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Two-Way Analysis of Variance - no interaction

Example: Tests were conducted to assess the effects of two factors, engine type, and propellant type, on
propellant burn rate in fired missiles. Three engine types and four propellant types were tested.
Twenty-four missiles were selected from a large production batch. The missiles were randomly split into three
groups of size eight. The first group of eight had engine type 1 installed, the second group had engine type 2,
and the third group received engine type 3.‘
Each group of eight was randomly divided into four groups of two. The first such group was assigned propellant
type 1, the second group was assigned propellant type 2, and so on.
Data on burn rate were collected, as follows:

Engine Propellant Type
type 1 2 3 4

1 34.0 30.1 29.8 29.0
32.7 32.8 26.7 28.9

2 32.0 30.2 28.7 27.6
33.2 29.8 28.1 27.8

3 28.4 27.3 29.7 28.8
29.3 28.9 27.3 29.1

We want to determine whether either factor, engine type (factor A) or propellant type (factor B), has a
significant effect on burn rate.

Let Yijk denote the k’th observation at the i’th level of factor A and the j’th level of factor B.

The two factor model (without interaction) is:
Yijk = µ + αi + βj + εijk i = 1, 2, 3, j = 1, 2, 3, 4, k = 1, 2, where

1. µ is the overall mean

2.
∑

i αi = 0

3.
∑

j βj = 0

4. we assume εijk are iid N(0, σ2)

5. The mean of Yijk is

µijk = E[Yijk] = µ + αi + βj

This model specifies that a plot of the mean against the levels of factor A consists of parallel lines for each
different level of factor B, and a plot of the mean against the levels of factor B consists of parallel lines
for each different level of factor A.

More generally, there will be I levels of factor A, J levels of factor B, and K replicates at each combination
of levels of factors A and B.

Yijk = µ + αi + βj + εijk i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . ,K.

• Here, I = 3, J = 4, K = 2, and there are n = 24 observations in total. There are K = 2 replicates
at each level the factors A and B, and the experimental design is said to be balanced, because there
are the same number of replicates in each cell.

The following table gives the cell means: Ȳij.

Engine Propellant Type
type 1 2 3 4

1 33.35 31.45 28.25 28.95
2 32.60 30.00 28.40 27.70
3 28.85 28.10 28.50 28.95
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• Estimated grand mean: µ̂ = ȳ... = 29.5917

• Estimated factor A level means:
ȳ1.. = (33.35 + 31.45 + 28.25 + 29.95)/4 = 30.50
ȳ2.. = (32.6 + 30 + 28.4 + 27.7)/4 = 29.675
ȳ3.. = (28.85 + 28.1 + 28.5 + 28.95)/4 = 28.60

• Estimated factor B level means:
ȳ.1. = (33.35 + 32.6 + 28.85)/3 = 31.60
ȳ.2. = (31.45 + 30 + 28.1)/3 = 29.85
ȳ.3. = (28.25 + 28.4 + 28.5)/3 = 28.383
ȳ.4. = (28.95 + 27.7 + 28.95)/3 = 28.533

Estimation of Model Parameters

• µ̂ = ȳ... = (30.5 + 29.675 + 28.6)/3 = (31.6 + 29.85 + 28.383 + 28.533)/4 = 29.5917

• α̂i = ȳi.. − ȳ...

α̂1 = ȳ1.. − ȳ... = 30.50− 29.5917 = .908
α̂2 = ȳ2.. − ȳ... = 29.675− 29.5917 = .083
α̂3 = ȳ3.. − ȳ... = 28.60− 29.5917 = −.992
Note that α̂1 + α̂2 + α̂3 = 0.

• β̂j = ȳ.j. − ȳ...

β̂1 = ȳ.1. − ȳ... = 31.60− 29.5917 = 2.0083
β̂2 = ȳ.2. − ȳ... = 29.85− 29.5917 = .2583
β̂3 = ȳ.3. − ȳ... = 28.383− 29.5917 = −1.2087
β̂4 = ȳ.4. − ȳ... = 28.533− 29.5917 = −1.0587
Note that β̂1 + β̂2 + β̂3 + β̂4 = 0.

