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Abstract

We show that a monomial ideal I has projective dimension 1 if and only if the minimal free resolution of I is
supported on a graph that is a tree. We do this by constructing specific graphs which support the resolution of the
ideal. As a result, we also give a new proof to a result by Herzog, Hibi, and Zheng which characterizes monomial
ideals of projective dimension 1 in terms of quasi-trees.

1 Introduction
A free resolution of an ideal is a long exact sequence of free modules that represents the relations between the gen-
erators of that ideal. For an ideal generated by monomials it is always possible to find a simplicial complex whose
simplicial chain complex completely describes a free resolution of the ideal. It is, however, known that the minimal
free resolution may not be described by simplicial complexes; see Velasco [14] and Reiner and Welker [12]. In other
words, the minimal resolution of a monomial ideal need not be supported on a simplicial complex. A natural question
is which monomial ideals do have such minimal simplicial resolutions.

In this paper, we study the smallest case: the case of monomial ideals of projective dimension 1. We show that
if a monomial ideal I has pd(I) = 1 then the minimal free resolution of I is supported on a 1-dimensional acyclic
simplicial complex, i.e. a (graph) tree. We also provide an alternate proof to a result by Herzog, Hibi, and Zheng
([8], 2.2) which characterizes monomial ideals of projective dimension 1 in terms of quasi-trees. The benefit of our
approach is that we construct the specific graph which supports the resolution of the ideal.

Our main results can be summed up in the following statement, in which N (I∨) stands for the Alexander dual of
the Stanley-Reisner complex of I .

Theorem 1 (Theorem 18). Let I be a square-free monomial ideal in a polynomial ring S. Then the following state-
ments are equivalent.

1. pdS(I) = 1

2. I has a minimal free resolution supported on a graph-tree.

3. N (I∨) is a quasi-forest

The equivalence of statements 1 and 2 was already known from the work of Herzog, Hibi, and Zheng [8], but it
also follows directly from our construction of a graph tree supporting a resolution of (the polarization of) any ideal of
projective dimension 1.

2 Quasi-trees
Let V = {v1, ..., vn} be a finite set. A (finite) simplicial complex, ∆, on V is a collection of non-empty subsets of
V such that F ∈ ∆ whenever F ⊆ G for some G ∈ ∆. The elements of ∆ are called faces. Faces containing one
element are called vertices and maximal faces are called facets. For each face F ∈ ∆, we define dim(F ) = |F |−1 to
be the dimension of the face F . We define dim(∆) = max{dim(F ) : F ∈ ∆} to be the dimension of the simplicial
complex ∆. If ∆ is a simplicial complex with only 1 facet and r vertices, we call ∆ an r-simplex.

If W ⊆ V , we define the induced subcomplex on W in ∆, denoted ∆W , to be the set ∆W = {F ∈ ∆|F ⊆W}.
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A subcollection of ∆ is a simplicial complex whose facets are also facets of ∆.
We say ∆ is connected if for every vi, vj ∈ V there is a sequence of faces F0, ..., Fk such that vi ∈ F0, vj ∈ Fk

and Fi ∩ Fi+1 6= ∅ for i = 0, ..., k − 1.
It is easy to see from the definition that a simplicial complex can be described completely by its facets, since every

face is a subset of a facet and every subset of every facet is in a simplicial complex. So, if ∆ has facets F0, ..., Fq , we
use the notation 〈F0, ..., Fq〉 to describe ∆.

The f -vector of a d-dimensional simplicial complex ∆ is the sequence f(∆) = (f0, ..., fd), where each fi is the
number of i-dimensional faces of ∆.

Definition 2 (Faridi [4]). A facet F of a simplicial complex ∆ is called a leaf if either F is the only facet of ∆ or for
some facet G ∈ ∆ with G 6= F we have that F ∩ H ⊆ G for all facets H 6= F of ∆. The facet G is said to be the
joint of F .

A simplicial complex ∆ is a simplicial forest if every nonempty subcollection of ∆ has a leaf. A connected
simplicial forest is called a simplicial tree.

