regression 2 228.19 114.09 14.98 0.000

Residual Error 42 319.83 7.62

Total 44 548.02



The regression equation is Student height =
21.5 + 0.338 Height of same sex parent + 0.325
Height of opposite sex parent + 4.44 Male or Fe-
male ( 1=M, 0 = F)

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi

MTB > regress c1 3 c2 c3 c4

Predictor Coef SE Coef T P

Constant 21.50 11.70 1.84 0.073

Ht same sex parent 0.3375 0.1061 3.18 0.003

Ht opposite sex parent 0.3249 0.1254 2.59 0.013

Male/Female (1=M,0=F) 4.4446 0.9534 4.66 0.000

S = 2.25790 R-Sq = 61.9% R-Sq(adj) = 59.1%

Analysis of Variance

Source DF SS MS F P

Regression 3 339.00 113.00 22.16 0.000

Residual Error 41 209.02 5.10

Total 44 548.02



Multiple Regression Model

• Statistical model:

Yi = β0 + β1Xi1 + β1Xi2 + . . . + β1Xik + εi

• Assumptions:

The errors are a sample from N(0, σ2)

• Estimation:

The regression parameters are estimated using
least squares. That is, we choose β0, β1, . . . , βk

to minimize

SSE =
n

∑

i=1

(yi − β0 − β1xi1 − . . . − βkxik)2

• Inferences:

The ANOVA table similar to that for simple linear
regression, with changes to degrees of freedom to
match the number of predictor variables.



Source d.f. SS MS F
Regression k SSR MSR=SSR/k Fobs=MSR/MSE
Residual n-k-1 SSE MSE=SSE/(n-k-1)
Total n-1 SST

• SST=SSR+SSE

• H0 : β1 = β2 = . . . = βk = 0

HA: one or more of β1, β2, ..., βk are non-zero

• p-value = P (Fk,n−k−1 > Fobs)

• The goodness of fit of the linear regression line is
measured by the coefficient of determination
R2.

R2 =
SSR

SST

• R2 is the fraction of the total variability in y

accounted for by the regression line, and ranges
between 0 and 1. R2 = 1.00 indicates a perfect
(linear) fit, while R2 = 0.00 is a complete lack
of linear fit.



Matrix Methods for Multiple Linear Regression

Yi = β0 + β1Xi1 + β2Xi2 + ... + βkXik + εi

Xij the value of explanatory variable j for subject i.
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or in matrix form

Y = Xβ + ε
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• β̂0, β̂1, ..., β̂k denote estimates of the true regres-
sion coefficients β0, β1,..., βk. The estimates min-
imize the sum of squared residuals, or error sum
of squares(SSE). Hence, they are then called least
squares estimates. The error sum of squares is:

SSE =

n
∑

i=1

e2
i =

n
∑

i=1

(yi−(β̂0+β̂1xi1+...+β̂kxik))2 = e′e

• SSE is minimized when all ∂SSE

∂β̂i

= 0. These con-

ditions result in a system of normal equations which
are solved simultaneously to obtain estimates of β0,
β1, ..., βk. In matrix form the Normal Equations are

(X′

X)β̂ = (X′

Y)

• A unique solution (when it exists) to the normal
equations is
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Least squares estimates are calculated using this equa-
tion.



• The vector
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contains the predicted values, where

Ŷi = β̂0 + β̂1Xi1 + β̂2Xi2 + ... + β̂kXik

In matrix form, the predicted values are given by

Ŷ = Xβ̂

• The error variance, σ2, is estimated as follows

σ̂2 = MSE =
SSE

n − (k + 1)
=

∑

(yi − ŷi)
2

n − (k + 1)

which is the sum of squares for error (SSE) divided
by the error degrees of freedom (n-(k+1)).

• As before, the total sum of squares is
∑

(yi − ȳ)2,
and the total degrees of freedom is n − 1.

• With these quantities, an ANOVA table can be con-
structed in the same manner as for simple linear re-
gression.



Source df SS MS F

Regression k SSR MSR Fobs = MSR/MSE
Error n-k-1 SSE MSE
Total n-1 SST

• The observed value of F is used to test the overall
utility of the regression model. The formal hypothe-
ses are H0 : β1 = β2 = . . . = βk = 0, vs HA : at
least 1 of β1, β2, . . . , βk is non-zero.

