

ACSC/STAT 3703 - Winter 2026 - Assignment 2

Due: Friday, Feb 6, at 11:59 PM

1. Let X have a two parameter Pareto distribution with survivor function

$$S(x) = \left(\frac{\theta}{x + \theta} \right)^\alpha$$

where x, θ and α are all positive,

- (a) Derive the cdf or survivor function of the inverse distribution.
- (b) Derive the cdf or survivor function of the transformed distribution.
- (c) Derive the cdf or survivor function of the inverse transformed distribution.

2. Let X have an exponential distribution with survivor function $S(x) = e^{-x}, x > 0$.

- (a) Derive the distribution function of $-\log(X)$, where \log is the natural log.
- (b) Derive the distribution function of $-\sigma \log(X) + \mu$, where $\sigma > 0$.

3. Let the conditional distribution of X given that $\Lambda = \lambda$ be a Poisson distribution with conditional probability mass function

$$p_{X|\Lambda}(x|\lambda) = P(X = x|\Lambda = \lambda) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, 2, \dots$$

and suppose that Λ has an exponential distribution with survivor function $S(\lambda) = e^{-\lambda\theta}, \lambda > 0$, where $\theta > 0$. Derive the unconditional distribution of X , also known as the marginal distribution.

4. X has a two component mixture distribution. With probability .6, X has a Poisson distribution with mean 1, and with probability .4, X has a Poisson distribution with mean 2.

- (a) Find the probability that $X = 1$.
- (b) Find $E[X]$. (Hint: imagine a random variable N which takes value 0 with probability .6, and takes value 1 with probability .4. Then calculate $E[X] = E[E[X|N]]$.)
- (c) Find $V(X)$. (Hint: use the conditional variance formula)

5. Show that the Poisson distribution with pmf

$$P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}, x = 0, 1, 2, \dots$$

is a member of the linear exponential family. That is, find the functions $p(x)$, $q(\lambda)$ and $r(\lambda)$.

6. For the Pareto distribution in problem 1, show that the limit of $S(x)$ as $\alpha \rightarrow \infty$ and $\theta \rightarrow \infty$ such that $\frac{\alpha}{\theta} = c$, a constant, gives the survivor function of the exponential distribution.