If a facet F of a simplicial complex is a leaf, then F necessarily has a free vertex, which is a vertex of ∆ that
belongs to exactly one facet.

One of the properties of simplicial trees that we will make particular use of is that whenever ∆ is a simplicial tree
we can always order the facets F1, ..., Fq of ∆ so that Fi is a leaf of the induced subcollection 〈F1, ...Fi〉. Such an
ordering on the facets is called a leaf order and it is used to make the following definition.

Definition 3. (Zheng [15]) A simplicial complex ∆ is a quasi-forest if ∆ has a leaf order. A connected quasi-forest
is called a quasi-tree.

Equivalently, we could have defined quasi-trees to be simplicial complexes such that every induced subcomplex
has a leaf. This is not clear from the definition and we give a proof below.

Proposition 4 (A characterization of quasi-forests). A simplicial complex ∆ with vertex set V is a quasi-forest if and
only if for every subset W ⊂ V , the induced subcomplex ∆W has a leaf.

Proof. (⇒) Since ∆ has a leaf order, we may label the facets of ∆, F0, ..., Fq , so that Fi is a leaf of ∆i = 〈F0, ..., Fi〉.
For a subset W ⊂ V , choose the smallest i such that W is a subset of the vertex set of ∆i, which we will denote Vi.

We claim that the complex induced on W in ∆i is ∆W . It is clear that (∆i)W ⊆ ∆W . To see the converse, let F
be a face of ∆W , then F ⊆ Fj for some facet Fj ∈ ∆. If j ≤ i then F ∈ ∆i and we are done. If j > i then let Fk be
the joint of Fj in ∆j and note that k < j. Since F ⊆W ⊆ ∆i ⊆ ∆j \ 〈Fj〉 we have that F ⊆ Fj ∩

(
∆j \ 〈Fj〉

)
⊂ Fk.

If k ≤ i then we are done. If not we may iterate this argument as many times as necessary until we get a facet Fa ∈ ∆i

for which F ⊆ Fa. Hence (∆i)W = ∆W .
We will show that Fi ∩ W is a leaf of ∆W . Since Fi ∈ ∆i, Fi ∩ W is a face of ∆W . Also, Vi = Vi−1 ∪

{free vertices of Fi in ∆i} which means that W ∩ {free vertices of Fi in ∆i} 6= ∅, otherwise W would be contained
in the vertex set of ∆i−1. Therefore Fi ∩W is not a subset of any other face in ∆W , i.e. Fi ∩W is a facet of ∆W . If
Fj is the joint of Fi in ∆i, then for any face F ∈ ∆, F ∩ Fi ∩W ⊂ Fj ∩ Fi ∩W . This means that any facet of ∆W

(except for Fi ∩W ) that contains Fj ∩ Fi ∩W is a joint for Fi ∩W in ∆W , since the faces of ∆W are also faces of
∆. If no such facet exist (except for Fi ∩W ) then Fi ∩W is disjoint from the rest of ∆W . In either scenario, Fi ∩W
is a leaf of ∆W .

(⇐) This is done by induction on the size of the vertex set V of ∆. For |V | = 1 or 2, a quick inspection shows that
all simplicial complexes with vertex set V have a leaf order and every induced subcomplex has a leaf. Now assume
that every simplicial complex on ≤ n vertices for which every induced subcomplex has a leaf is a quasi-forest.

Suppose ∆ is a simplicial complex on n + 1 vertices and that every induced subcomplex of ∆ has a leaf. Since
∆ is an induced subcomplex of itself, it also has a leaf, call it F , with free vertices v1, ..., vk. The simplicial complex
∆ \ 〈F 〉 is given by the induced subcomplex ∆W where W = V \ {v1, ..., vk}. Every induced subcomplex of ∆W

has a leaf and ∆W is a simplicial complex on ≤ n vertices, hence ∆W has a leaf order G1, ...., Gj . This gives us a
leaf order G1, ...., Gj , F for ∆.