• The p-value is P (Fk,n−k−1 > Fobs).



• Example: Consider the following data set with 8 val-
ues of the response, Y, and four explanatory vari-
ables, X1,X2,X3, and X4.

Y X1 X2 X3 X4

78.5 7 26 6 60
74.3 1 29 15 52
104.3 11 56 8 20
87.6 11 31 8 47
95.9 7 52 6 33
109.2 11 55 9 22
102.7 3 71 17 6
72.5 1 31 22 44

• Regression model using all four explanatory variables
is

ŷ = β̂0 + β̂1X1 + β̂2X2 + β̂3X3 + β̂4X4

• In MINITAB the data are assembled as shown below.

MTB > set c1 # Y

DATA> 78.5 74.3 104.3 87.6 95.9 109.2 102.7 72.5

DATA> set c2 # X1

DATA> 7 1 11 11 7 11 3 1

DATA> set c3 # X2

DATA> 26 29 56 31 52 55 71 31

DATA> set c4 # X3

DATA> 6 15 8 8 6 9 17 22

DATA> set c5 # X4



DATA> 60 52 20 47 33 22 6 44

DATA> end

MTB > print c1-c5

C1 C2 C3 C4 C5

Row Y X1 X2 X3 X4

1 78.5 7 26 6 60

2 74.3 1 29 15 52

3 104.3 11 56 8 20

4 87.6 11 31 8 47

5 95.9 7 52 6 33

6 109.2 11 55 9 22

7 102.7 3 71 17 6

8 72.5 1 31 22 44

MTB > copy c1 m1 # Y vector

MTB > set c6

DATA> 8(1)

DATA> end



MTB > copy c6 c2 c3 c4 c5 m2

MTB > print m2

Matrix M2 # m2 = X matrix

1 7 26 6 60

1 1 29 15 52

1 11 56 8 20

1 11 31 8 47

1 7 52 6 33

1 11 55 9 22

1 3 71 17 6

1 1 31 22 44

• To determine the value of the regression coefficients,
the above matrix equation must be solved. To do
so, first requires determination of the elements of
three other important matrices, (X′

X), (X′
Y), and

(X′
X)−1.

MTB > transpose m2 m3

MTB > multiply m3 m2 m4



MTB > inverse m4 m5

MTB > print m5

Matrix M5 # m5 = inv(X’X)

1880.08 -22.6974 -19.0160 -20.9861 -18.5740

-22.70 0.2914 0.2263 0.2622 0.2223

-19.02 0.2263 0.1931 0.2100 0.1882

-20.99 0.2622 0.2100 0.2425 0.2059

-18.57 0.2223 0.1882 0.2059 0.1839

MTB > multiply m3 m1 m6

MTB > multiply m5 m6 m7

MTB > print m7

Matrix M7 # m7 = b

48.5583

1.6154

0.6921

0.0588

0.0150

• The resulting regression model is

Ŷ = 48.5583 + 1.6154X1 + 0.6921X2 + 0.0588X3

+0.0150X4



• The error variance, σ2, is then estimated as MSE
below.

MTB > multiply m2 m7 m8

MTB > subtract m8 m1 m9

MTB > transpose m9 m10

MTB > multiply m10 m9 m11

Answer = 28.6406 # SSE

This is SSE =
∑n

i=1
(yi − ŷi)

2 = ê
′
ê.

MTB > let k1 = 8-(4+1) # k1 = n-(k+1)

MTB > let k2 = 1/k1

MTB > multiply k2 m11 m12

Answer = 9.5469 # MSE

• The regression coefficient values estimated above are
point estimates.

• To make confidence intervals, we need to first esti-
mate their standard errors.

• In matrix form, the standard errors are the square-
roots of the diagonal elements of the covariance ma-
trix of the regression coefficients.



• The covariance matrix of the regression coefficients
contains the variances of β̂0, β̂1, . . . , β̂k on its diago-
nal, and related statistics call covariances off of the
diagonals.

Cov(β̂) = σ2[X′

X]−1

The diagonal elements of this covariance matrix, be-
ginning from the (1,1) position, and proceeding to
the (k + 1, k + 1) position, are, respectively, V (β̂0),
V (β̂1), . . ., V (β̂k).

