Back to Index Back to C On to E
DAHLGREN T.,
D'ALMEIDA AREZ, J. B.: see d'ALMEIDA AREZ, J. B.
 
DAMAMME G.,
[1] Transcendence properties of Carlitz zeta-values.
The Arithmetic of Function Fields (Proceedings, Ohio State Univ., 1991),
303-311. Walter deGruyter, Berlin - New York 1992.
   
 Z788.11021; M94a:11109
 
DAMIANOU P., SCHUMER P.,
[1] A theorem involving the denominator of Bernoulli numbers.
Math. Mag. 76 (2003), 219-224.
M.J. Dancs, He Tian-Xiao,
[1] An Euler-type formula for $\zeta(2k+1)$,
J. Number Theory 118 (2006), no. 2, 192-199.
 M2225279
 
DANG SI SHAN, CHU WEI PAN,
[1] Some identities involving Euler numbers, Bernoulli numbers, and
generalized Stirling numbers of the first kind. (Chinese),
Pure Appl. Math. 13 (1997), no. 2, 109-113, 117.
 Z899.11007; M99d:11018
     
D'ANIELLO C.,
[1] On some inequalities for the Bernoulli numbers,
Rend. Circ. Mat. Palermo (2),  43 (1994), no. 3, 329-332.
       
 Z830.11108; M96f:11030
 
DARBOUX G.,
[1] Sur les développements en série des
fonctions d'une seule variable, J. Math. Pures 
Appl. (3),  2 (1876), 291-312.
 J08.0124.03
 
DARMON H., DIAMOND F., TAYLOR R.,
[1] Fermat's last theorem. Elliptic curves, modular forms & Fermat's last 
theorem (Hong Kong, 1993), 2-140, Internat. Press, Cambridge, MA, 1997.
 M99d:11067b
DARMON H.: see also BALOG A., DARMON H., ONO K.
DATTOLI G., LORENZUTTA S., CESARANO C.,
[1] Finite sums and generalized forms of Bernoulli polynomials. 
Rend. Mat. Appl. (7) 19 (1999), no. 3, 385-391 (2000).
 Z958.33006; M2001h:33007
 
DAVID E.,
[1] Applications de la dérivation d'Arbogast à
la solution de la partition des nombres et à d'autres
problèmes, J. Math. Pures Appl.,  8,
(1882), 61-72.
 J14.0129.01
DAVIS B.: see SITARAMACHANDRA RAO R., DAVIS B.
DAVIS H.T.,
[1] Tables of the Higher Mathematical Functions,
v.2, Bloomington, Indiana: Principia Press, 1935, xiii
+ 391pp.
 J61.1337.03; Z13.21603
 
E. de Amo, M. Díaz Carrillo, J. Fernández-Sánchez,
Another proof of Euler's formula for $\zeta(2k)$,
Proc. Amer. Math. Soc. 139 (2011), no. 4, 1441-1444.
 M2748437
DEBNATH L.: see LUO QIU-MING, GUO BAI-NI, QI FENG, DEBNATH L.
DEBNATH L.: see also LUO QIU-MING, QI FENG, DEBNATH L.
DEEBA E.Y., RODRIGUEZ D.M.,
[1] Stirling's series and Bernoulli numbers,
Amer. Math. Monthly,  98 (1991), no.5, 423-426.
 Z743.11012; M92g:11025;  R1992,453
DELABAERE E.: see CANDELPERGHER B., COPPO M.A., DELABAERE E.,
DELANGE H.,
[1] Sur les zéros réels des polynômes de Bernoulli,
C.R. Acad. Sci. Paris,  303, Série I, (1986), no. 12, 539-542.
 Z607.10006; M88a:11020;  R1987,3B31
[2] Sur les zéros imaginaires des polynômes de Bernoulli,
C.R. Acad.Sci. Paris,  304, Série I, (1987), no. 6, 147-150.
 Z607.10007; M88d:30009;  R1987,7B20
[3] On the real roots of Euler polynomials,
Monatsh. Math.,  106 (1988), no. 2, 115-138.
 Z653.10010; M89k:11009;  R1989,3A250
[4] Sur les zéros réels des polynômes de Bernoulli,
Ann. Inst. Fourier, Grenoble,  41 (1991), no. 2, 267-309.
  