It is known that every induced subcomplex of a simplicial forest is also a simplicial forest ([6]), but this property
does not characterize simplicial forests.
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Let ∆ be a simplicial complex on the vertex set {x1, ..., xr}. The Stanley-Reisner ideal N (∆) of ∆ is is a
squarefree monomial ideal generated by the minimal “non-faces” of ∆:

N (∆) = (xi1 · · ·xip |{xi1 , ..., xip} 6∈ ∆).

The Alexander dual of ∆ is the simplicial complex

∆∨ = {{x1, ..., xr} \ τ | τ 6∈ ∆}.

The following lemma shall be used later in the paper. The proof is a straightforward application of the definitions
above (see e.g. Faridi [5])

Lemma 5. Let ∆ = 〈F1, ..., Fq〉 be a simplicial complex on the vertex set V = {x1, ..., xn}. The minimal generating
set of N (∆∨) is

{
∏
xi 6∈F1

xi, ...,
∏
xi 6∈Fq

xi}

3 Simplicial resolutions
Let S = k[x1, . . . , xn], where k is a field. A minimal graded free resolution of a graded S-module M is a chain
complex of the form

F : ... F2 F1 F0 0
∂1 //∂3 // ∂2 // //

such that each Fi is a free S-module, H0(F) ∼= M a degree zero isomorphism , Hi(F) = 0 for i ≥ 1, and
∂i+1(Fi+1) ⊆mFi for all i ≥ 0 where m = (x1, ..., xn).

The ith Betti number of M over S is defined as βSi (M) = rank(Fi). Since F is graded, each free module Fi is a
direct sum of modules of the form S(−p). We define the graded Betti numbers of M by

βSi,p(M) = number of summands in Fi of the form S(−p)

for an integer p. Similarly, If F is multigraded, we define the multigraded Betti numbers of M to be

βSi,m(M) = number of summands in Fi of the form S(−m)

for a monomial m. The definition tells us that for a fixed i, βSi (M) =
∑
p β

S
i,p(M) =

∑
m β

S
i,m(M). Furthermore, if

our minimal resolution admits a multigrading, we will have that for each i,

Fi =
⊕
m∈S

S(−m) =
⊕
p∈Z

⊕
m∈Sp

S(−m) =
⊕
p∈Z

S(−p)

and we conclude that βSi,p(M) =
∑
m∈Sp

βSi,m(M).
It is known that every two minimal free resolutions of M are isomorphic and of the same (finite) length, which is

called the projective dimension of M :

pdS(M) = max{i | βSi (M) 6= 0}

Let I be a monomial ideal in S minimally generated by monomials m1, . . . ,mt. If ∆ is a simplicial complex on t
vertices, one can label each vertex of ∆ with one of the generators m1, . . . ,mt and each face with the least common
multiple of the labels of its vertices. For any monomial m, we denote by ∆m be the subcomplex of ∆ induced on the
vertices of ∆ whose labels divide m.

Theorem 6 (Resolutions via simplicial trees ([6])). Let ∆ be a simplicial tree labeled by monomials m1, . . . ,mt ∈ S,
and let I = (m1, . . . ,mt) be the ideal in S generated by the vertex labels. The simplicial chain complex C(∆) =
C(∆;S) is a free resolution of S/I if and only if the induced subcomplex ∆m is connected for every monomial m.
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An example of a simplicial tree ∆ “supporting” a free resolution of a monomial ideal (that is, the simplicial chain
complex of ∆ being a free resolution of the ideal) is the Taylor resolution [13], in which case ∆ is a simplex (one
facet).

Theorem 6 implies that the Betti vector of I (that is, the vector whose i-th entry is the i-th Betti number of I) is
bounded by the f -vector of a simplicial tree ∆ that supports a resolution of it:

β(I) = (β0(I), . . . , βq(I)) ≤ (f0(∆), . . . , fq(∆)) = f(∆).

