

ACSC/STAT 3703 - Winter 2026 - Assignment 1

Due: Monday, January 19, at 11:59 PM

1. Let X has the gamma(α, θ) distribution with density function

$$f(x) = \frac{x^{\alpha-1} e^{-\frac{x}{\theta}}}{\Gamma(\alpha)\theta^\alpha}, \quad x > 0$$

where both α and θ are positive.

- (a) Show that the moment generating function of X is $M_X(t) = (1 - \theta t)^{-\alpha}$.
- (b) By suitable manipulation of the moment generating function, find the first three moments of the gamma(α, θ) distribution.
- (c) Suitably manipulate these moments to find the skewness of the gamma(α, θ) distribution.

2. Let X have a two parameter Pareto distribution with survivor function

$$S(x) = \left(\frac{\theta}{x + \theta} \right)^\alpha$$

where x, θ and α are all positive,

- (a) Derive the density function of X .
- (b) Derive the hazard function of X .
- (c) Derive the mean excess loss function $e_X(d)$ of X .

3. Let X have density function

$$f(x) = \frac{2}{x^3}, \quad x \geq 1$$

- (a) Derive the distribution function of X .
- (b) Find the mean of X
- (c) Find the median of X
- (d) Find the mode of X

4. Let X have the Weibull density function with survivor function

$$S(x) = e^{-\left(\frac{x}{\theta}\right)^\tau}$$

where τ, θ and x are all positive.

- (a) Derive the density function of X .
- (b) Derive the formula for π_p , the p 'th percentile of X . That is, solve $p = F(\pi_p)$.
- (c) If the 25'th percentile is 1000 and the 75'th percentile is 10000, solve for τ .
- (d) Calculate the hazard function $h(x)$.
- (e) On the basis of the hazard function, would you say that the Weibull is heavy tailed or light tailed? Why?

5. If X_1, X_2, \dots, X_{100} are i.i.d. gamma distributed with mean 5000 and variance 25×10^6 .

- (a) Find the parameters α and θ of the gamma distribution.
- (b) Use the central limit theorem to approximate the probability that $\bar{X} = \frac{\sum_{i=1}^{100} X_i}{100}$ is greater than 5250. (You can leave the answer as $P(Z > c)$ for the appropriate value of c .)

6. Let X have an exponential distribution with density function

$$f(x) = \lambda e^{-\lambda x}$$

where x and λ are both positive.

- (a) Find the hazard function $h(x)$ of X .
- (b) Verify that

$$S(x) = e^{-\int_{y=0}^x h(y)dy}$$

(This is the general relationship between the survivor function and the hazard function of a non-negative random variable.)

- (c) Show that for any $x > 0$ and $c > 0$ that $P(X > x + c | X > c) = P(X > x)$. (This is referred to as the memoryless property of the exponential distribution.)
- (d) Suppose that $\lambda = 1$.
 - i. Find $VaR_{.999}(X)$, the Value at Risk of X at the 99.9% level.
 - ii. Find $TVaR_{.999}(X)$, the Tail Value at Risk of X at the 99.9% security level.