 Z725.11011; M93h:11023;  R1992,6B16
DELIGNE P., RIBET K.A.,
[1] Values of Abelian L-functions at negative
integers over totally real fields, Invent. Math.,  59
(1980), no. 3, 227-286.
 Z434.12009; M81m:12019;  R1982,3A341
DELL'ACCIO F.: see COSTABILE F.A., DELL'ACCIO F.
DELVOS F.-J.,
[1] Bernoulli functions and periodic B-splines,
Computing,  38 (1987), no. 1, 23-31.
 Z616.65147; M88f:41017;  R1987,11B1272
DEMAILLY J.P.,
[1] Sur le calcul numérique de la constante d'Euler, Gaz. Math., 
no. 27 (1985), 113-126.
 M86m:11105
 
DE MOIVRE A.,
[1] Miscellanea analytica de seriebus et quadraturis, London, 1730.
DE MORGAN A.,
[1]  Differential and Integral Calculus, Chapters XIII and XX,
1842.
DENCE J.B.,
[1] A development of Euler numbers,   
Missouri J. Math. Sci. 9 (1997), no. 3, 148-155.
 M
98h:11023
 
DENCE J.B., DENCE Th. P.,
[1] Elements of the theory of numbers.
Harcourt/Academic Press, San Diego, CA, 1999. xviii+517 pp. ISBN 0-12-209130-2
 Z916.05001; M99k:11001
 
DÉNES P.,
[1] An extension of Legendre's criterion in
connection with the first case of Fermat's last theorem,
Publ. Math. Debrecen,  2 (1951), 115-120.
 Z43.27302; M13-822h
 
[2] Über die Diophantische Gleichung $x^{np
+ y^{np} = p^mz^{np}$, Czechoslovak Math. J. 1,
 76 (1951) (1952), 179-185.
 Z48.02904; M16-903g
 
[3] Beweis einer Vandiver'schen Vermutung
bezüglich des zweiten Falles des letzten Fermat'schen
Satzes, Acta Sci. Math. (Szeged),  14 (1952),
197-202.
 Z49.31003; M14-451e
 
[4] Über die Diophantische Gleichung
$x^l+y^l = cz^l$, Acta Math.,  88 (1952), 241-251.
 Z48.27503; M16-903h
 
[5] Über irreguläre Kreiskörper,
Publ. Math. Debrecen,  3 (1953) (1954), 17-23.
 Z56.03301; M15-686d; 
 R1955,3043
[6] Über Grundeinheitssysteme der irregulären Kreiskörper von
besonderen Kongruenzeigenschaften, Publ. Math. Debrecen,  3
(1954) (1955), 195-204.
 Z58.26902; M17-131c;  R1957,69
[7] Über den zweiten Faktor der Klassenzahl und den 
Irregularitätsgrad der irregulären Kreiskörper, 
Publ. Math. Debrecen,  4 (1956), 163-170.
 Z71.26505; M18-20e;  R1959,4421
DENINGER CH.,
[1]  On the analogue of the formula of Chowla and
Selberg for real quadratic fields, J. Reine Angew. Math., 
 351 (1984), 171-191.
 Z527.12009; M86f:11085;  R1985,1A215
 
DENNLER G.,
[1] Bestimmung sämtlicher meromorpher Lösungen
der Funktionalgleichung
$f(z) =  {1 \over k} \sum_{h=0}^{k-1}{f({z+h \over k})}$,
Wiss. Z. Friedrich-Schiller-Univ. Jena,
Math.-Natur.,  14 (1965), no. 5, 347-350.
  
 Z146.13202; M37#5559;  R1968,1B202
 
DE PESLOUAN L.,
[1] Sur une congruence entre les nombres de Bernoulli,
C. R. Acad. Sci. Paris,  170 (1920), 267-269.
   