Equality holds if some extra conditions are satisfied:

Theorem 7 (Bayer, Peeva, Sturmfels ([1])). With notation as in Theorem 6, C(∆) is a minimal free resolution of S/I
if and only if mA 6= mA′ for every proper subface A′ of a face A of ∆.

4 Monomial ideals of projective dimension 1
It is known that not all monomial ideals have simplicial, or even cellular resolutions ([12, 14]). It is also known that
if a simplicial complex supports a minimal resolution of a monomial ideal, then it must be acyclic ([11, 10]), and that
simplicial trees are acyclic ([6]).

Therefore a natural question in view of Theorem 6 is: Which ideals have minimal resolutions supported on a
simplicial tree?

The most basic case is that of a graph-tree, which is a 1-dimensional simplicial tree. In this case, the corresponding
ideal will have to have projective dimension 1. Moreover, graph-trees are the only acyclic 1-dimensional simplicial
complexes. It turns out that all monomial ideals of projective dimension 1 have simplicial resolutions supported on
graph-trees.

Theorem 8. A monomial ideal I has pd(I) = 1 if and only if I has a minimal resolution supported on a (graph) tree

Proof. (⇐) Clear.
(⇒) If pd(I) = 1 then S/I has a minimal resolution of the form

0 St Sr S 0
φ //// ψ // //

where φ(ei) = mi for the basis elements ei of Sr, and ψ(gj) = fj where the gj form a basis of St and the fj form
a minimal generating set of ker(φ). It is shown (see [3], Corollary 4.13) that ker(φ) can be generated (though not
necessarily minimally) by the elements

lcm(mi,mj)

mi
ei −

lcm(mi,mj)

mj
ej

Let f1, ..., ft be a minimal generating set of ker(φ) which have this form. This gives us a complete description of
the map ψ as a matrix with exactly two non-zero monomial entries in each column with coefficients corresponding to
those appearing in the fi (i.e one column entry has coefficient 1 and the other has coefficient −1). Dehomogenizing

this resolution (i.e. tensoring the complex by
S

(x1 − 1, ..., xn − 1)
) gives us the sequence of vector spaces

0 kt kr k 0
(11...1) //// A // // (1)

which is exact (Theorem 3.8 of [10]) and where A is a matrix in which every column has exactly one entry which is
1, one entry which is -1, and the rest equal to zero. If we consider each basis element of kr as a vertex and each basis
element ei of kt as an edge between the two vertices determined by the basis elements of kr to which ei is sent, we
may construct a graph G for which C(G; k) is the chain complex in (1). Since this chain complex is exact the graph G
is acyclic, hence a tree (this would also imply that t = r − 1).

In fact, more is true.

Proposition 9. If I is a monomial ideal which has a resolution supported on a tree T then that resolution is minimal.
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Proof. If m1, ...,mr are the minimal generators of I then T would have to have r vertices and r − 1 edges. When we
regard T as a simplicial complex we get the simplicial chain complex

C(T ; k) : 0 kr−1 kr k 0
(11...1) //// ∂2 // //

where ∂2 is a matrix in which every column has one entry equal to 1, one entry equal to −1, and the rest equal to zero.
Fix a basis ui,j for C(T ; k). The I-homogenization of T ([10]) would then give a resolution of I of the form

G : 0

r−1⊕
j=1

S(−α2,j)

r⊕
j=1

S(−α1,j) S 0// d1 //d2 // //

with multihomogeneous basis ei,j such that mdeg(ei,j) = αi,j . We know that

α1,j = mdeg(e1,j) = mdeg(mj)

for j = 1, ..., r and the α2,j are given by

α2,j = mdeg
(
lcm(mdeg(e1,s)| as,j 6= 0)

)
where the as,j come from the boundary map

∂2(u2,j) =

q∑
s=1

as,ju1,s

For each j, exactly 2 of the as,j 6= 0, so the multidegrees of the e2,j are actually of the form mdeg(e2,j) =
mdeg(lcm(mi1 ,mi2)) where mi1 and mi2 are minimal generators of I . With this in mind we consider the boundary
map

d2(e2,j) =

q∑
s=1

as,j
mdeg(e2,j)

mdeg(e1,s)
e1,s

which tells us that the matrix representation of d2 has entries

[d2]s,j = as,j
mdeg(e2,j)

mdeg(e1,s)