The covariance matrix is estimated by replacing σ2

in the previous expression by MSE. The square roots
of the diagonal elements in this estimated covariance
matrix are the standard errors of the associated ele-
ments of β̂.

MTB > multiply m12 m5 m13

MTB > print m13

Matrix M13 # Cov(b)

17948.9 -216.689 -181.543 -200.351 -177.324

-216.7 2.782 2.161 2.504 2.122

-181.5 2.161 1.844 2.005 1.797

-200.4 2.504 2.005 2.315 1.965

-177.3 2.122 1.797 1.965 1.756

MTB > let k3 = sqrt(17948.9)



MTB > let k4 = sqrt(2.782)

MTB > let k5 = sqrt(1.844)

MTB > let k6 = sqrt(2.315)

MTB > let k7 = sqrt(1.756)

MTB > print k3 - k7

K3 133.974 # SEbo

K4 1.66793 # SEb1

K5 1.35794 # SEb2

K6 1.52151 # SEb3

K7 1.32514 # SEb4

• To test the hypothesis

H0 : variable Xj has no effect, given that all all
other predictor variables are in the model

HA : variable Xj has an effect, given that all all
other predictor variables are in the model

alternatively

H0 : variable Xj provides no significant additional
reduction in SSE given that all all other predictor
variables are in the model

HA : variable Xj provides a significant additional
reduction in SSE, given that all all other predictor
variables are in the model

– Calculate the test statistic tobs = β̂j/s.e.(β̂j)

– p-value = 2P (tn−1−k > tobs)



• Confidence intervals for the βi are constructed using
the standard errors computed above, as

β̂i ± tα/2,n−(k+1)s.e(β̂i)

(The degrees of freedom for t is the error degrees of
freedom in the ANOVA table, or n − 1 − k)

• Example: 95% confidence intervals for regression co-
efficients are computed using t.025,3 = 3.182.

MTB > print m7

Matrix M7 # m7 = b

48.5583

1.6154

0.6921

0.0588

0.0150

MTB > let k10 = 48.5583 + 3.182*k3

MTB > let k11 = 48.5583 - 3.182*k3

MTB > print k10 k11

K10 474.862 # 95% CI for Beta 0

K11 -377.745

MTB > let k12 = 1.6154 + 3.182*k4

MTB > let k13 = 1.6154 - 3.182*k4



MTB > print k12 k13

K12 6.92276 # 95% CI for Beta 1

K13 -3.69196

MTB > let k14 = 0.6921 + 3.182*k5

MTB > let k15 = 0.6921 - 3.182*k5

MTB > print k14 k15

K14 5.01306 # 95% CI for Beta 2

K15 -3.62886

MTB > let k16 = 0.0588 + 3.182*k6

MTB > let k17 = 0.0588 - 3.182*k6

MTB > print k16 k17

K16 4.90025 # 95% CI for Beta 3

K17 -4.78265

MTB > let k18 = 0.0150 + 3.182*k7

MTB > let k19 = 0.0150 - 3.182*k7

MTB > print k18 k19

K18 4.23160 # 95% CI for Beta 4

K19 -4.20160



The various calculations are tedious in minitab, which
isn’t well set up for matrix arithmetic. Here are the
commands for R or Splus. (The course Stat2050
teaches selected aspects of the R and/or Splus pro-
gramming languages. These are the programs of
choice for statisticians in North America and Europe,
and the programs have superb graphics capabilities.)
You can download the freeware program R at cran.r-

project.org.

X<-matrix(c(

1,7,26,6,60,

1,1,29,15,52,

1,11,56,8,20,

1,11,31,8,47,

1,7,52,6,33,

1,11,55,9,22,

1,3,71,17,6,

1,1,31,22,44),byrow=T,ncol=5)

y<-c(78.5,74.3,104.3,87.6,95.9,109.2,102.7,72.5)

XpX<-t(X)%*%X # contains Xprime X

XpXi<-solve(XpX) #(Xprime X) inverse

Xpy<-t(X)%*%y #Xprime y

bhat<-XpXi%*%Xpy #least squares estimates



yhat<-X%*%bhat #predicted values

ymyhat<-y-yhat #residuals

SSE<-sum(ymyhat^2) #error sum of squares

MSE<-SSE/(8-1-4) #error mean square

COV<-MSE*XpXi #covariance matrix of beta hat

sqrt(diag(COV)) #standard errors of beta hats

cutting and pasting into R or Splus leads to:

> XpX<-t(X)%*%X

> XpX

[,1] [,2] [,3] [,4] [,5]

[1,] 8 52 351 91 284

[2,] 52 472 2381 447 1744

[3,] 351 2381 17345 3983 10361

[4,] 91 447 3983 1279 3142

[5,] 284 1744 10361 3142 12458

>

> XpXi<-solve(XpX)

> XpXi

[,1] [,2] [,3] [,4] [,5]

[1,] 1880.07 -22.697 -19.015 -20.986 -18.574

[2,] -22.69 0.291 0.226 0.262 0.222

[3,] -19.01 0.226 0.193 0.210 0.188

[4,] -20.98 0.262 0.210 0.242 0.205

[5,] -18.57 0.222 0.188 0.205 0.183



> Xpy<-t(X)%*%y

>

> bhat<-XpXi%*%Xpy

> bhat

[,1]

[1,] 48.5583488

[2,] 1.6153626

[3,] 0.6920995

[4,] 0.0587741

[5,] 0.0149964

>

> yhat<-X%*%bhat

> ymyhat<-y-yhat

> SSE<-sum(ymyhat^2)

> MSE<-SSE/(8-1-4)

> MSE

[1] 9.546873

>

> COV<-MSE*XpXi

> sqrt(diag(COV))

[1] 133.973 1.667 1.357 1.521 1.325



Confidence intervals for the mean, and prediction
intervals

• Where x
∗ = (1, x∗

1, x
∗

2, . . . , x
∗

k)′, a 100(1−α)% con-
fidence interval for the mean of Y at x

∗ is given
by

x
∗
′

β̂ ± tα/2,n−k−1

√
MSE

√

x∗
′ [X′X]−1x∗

• A 100(1−α)% prediction interval for Y when x =
x
∗ is

x
∗
′

β̂ ± tα/2,n−k−1

√
MSE

√

1 + x∗
′ [X′X]−1x∗

Example:

In the four variable multiple regression, suppose that
we wish to find a 95% confidence interval for the
mean, and a 95% prediction interval for y, when x∗ =
(1, 8, 30, 10, 40).

The syntax of the appropriate minitab “regress” call
is:

MTB > regress c20 4 c21-c24;

SUBC> pred 8 30 10 40.

...

Predicted Values for New Observations

New

Obs Fit SE Fit 95% CI 95% PI

1 83.43 12.59 (43.36, 123.51) (42.17, 124.69)XX



In R or Splus the appropriate commands, with out-
put, are:

#95% CI for mean at x=xstar

xstar<-c(1,8,30,10,40)

ypred<-sum(xstar*bhat)

tcrit<-qt(.975,3)

pm<-tcrit*sqrt(MSE)*sqrt(xstar%*%(XpXi%*%xstar))

ucl<-ypred+pm

lcl<-ypred-pm

lcl

# [,1]

#[1,] 43.3576

ypred

#[1] 83.43183

ucl

# [,1]

#[1,] 123.5061

#95% prediction interval for y at x=xstar

pm<-tcrit*sqrt(MSE)*sqrt(1+ xstar%*%(XpXi%*%xstar))

ucl<-ypred+pm

lcl<-ypred-pm

lcl

# [,1]

#[1,] 42.16884

ypred

%[1] 83.43183

ucl

% [,1]

%[1,] 124.6948



Partial F test for comparing nested
models:

Model 1 - k independent variables

Yi = β0 +β1Xi1 +β2Xi2 + ...+βkXik +εi

Model 2 - m < k independent vari-
ables

Yi = β0+β1Xi1+β2Xi2+...+βmXim+εi

is obtained from model 1, by setting

βm+1 = βm+2 = . . . = βk = 0

That is, k−m of the model 1 parameters
are set to 0 in model 2.

We say that model 2 is nested within the
full model, model 1.



Model SSE MSE Regression Error
df df

1 SSE1 MSE1 k n-k-1
2 SSE2 MSE2 m n-m-1

To test the hypothesis H0 : βm+1 = βm+2 =
. . . = βk = 0 against the alternative that
at least one of βm+1, βm+2, . . . , βk is non-
zero, calculate the test statistic:

Fobs =
(SSE2 − SSE1)/(k − m)

MSE1

– The p-value for the test is P (Fk−m,n−k−1 >
Fobs).