 J47.0131.04
DEPINE R.A.: see BANUELOS A., DEPINE R.A.
DERR L.: see OUTLAW C., SARAFYAN D., DERR L.
DERUYTS J.,
[1] Rapport sur un Mémoire de M. Beaupain intitulé: ``Sur une
classe de fonctions qui se rattachent aux fonctions de Jacques Bernoulli.''
Belg. Bull. Sciences (1900), 255-257.
 J31.0438.01
 
 
Désarménien, Jacques,
[1] Un analogue des congruences de Kummer pour les $q$-nombres d'Euler.
European J. Combin. 3 (1982), no. 1, 19-28.
 M83k:05007
DESBROW D.,
[1]  Sums of integer powers,  Math. Gaz.,  
66 (1982), no. 436, 97-100.
 M83j:10054
 
DESNOUX P.-J.,
[1] Congruences dyadiques entre nombres de classes de corps quadratiques,
Manuscr. Math.,  62 (1988), no. 2, 163-179.
 Z664.12002; M90c:11079;  R1989,4A265
 
DE TEMPLE D. W., WANG SHUN HWA,
[1] Half-integer approximations for the partial sums of the
harmonic series,
J. Math. Anal. Appl.,  160 (1991), no. 1, 149-158.
   
 Z747.40002; M92j:41042
DEVANATHAN V.: see SUBRAMANIAN P.R., DEVANATHAN V.
DIAMOND F.: see DARMON H., DIAMOND F., TAYLOR R.,
DIAMOND J.,
[1] The $p$-adic log gamma function and $p$-adic Euler constants,
Trans. Amer. Math. Soc. 233 (1977), 321-337.
 Z382.12008; M58 #16610
 
[2] The p-adic gamma measures,  Proc. Amer. Math. Soc.,  
75 (1979), no. 2, 211-218.
 Z421.12019; M80d:12013;  R1980,1A369
[3]  On the values of p-adic L-functions at
positive integers, Acta Arith.,  35 (1979), no. 3,
223-237.
 Z463.12007; M80j:12013;  R1980,5A313
DIBAG I.,
[1]  An analogue of the von Staudt-Clausen
theorem, J. Algebra,   87 (1984), Suppl., no. 
2, 332-341.
 Z536.10012; M85j:11028;  R1984,10A308
[2] Generalisation of the von Staudt-Clausen theorem,
J. Algebra,  125 (1989), no. 2, 519-523.
 Z683.10014; M90g:11025;  R1990,5A275
DI CAVE A., RICCI P.E.,
[1] Sui polinomi di Bell ed i numeri di Fibonacci e di Bernoulli,
Matematiche,  35 (1980), no. 1-2, 84-95.
 Z534.33008; M84h:05011
 
DI BUCCHIANICO A., LOEB D.,
[1] A selected survey of umbral calculus. Electron. J. Combin. 2 (1995),
Dynamic Survey 3, 28 pp. (electronic).
 Z851.05012; M99j:05017
 
DI BUCCHIANICO A., LOEB D., ROTA G.-C.,
[1] Umbral calculus in Hilbert space.
Mathematical essays in honor of Gian-Carlo Rota (Cambridge, MA, 1996), 213-238,
Progr. Math., 161, Birkhäuser Boston, Boston, MA, 1998.
 Z902.05007; M 99i:05021
 
DICKEY L.J., KAIRIES H.H., SHANK H.S.,
[1]  Analogs of Bernoulli polynomials in
fields $ Z_p$, Aequationes Math.,  14 (1976),
no. 3, 401-440.
 Z343.12006; M53#13103;  R1977,2A117
DICKSON J.D.H.,
[1] On Raabe's Bernoullians.
Proc. London Math. Soc. 20 (1889), 14-21.
 J21.0247.03
DICKSON J.D.H.: see also BARNIVILLE J.J., DICKSON J.D.H., LAMPE E.
DICKSON L.E.,
[1] Notes on the theory of numbers,
Amer. Math. Monthly,  18 (1911), 109-111.
[2]  History of the Theory of Numbers, 
Washington, (1919-1923), vol. 1-3.
Reprint: Chelsea Publ. Co., New York, 1966.
 J47.0100.04; J49.0100.12; J60.0817.03; M39#6807a,b,c
 