If as,j = 0 then [d2]s,j = 0. If as1,j , as2,j 6= 0 then we have that mdeg(e2,j) = lcm(ms1 ,ms2). Since
ms1 ,ms2 are minimal generators of I we know that ms1 and ms2 strictly divide mdeg(e2,j) = lcm(ms1 ,ms2), so
that [d2]s,j ∈ m for all s, j. By construction, all entries of d1 are in m and we can conclude that this resolution is
minimal.

Next we show that all monomial ideals of projective dimension 1 (or their square-free polarizations) can be char-
acterized as N (∆∨) where ∆ is a quasi-forest. This fact itself is known: Herzog, Hibi, and Zheng [8] proved it by
using the Hilbert-Burch Theorem [2], and interpreting aspects of this theorem in the context of the Stanley-Reisner
ring of the Alexander Dual of a quasi-tree.

Our proof, on the other hand, gives a specific and simple construction of graph trees that support a resolution of
N (∆∨). The minimality of the resolution is guaranteed by the previous lemma.

Theorem 10. If ∆ is a quasi-forest, then N (∆∨) has a minimal resolution which is supported on a tree.

Proof. First we shall construct a tree T whose vertices will be labelled by the monomial generators of N (∆∨). Then
we will show that the forest induced by the lcm of any two of the vertex labels is connected. If these induced forests
are connected then so is any forest induced by an element of the lcm-lattice of I and the rest follows from Theorem
3.2 of [6].

To construct the tree we do the following:

1) Order the facets of ∆ as F0, ..., Fq , so that Fi is a leaf of ∆i = 〈F1, ..., Fi〉.
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2) Start with the one vertex tree T0 = (V0, E0) where V0 = {v0} and E0 = ∅

3) For i = 1, ..., q do the following:

- Pick u < i such that Fu is a joint of the leaf Fi in ∆i

- Set Vi = Vi−1 ∪ {vi}
- Set Ei = Ei−1 ∪ {(vi, vu)}

What we get is a graph T = (Vq, Eq) which, by construction, is a tree. To complete our construction we determine
a labelling of the vertices of T by which to homogenize. To do this we label the vertex vi with the monomial

mi =
∏

xj∈W\Fi

xj

where W = {x1, ..., xn} is the vertex set of ∆. By Lemma 5, these labels are the monomial generators ofN (∆∨), so
we have constructed a tree and specified a labelling. The I-homogenization of T with respect to this labelling results
in the I-complex FT . We are left with proving that FT is a resolution.

Since T is a tree, and hence a simplicial tree, to show that FT supports a resolution of N (∆∨) it is sufficient
to show that T is connected on the subgraphs Ti,j which are the induced subgraphs on the vertices mk such that
mk

∣∣lcm(mi,mj), for any minimal generators mi, mj in I . We first observe that

lcm(mi,mj) =
∏

xl∈W\Fi∩Fj

xl

so that
mk

∣∣lcm(mi,mj)⇐⇒ Fi ∩ Fj ⊂ Fk
Now, to show that every Ti,j is connected we first make the set

Ai,j = {0 ≤ k ≤ n : mk|lcm(mi,mj)} = {0 ≤ k ≤ n : Fi ∩ Fj ⊂ Fk}

and let l be the smallest integer inAi,j . We will show that for each k ∈ Ai,j , there is a path in Ti,j connecting vk and vl.

If k ∈ Ai,j , k 6= l then we can consider the facet Fk in ∆k which is a leaf, so it has a joint FkJ for some kJ < k.
Since l < k, Fl is a facet of ∆k as well. This means that

Fi ∩ Fj ⊂ Fk ∩ Fl ⊂ FkJ =⇒ Fi ∩ Fj ⊂ FkJ =⇒ kJ ∈ Ai,j .