In the twoway model without interaction, the estimated cell means are:

µ̂ijk = Ê[Yijk] = µ̂ + α̂i + β̂j

These are given by the following table:

Engine Propellant type
type 1 2 3 4
1 32.508 30.758 29.291 29.441
2 31.683 29.933 28.466 28.616
3 30.608 28.858 27.391 27.541

The residuals are the differences between the observations and the estimated means (Yijk − µ̂ijk). They
are given by the following table:

Engine Propellant Type
type 1 2 3 4

1 1.492 -0.658 0.509 -0.441
0.192 2.042 -2.591 -0.541

2 0.317 0.267 0.234 -1.016
1.517 -0.133 -0.366 -0.816

3 -2.208 -1.558 2.309 1.259
-1.308 0.042 -0.091 1.559
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The mean of the residuals is 0. This will always be the case.

The sum of squares of the residuals is the error sum of squares (SSE)
in the ANOVA table.

> resids
1.492 -0.658 0.509 -0.441 0.192 2.042 -2.591 -0.541 0.317 0.267
0.234 -1.016 1.517 -0.133 -0.366 -0.816 -2.208 -1.558 2.309 1.259

-1.308 0.042 -0.091 1.559

> mean(resids)
[1] 5e-04

The sum of squares of the residuals is 37.07.

> sum(resids^2)
[1] 37.07334

Formulas for Sums of Squares

SSA = JK
∑

i(ȳi.. − ȳ...)2 = JK
∑

i α̂2
i = 4× 2× (.9082 + .0832 + (−.992)2) = 14.52

SSB = IK
∑

j(ȳ.j. − ȳ...)2 = IK
∑

j β̂2
j = 3× 2× (2.00832 + .25832 + (−1.2087)2 + (−1.05872)) = 40.08

SSE = 37.07

SST =
∑

i

∑
j

∑
k(yijk − ȳ...)2 =

∑
i

∑
j

∑
k(yijk − 29.5917)2 = 91.68

Note the additivity relationsip, SST=SSA+SSB+SSE.

If there are no replicates (only one observation per cell), then K will be equal to 1 in these formulas.

The total degrees of freedom is the number of observations (24) minus 1, or 23. In general this will be
n− 1.

The degrees of freedom for factor A is the number of levels of A (3) minus 1, or 2. In general this will be
I − 1.

The degrees of freedom for factor B is the number of levels of B (4) minus 1, or 3. In general this will be
J − 1.

The degrees of freedom for error is the total number of degrees of freedom, minus the degrees of freedom
for A, minus the degrees of freedom for B, or 23-2-3=18. In general this will be (n−1)−(I−1)−(J−1) =
n− I − J + 1.

This allows us the build the ANOVA table, as follows:

Source DF SS MS F P
A 2 14.52 MSA MSA/MSE
B 3 40.08 MSB MSB/MSE
Error 18 37.07 MSE
Total 23 91.68

The hypotheses of interest are:

H0A : α1 = α2 = . . . = αI = 0 (no effect of factor A)

H0B : β1 = β2 = . . . = βI = 0 (no effect of factor B)

The observed test statistic for H0A is FobsA = MSA/MSE, and the p-value is P (FI−1,n−I−J+1) > FobsA

The observed test statistic for H0B is FobsB = MSB/MSE, and the p-value is P (FJ−1,n−I−J+1) > FobsB
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Here is the output from fitting an additive two way ANOVA in minitab.

MTB > set c1
DATA> 34 32.7 30.1 32.8 29.8 26.7 29 28.9
DATA> 32 33.2 30.2 29.8 28.7 28.1 27.6 27.8
DATA> 28.4 29.3 27.3 28.9 29.7 27.3 28.8 29.1
DATA> end
MTB > set c2
DATA> 8(1) 8(2) 8(3)
DATA> set c3
DATA> 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4 1 1 2 2 3 3 4 4
DATA> end

MTB > twoway c1 c2 c3;
SUBC> additive.