DI CRESCENZO A., ROTA G.-C.,
[1] On umbral calculus (Italian. English summary),
Ricerche Mat.,  43 (1994), no. 1, 129-162.
 Z918.05010; M96e:05016
    
DIENGER J.,
[1] Die Lagrangesche Formel und die Reihensummierung durch dieselbe, 
J. Reine Angew. Math.,  34 (1847), 75-100.
DIETER U.,
[1] Reciprocity theorems for Dedekind sums,
IX. Mathematikertreffen Zagreb-Graz (Motovun, 1995), 11-24, Grazer Math. Ber.,
328, Karl-Franzens-Univ. Graz, Graz, 1996.
 Z880.11041; M98i:11024
 
DILCHER K.,
[1] Zero-free regions for Bernoulli polynomials,  
C.R. Math. Rep. Acad. Sci. Canada,  5 (1983), no. 6, 241-246.
 Z532.30005; M85a:30015;  R1984,3B30
[2] Irreducibility and zeros of generalized Bernoulli polynomials, 
C.R. Math. Rep. Acad. Sci. Canada,  6 (1984), no. 5, 273-278.
 Z558.10012; M85k:11010;  R1985,7A148
[3] On a Diophantine equation involving quadratic
characters, Compositio Math.,  57 (1986), no. 3, 383-403.
 Z584.10008; M87e:11046;  R1986,8A99
[4] Irreducibility of certain generalized Bernoulli polynomials belonging to 
quadratic residue class characters,  
J. Number Theory,  25 (1987), no. 1, 72-80.
 M88a:11021;  R1987,6A98
[5] Asymptotic behaviour of Bernoulli, Euler and generalized Bernoulli
polynomials, 
J. Approx. Theory,  49 (1987), no. 4, 321-330.
 Z609.10008; M88g:33001;  R1987,10A63
[6] Zeros of Bernoulli, generalized Bernoulli and Euler polynomials,
Mem. Amer. Math. Soc.,  73 (1988), no. 386, iv + 94 pp.
 Z645.10015; M89h:30005;  R1988,10B22
[7] Multiplikationstheoreme f¨r die Bernoullischen Polynome und
explizite Darstellungen der Bernoullischen Zahlen,
Abh. Math. Sem. Univ. Hamburg,  59 (1989), 143-156.
 Z712.11015; M91h:11012
 
[8] Sums of products of Bernoulli numbers.
J. Number Theory,  60 (1996), no. 1, 23-41.
 Z863.11011; M97h:11014
[9] Von Staudt-Clausen Theorem. Encyclopedia of Mathematics, Supplement II. Kluwer Academic Publishers, Dordrecht, 2000.
[10] Bernoulli numbers and confluent hypergeometric functions. 
Number theory for the millennium, I (Urbana, IL, 2000), 343-363, 
A K Peters, Natick, MA, 2002.
 M2003m:11032
 
DILCHER K., MALLOCH L.,
[1] Arithmetic properties of Bernoulli-Padé numbers and polynomials. 
J. Number Theory 92 (2002), no. 2, 330-347.
 M2003b:11013
 
DILCHER K., SKULA L.,
[1] A new criterion for the first case of Fermat's last theorem.
Math. Comp. 64 (1995), no. 209, 363-392.
 Z817.11022; M95c:11034
 
DILCHER K., SKULA L., SLAVUTSKII I. SH.,
[1] Bernoulli Numbers. Bibliography (1713-1990).
Queen's Papers in Pure and Applied Mathematics, 87, Queen's University,
Kingston, Ont., 1991.
  