Since kJ ∈ Ai,j for any joint of Fk ∈ ∆k, it is true for the specific joint we used in Step (3) of our construction of
T . We may also conclude that kJ ≥ l, by the minimality of l. Hence it is the case that the edge {vk, vkJ} ∈ T which
in turn implies that {vk, vkJ} ∈ Ti,j . Since l ≤ kJ < k, we can iterate this argument for kJ and its joint in ∆kJ , and
so on, finitely many times to get a path from vk to vl in Ti,j .

Remark 11. In the construction of T , we had some choice as to what joint we chose for a facet Fk in the simplicial
complex ∆k, hence the tree that we constructed is not unique. Furthermore, the proof follows through regardless of
our choices, so that any tree that we may have constructed would give us a resolution of N (∆∨).

Example 12. Let ∆ be the simplicial tree

Figure 1: Quasi-tree with many leaf orders
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Every order on the facets of ∆ is a leaf order, every facet is a leaf, and every facet is the joint of every other
facet. This means that if we use the construction given in the proof of Theorem 10, we could produce any tree on
four vertices. The monomial generators of N (∆∨) are x1x2x3, x1x2x4, x1x3x4, x2x3x4 and the lcm of any two of
these generators is x1x2x3x4, so that each Ti,j = T for any tree T we choose to consider. Hence, the Ti,j are always
connected and we get a minimal free resolution of N (∆∨).

Remark 13. Fløystad [7] also constructs specific trees supporting minimal resolutions for the class of Cohen-Macaulay
monomial ideals of projective dimension 1. Let I = (m1, . . . ,mq) be such an ideal and without loss of generality
we assume that I is square-free (otherwise replace generators with their polarizations), and that the generators have
been arranged so that each mi corresponds to the complement of a facet Fi of a quasi-tree ∆, and F1, . . . , Fq is a
leaf ordering of ∆. These extra arrangements are in place so that we can compare the resulting graph with the one in
Theorem 10.

Consider the complete graph K on q vertices, and label its vertices with m1, . . . ,mq , and label each edge with
the lcm of the labels of its vertices. Starting at i = 1, let Ki be the subgraph of K consisting of all vertices and
edges whose monomial labels have total degree ≤ i, and let Ui be a spanning forest of Ki, with the condition that
U1 ⊆ U2 ⊆ . . .. Let d be the smallest integer for which Ud is connected and contains all the vertices of K. We use the
notation TG for the tree Ud. Fløystad shows in [7] that TG supports a resolution of I .

We now show that a tree TB obtained using the algorithm in Theorem 10 is an instance of a TG as described above.
Suppose we have such a tree TB , and consider for every i its subgraph (TB)i consisting of edges and vertices whose
monomial labels have total degree ≤ i. Then (TB)i is a spanning forest of Ki, and we have the chain of inclusions
(TB)1 ⊆ (TB)2 ⊆ . . ..

Now suppose that the maximum degree of a vertex or edge label in TB is d so that TB = (TB)d. Then, if you drop
the edges and vertices with label of degree d, we have (TB)d−1 ( (TB)d = TB , which shows that TB is an example
of a TG.

In order to prove a converse statement to Theorem 10, we are going to need a couple of auxiliary results.

Lemma 14. Let ∆ be a simplicial complex with vertex set V = {x1, ..., xn}, let W = {x1, ..., xt} ⊆ V , and let ∆W

be the subcomplex of ∆ induced on W . If m1, ...,mr are the minimal generators of N (∆∨) then the generators of
N
(
(∆W )∨

)
are a subset of {gcd(m1, x1 · · ·xt), ..., gcd(mr, x1 · · ·xt)}

Before we begin it is worth noting that restricting to the first t vertices is notationally convenient, but the statement
will hold for any subset of V (just make an appropriate relabelling of the vertices).