Two-way ANOVA: C1 versus C2, C3

Source DF SS MS F P
C2 2 14.5233 7.2617 3.53 0.051
C3 3 40.0817 13.3606 6.49 0.004
Error 18 37.0733 2.0596
Total 23 91.6783

S = 1.435 R-Sq = 59.56% R-Sq(adj) = 48.33%

Individual 95% CIs For Mean Based on
Pooled StDev

C2 Mean -+---------+---------+---------+--------
1 30.500 (--------*--------)
2 29.675 (--------*--------)
3 28.600 (--------*--------)

-+---------+---------+---------+--------
27.6 28.8 30.0 31.2

Individual 95% CIs For Mean Based on
Pooled StDev

C3 Mean ---------+---------+---------+---------+
1 31.6000 (--------*-------)
2 29.8500 (-------*-------)
3 28.3833 (-------*-------)
4 28.5333 (-------*-------)

---------+---------+---------+---------+
28.5 30.0 31.5 33.0

Factor A (engine type), with a pvalue=.051 is marginally
significant.

Factor B (propellant type), with a pvalue= .004 is highly
significant.

By way of comparison, look what happens if we forget to add the second factor. Following are the 1 way
ANOVAS for engine type and propellant separately. Note that the lines for “Total” and treatment factor
(A or B) are unchanged. The error sums of squares and degrees of freedom are pooled values from the
twoway ANOVA table. (eg. 77.16= 40.0817+37.0733; 21=18+3). The important thing to note is that
factor A is now declared to be completely unimportant (p-value=.164)? What happened? By neglecting
to include factor B, the SSE has more than doubled, while the error df has increased by only 3. The
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resulting estimate of the error variance (3.67) is nearly twice what it was in the two factor model, making
the differences between engine types appear to be insignificant.

MTB > oneway c1 c2
One-way ANOVA: C1 versus C2
Source DF SS MS F P
C2 2 14.52 7.26 1.98 0.164
Error 21 77.16 3.67
Total 23 91.68

MTB > oneway c1 c3
One-way ANOVA: C1 versus C3
Source DF SS MS F P
C3 3 40.08 13.36 5.18 0.008
Error 20 51.60 2.58
Total 23 91.68
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Blocking
Example: A new drug is being tested which is supposed to boost the average immune response to infection.
One scenario for a randomized controlled study is as follows:

• sample individuals from a population

• randomly assign individuals in the sample to the new treatment or to a control

• challenge the individuals with an antigen (eg a flu vaccine), and measure antibody levels 2 months later

• use a t-test to compare the mean antibody levels in the two groups. In the case there are several treatment
groups (corresponding, say, to different doses of the treatment drug), use oneway ANOVA to compare the
means of the associated groups.

A problem with this design is that it is known that a variety of factors affect the immune response. In
particular, the immune response (more specifically, the production of antibodies) is known to be depressed in
smokers, and so, even if the treatment is effective at increasing the average immune response, if the treatment
group is dominated by smokers relative to the control group, the positive effect of the treatment will be masked.

Therefore, we would like to include smoker vs non-smoker as a second factor. The problem is that we have
no way to randomly assign levels of this second factor to the experimental units (the subjects). Formally, groups
of experimental units which are expected to be similar are referred to as blocks, and the associated factor is
referred to as a blocking factor. By including the blocking factor in our experimental design we remove the
variation (in the outcome variable) attributable to different values of the blocking factor.

In essence, we replace the anova table:

Source DF SS MS F
Treatments I-1 SStr MStr MStr/MSE1

Error1 n-I SSE1 MSE1

Total n-1 SST

by the table:

Source DF SS MS F
Treatments I-1 SStr MStr FobsTr = MStr/MSE2

Blocks J-1 SSblocks MSblocks FobsBlocks = MSblocks/MSE2

Error2 n-I-J+1 SSE2 MSE2

Total n-1 SST

where

• SSE1 = SSE2 + SSblocks

• n− i = (n− I − J + 1) + (j − 1)

When we have included the blocking factor:

1. To test the hypothesis that there is no effect of the treatment, the p-value is P (Fi−1,n−I−J+1 > FobsTr).

2. Was the blocking effective? More formally, are the response means different across levels of the blocking
factor. To test this, the p-value is P (FJ−1,n−I−J+1 > FobsBlocks).

Thus, inclusion of a blocking factor in a single factor experiment leads us to a two factor experiment, which
we analyse using way ANOVA, where one of the factors is of a special type (a blocking factor) that cannot be
randomly allocated to experimental units.
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Two-Way Analysis of Variance - with interaction

Let us go back to our two factor example on missile burn rate.
The two factor model without interaction was Yijk = µ + αi + βj + εijk i = 1, 2, 3, j = 1, 2, 3, 4,

k = 1, 2, where
This model is rather restrictive in that it assumes that the difference in mean burn rate for two propellant

types does not depend on the engine type that was being used, and the difference in mean burn rate for two
engine types does not depend on the propellants which were being used. In fact, some propellants might work
best with certain engine types, and vice versa, so we need to consider a more general model.