 Z741.11001; M92f:11001;  R1992,4A54
DILCHER K.: see also BORWEIN J.M., BORWEIN P.B., DILCHER K.
DILCHER K.: see also AGOH T., DILCHER K., SKULA L.
DILCHER K.: see also CRANDALL R.E., DILCHER K., POMERANCE C.
DILLON J.F., ROSELLE D.P.,
[1] Eulerian numbers of higher order,
Duke Math. J.,  35 (1968), no. 2, 247-256.
 Z185.03003; M37#1261;  R1969,1V229
DI MARZIO F.,
[1] The very accurate summation of inverse powers and the generation
of Bernoulli and Euler numbers,
Comput. Phys. Comm.,  44 (1987), no. 1-2, 57-62.
 Z673.10008; M88f:65014;  R1988,2B36
DINTZL E.,
[1] Über Zahlen im Körper
$k({\sqrt{-2)$, welche den Bernoullischen Zahlen
analog sind, Sitz. Akad. Wiss., Wien, Math. und natur.
Kl., 2e Abteil.,  118 (1909), 173-201.
 J40.0265.02
  
[2] Über einige Eigenschaften der Bernoullischen und analoger Zahlen,
Jb. k. k. Erzherzog-Rainer-Realgymnasium Wien, (1910), 1-11.
 J41.0503.03
     
[3] Über die Entwicklungscoeffizienten der elliptischen
Funktionen, insbesondere im Falle singulärer Moduln,
Monatsh. Math. und Physik,  25 (1914), 125-151.
     
 J45.0685.01
 
DITTRICH G.,
[1] Die Theorie des Fermat-Quotienten,
Dissertation, Jena, 1924.
D'OCAGNE M.: see d'OCAGNE M.
      
DOKOVIC D.,
[1]  Formule pour le calcul des puissances
semblables des nombres naturels,  (Serbo-Croatian,
French summary), Bull. Soc. Math. Phys. Macédoine 
 8 (1957), 38-40.
 M23#A97
  
DOKSHITZER T.,
[1] On Wilf's conjecture and generalizations.
In: Number Teory (K. Dilcher, Ed.), Fourth Conference of the Canadian Number
Theory Association (Halifax, July 2-8, 1994), CMS Conference Proceedings 15,
133-153. Amer. Math. Soc., Providence, 1995.
 Z837.11023; M96h:11031
 
DOLZE P.,
[1] Über Bernoullische Zahlen und Funktionen, welche zu einer 
Fundamentaldiskriminante gehören, und deren Anwendung auf die Summation
unendlicher Reihen. Inaugurationsdissertation, Rostock, 44p. Dresden, 1907.
 J37.0300.02; J38.0466.02
  
Domaratzki, Michael, 
[1] Combinatorial interpretations of a generalization of the Genocchi numbers.
J. Integer Seq. 7 (2004), no. 3, Article 04.3.6, 11 pp. (electronic).
 M2005h:11031
[1] Binomial self-inverse sequences and tangent coefficients,
J. Combin. Theory A,  21 (1976), no. 2, 155-163.
   
 Z345.05002; M54#2475; R1977,3V372
    
DÖRFLER P.,
[1] A Markov type inequality for higher derivatives of polynomials,
Monatsh. Math.,  109 (1990), no. 2, 113-122.
 Z713.41006; M91h:26017
 
DOWLING J.P.,
[1] The mathematics of the Casimir effect,
Math. Magazine,  62 (1989), no. 5, 324-333.
 M91a:81229
 
DOYON B., LEPOWSKY J., MILAS A.,
Twisted modules for vertex operator algebras and Bernoulli polynomials. 
Int. Math. Res. Not. 2003, no. 44, 2391-2408.
 M2005b:17055
 
Doyon, B.; Lepowsky, J.; Milas, A.,
[1] Twisted vertex operators and Bernoulli polynomials.
Commun. Contemp. Math.  8  (2006),  no. 2, 247--307.
DRYANOV D., KOUNCHEV O.,
[1] Polyharmonically exact formula of Euler-Maclaurin,
multivariate Bernoulli functions, and Poisson type formula,
C. R. Acad. Sci. Paris Sér. I Math., 327 (1998), no. 5,
15-520.
 Z908.65003; M99j:65003;  R1999,12G29
[2] Multivariate Bernoulli functions and polyharmonically exact
cubature formula of Euler-Maclaurin. Math. Nachr. 226 (2001), 65-83.
 M2002c:41043
DUBE P.P.: see PANJA G.K., DUBE P.P.
DUCCI E.,
[1]  Somma della potenze simili dei termini di
una progressione per differenza,  Giorn. Matem., Napoli,
 23 (1894), 348-352.
 J25.0411.01
 