– The numerator degrees of freedom
for F is the number of parameters
set to 0 under H0.

– The denominator degrees of freedom
for F is the error degrees of freedom
for the “bigger” model.



Types of (Linear) Regression Models

Curve

– Conc = β0 + β1t + β2t
2
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One continuous, one binary predictor
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– Conc = β0 + β1time + β2X, where
X = 0 for Males, 1 for Females
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Two nonparallel lines

– Conc = β0+β1time+β2X+β3time∗
X, where X = 0 for Males, 1 for Fe-
males
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Two continuous predictors

First order

– Conc = β0 + β1time + β2Dose

– effect of dose constant over time
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Conc=.01 + .0015*t + 20*dose

Dose = .01

Dose = .10



Interaction

– Conc = β0+β1time+β2Dose+β3∗

time ∗ dose

– effect of dose changes with time
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Conc = .09 + .0015*t + 1.1*dose + .0185*t*dose

D = .01

D = .1



One-Way Analysis of Variance using
Regression

We can carry out any Analysis of Variance using
multiple regression, by suitable definition of the
independent variables.

Recall Example: A group of 32 rats were ran-
domly assigned to each of 4 diets labelled (A,B,C,and
D). The response is the liver weight as a per-
centage of body weight. Two rats escaped and
another died, resulting in the following data

A B C D

3.42 3.17 3.34 3.65
3.96 3.63 3.72 3.93
3.87 3.38 3.81 3.77
4.19 3.47 3.66 4.18
3.58 3.39 3.55 4.21
3.76 3.41 3.51 3.88
3.84 3.55 3.96

3.44 3.91

Anova Model:

Xij = µi + eij

Assumptions eij are independent N(0, σ2), i = 1, 2, . . . , a,
j = 1, 2, . . . , ni



Indicator Variables

Define a − 1 indicator variables to identify the a
groups

Index the subjects using a single index i, i = 1, . . . , n

Let

Xi1 = 1 if subject i is in group 1, and 0 otherwise.

Xi2 = 1 if subject i is in group 2, and 0 otherwise.

Xi3 = 1 if subject i is in group 3, and 0 otherwise.

...

Xi,a−1 = 1 if subject i is in group a − 1, and 0
otherwise.

Regression Model :

Yi = β0 + β1Xi1 + β2Xi2 + . . . + βa−1Xi,a−1 + εi

Table of Means

Group ANOVA Regression
mean mean

1 µ1 β0 + β1

2 µ2 β0 + β2

...
a − 1 µa−1 β0 + βa−1

a µa β0



Equivalent ANOVA and regression hypotheses.

H0 : µ1 = µ2 = . . . = µa

H0 : β1 = β2 = . . . = βa−1



MTB > oneway c1 c2

One-way ANOVA: C1 versus C2

Source DF SS MS F P

C2 3 1.1649 0.3883 10.84 0.000

Error 25 0.8954 0.0358

Total 28 2.0603

S = 0.1893 R-Sq = 56.54% R-Sq(adj) = 51.32%

MTB > indicator c2 c3-c6

MTB > print c2 c3-c6

Data Display

Row C2 C3 C4 C5 C6

1 1 1 0 0 0

2 1 1 0 0 0

3 1 1 0 0 0

...

7 1 1 0 0 0

8 2 0 1 0 0

9 2 0 1 0 0

10 2 0 1 0 0

...

18 3 0 0 1 0

19 3 0 0 1 0

20 3 0 0 1 0

...

28 4 0 0 0 1



29 4 0 0 0 1

MTB > regress c1 3 c3-c5

Regression Analysis: C1 versus C3, C4, C5

The regression equation is

C1 = 3.94 - 0.133 C3 - 0.506 C4 - 0.338 C5

Predictor Coef SE Coef T P

Constant 3.93625 0.06691 58.83 0.000

C3 -0.13339 0.09795 -1.36 0.185

C4 -0.50625 0.09463 -5.35 0.000

C5 -0.3379 0.1022 -3.31 0.003

S = 0.189253 R-Sq = 56.5% R-Sq(adj) = 51.3%

Analysis of Variance

Source DF SS MS F P

Regression 3 1.16490 0.38830 10.84 0.000

Residual Error 25 0.89541 0.03582

Total 28 2.06032