The two factor model with interaction:

Yijk = µ + αi + βj + γij + εijk

i = 1, 2, . . . , I, j = 1, 2, . . . , J , k = 1, 2, . . . ,K.

• µ is the overall mean

•
∑I

i=1 αi = 0

•
∑J

j=1 βj = 0

•
∑I

i=1 γij = 0 for each j = 1, 2, . . . , J

•
∑J

j=1 γij = 0 for each i = 1, 2, . . . , I

• we assume εijk are iid N(0, σ2)

• in this case the mean of Yijk is

µijk = E[Yijk] = µ + αi + βj + γij

The sum constraints ensure that there is a unique correspondence between the parameters (the α’s, β’s, γ’s
and µ) and the means of the random variables (the µijk’s).

In the twoway model with interaction, the estimates of the mean µijk is given by µ̂ijk = ȳij.. In the example,
these were calculated as:

Engine Propellant Type
type 1 2 3 4

1 33.35 31.45 28.25 28.95
2 32.60 30.00 28.40 27.70
3 28.85 28.10 28.50 28.95

leading to the residuals:

Engine Propellant Type
type 1 2 3 4

1 0.65 -1.35 1.55 0.05
-0.65 1.35 -1.55 -0.05

2 -0.60 0.20 0.30 -0.10
0.60 -0.20 -0.30 0.10

3 -0.45 -0.80 1.20 -0.15
0.45 0.80 -1.20 0.15

• As usual, the sum of the residuals equals 0.

• The sum of squares of the residuals is SSE = 14.91.
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• The total sum of squares SST , sum of squares for engine type SSA and sum of squares for propellant
type SSB are as before.

• The twoway model with interaction has a sum of squares for term for interaction

SSAB =
I∑

i=1

J∑
j=1

K∑
k=1

(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)2

• SST = SSA + SSB + SSAB + SSE

• The degrees of freedom for interaction is (I − 1)(J − 1) and the degrees of freedom for error is IJ(K − 1).
The degrees of freedom for factors A and B and total are unchanged, and again, there is an additivity
relationship for the degrees of freedom.

The ANOVA table is as follows:

Source DF SS MS F P
A I-1 SSA MSA MSA/MSE
B J-1 SSB MSB MSB/MSE
AB (I-1)(J-1) SSAB MSAB MSAB/MSE
Error IJ(K-1) SSE MSE
Total IJK-1 SST

In the example:

Source DF SS MS F P
A 2 14.52 7.26 5.84
B 3 40.08 13.36 10.75
AB 6 22.17 3.70 2.97
Error 12 14.91 1.243
Total 23 91.68

1. The p-value for the test for no interaction between propellant type and engine type, formally γij = 0 for
all i and j, is given by pvalue = P (F(I−1)(J−1),IJ(K−1) > MSAB/MSE. For these data, the p-value is
P (F6,12 > 2.97) ∈ (.05, .1). In this case the test for interaction is not significant (ie we conclude there is
no interaction between factors A and B), which indicates that the profile plots of the means are parallel.
That is, the additive model is reasonable.

2. It only makes sense to test for the main effects of factors A and B if there is no interaction between the
factors. In this case:

in testing for the main effect of engine type, the p-value is p = P (F2,12 > 5.84) ∈ (.01, .05)

in testing for the main effect of propellant, the p-value is p = P (F3,12 > 10.75) < .01.

We conclude that there are significant differences between propellant types, and between engine types.

3. The conclusion here is that there is no interaction. In this case, the Bonferroni procedure can be used to
determine for which levels the effects of factor A are different, and for which levels the effects of factor B
are different.
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Here is the minitab output which verifies the calculations:

MTB > Twoway c1 c2 c3.

Two-way ANOVA: C1 versus C2, C3

Source DF SS MS F P
C2 2 14.5233 7.2617 5.84 0.017
C3 3 40.0817 13.3606 10.75 0.001
Interaction 6 22.1633 3.6939 2.97 0.051
Error 12 14.9100 1.2425
Total 23 91.6783