DUKE W., IMAMOGLU Ö.,
[1] Siegel modular forms of small weight,
Math. Ann. 310 (1998), no. 1, 73-82.
 Z892.11017; M98m:11037
 
DUMAS P., FLAJOLET P.,
[1] Asymptotique des récurrences mahlériennes: le cas 
cyclotomique, J. Théor. Nombres Bordeaux 
8 (1996), no. 1, 1-30.
 Z869.11080; M97f:39029
 
DUMMIGAN N.,
[1] Period ratios of modular forms. 
Math. Ann. 318 (2000), no. 3, 621-636.
 M2002a:11049 
 
DUMONT D.,
[1] Sur une conjecture de Gandhi concernant les nombres de Genocchi,
Discrete Math.,  1 (1972), no. 4, 321-327.
 Z263.10005; M45#5073;  R1974,7B461
[2] Propriétés géométriques des nombres de Genocchi, Thèse, Strasbourg, 1973.
[3] Interprétations combinatoires des nombres de Genocchi,
Duke Math. J.,  41 (1974), 305-318.
 Z297.05004; M49#2412;  R1985,3V437
[4] Conjectures sur des symétries ternaires liées aux nombres
de Genocchi,
Discrete Math.,  139 (1995), no. 1-3, 469-472.
   
 Z823.05003; M96e:05007
 
[5] Further triangles of Seidel-Arnold type and continued fractions related to
Euler and Springer numbers.
Adv. in Appl. Math. 16 (1995), no. 3, 275-296.
 Z834.05004; M96i:11021
 
DUMONT D., FOATA D.,
[1] Une propriété de symétrie des nombres de Genocchi,
Bull. Soc. Math. France,  104 (1976), no. 4, 433-451.
 Z362.05018; M55#7794
 
DUMONT D., RANDRIANARIVONY A.,
[1] Dérangements et nombres de Genocchi,
Discrete Math.,  132 (1994), no. 1-3, 37-49.
  
 Z807.05001; M95h:05015
     
[2] Sur une extension des nombres de Genocchi,
European J. Combin.,  16 (1995), no. 2, 147-151.
     
 Z823.05004; M96k:11015
        
DUMONT D., VIENNOT G.,
[1] A combinatorial interpretation of the Seidel generation of Genocchi numbers.
Ann. Discrete Math.,  6 (1980), 77-87.
 
 Z449.10011; M82j:10024;  R1981,8V588
	   
DUMONT D., ZENG J.,
[1] Further results on the Euler and Genocchi numbers.
Aequationes Math.,  47 (1994), no. 1, 31-42.
     
 Z805.11024; M95b:11021
 
[2] Polynômes d'Euler et fractions continues de Stieltjes-Rogers,
Ramanujan J. 2 (1998), no. 3, 387-410.
 M99i:05008
DUMONT D.: see also BARSKY D., DUMONT D.
DUPARC H.J.A., PEREMANS W.,
[1]  On certain representations of positive
integers,  Nieuw. Arch. Wisk. (3),  1 (1953), no. 2,
92-98.
 Z50.26905; M15-288e;  R1954,2853
DUPUIS N.F.,
[1] Cruces mathematicae [Sect. 4: Expression of the general Bernoullian number
as a combinational determinant].
Royal Society of Canada, Proc. and Trans.  7 (1889), Sect. 3, 15-22.
DUTKA J.,
[1] On the summation of some divergent series of Euler and the zeta functions.
Arch. Hist. Exact Sci. 50 (1996), no. 2, 187-200.
 Z858.01018; M98a:11112;  R1997,5A6
Back to Index Back to C On to E