Proof. If we present ∆ as 〈F1, ..., Fr〉 then the generators of N (∆∨) have the form mi =
∏

xj∈V \Fi

xj . We also know

that the facets of ∆W are subsets of the facets of ∆, so we can present ∆W as 〈F i1 , ..., F is〉, where {i1, ..., is} ⊆
{1, ..., r} and F ij ⊆ Fij . Since F ij = Fij ∩W we get that

W \ F ij = W \ (Fij ∩W ) = (V \ Fij ) ∩W

and the generators of N
(
(∆W )∨

)
are

mij =
∏

xs 6∈F ij

xs∈W

xs =
∏

xs∈V \Fij

xs∈W

xs = gcd(mij , x1 · · ·xt)

so mij ∈ {gcd(m1, x1 · · ·xt), ..., gcd(mr, x1 · · ·xt)}.

Remark 15. In the above proof we used the fact that there is a correspondence between the facets of ∆W and a subset
of the facets of ∆. If Fq is a facet of ∆ where q 6∈ {i1, ..., is} we still have that Fq ∩W is a face of ∆W . Therefore,
Fq ∩W must be a subset of some facet F ij of ∆W . With this information we can deduce that

gcd(mq, x1 · · ·xt) =
(

gcd(mij , x1 · · ·xt)
) ∏
xs∈Fij

\Fq

xs∈W

xs

7



This tells us that gcd(mq, x1 · · ·xt) ∈ N
(
(∆W )∨

)
. What this allows us to do is say that

N
(
(∆W )∨

)
=
(

gcd(m1, x1 · · ·xt), ..., gcd(mr, x1 · · ·xt)
)

With this fact we are able to prove the following corollary of Lemma 14.

Corollary 16. Let ∆ be a simplicial complex with vertex set V = {x1, ..., xn}. Let W = {x1, ..., xt} for some t ≤ n
and let S′ = k[x1, ..., xt]. Then

S′

N
(
(∆W )∨

) ∼= S

N (∆∨)
⊗S

S

(xt+1 − 1, ..., xn − 1)

Proof. Let m1, ...,mr be the minimal generators for N (∆∨). Remark 15 tells us that

N
(
(∆W )∨

)
=
(

gcd(m1, x1 · · ·xt), ..., gcd(mr, x1 · · ·xt)
)

which is the same as saying that we can form the generators of N
(
(∆W )∨

)
by taking the the generators of N (∆∨)

and setting the variables xt+1, ..., xn equal to 1. When we are using quotient modules we can do this by adding the
desired relations to the ideal by which we are taking the quotient. Specifically, what we mean is

S′

N
(
(∆W )∨

) ∼= S

N (∆∨) +
(
xt+1 − 1, ..., xn − 1

)
Moreover, we have that

S

N (∆∨) + (xt+1 − 1, ..., xn − 1)
∼=

S

N (∆∨)
⊗S

S

(xt+1 − 1, ..., xn − 1)

and we have our desired result.

With these additional results we are now able to provide a new proof the following theorem.

Theorem 17 (Herzog, Hibi, Zheng [8]). Let ∆ be a simplicial complex, then pd(N (∆∨)) = 1 if and only if ∆ is a
quasi-forest.

Proof. (⇐) Follows from Theorem 10.
(⇒) Without loss of generality let W = {x1, ..., xk}. Recalling Proposition 4, it is enough to show that ∆W has a

leaf to conclude that ∆ is a quasi-forest. Let F be the minimal free resolution

0 Sr−1 Sr S 0//// // //

of S/N (∆∨). The elements xt+1 − 1, ..., xn − 1 form an S/N (∆∨)-sequence, so we can construct the resolution

F⊗S
S

(xt+1 − 1, ..., xn − 1)

of S′/N
(
(∆W )∨

)
, where S′ = k[x1, ..., xt] (See Chapters 20 and 21 of [9] for further details). Since the length of

the resulting resolution is no greater than the length of F, we find that pd(N
(
(∆W )∨

)
) ≤ pd(N (∆∨)) = 1.

If pd(N
(
(∆W )∨

)
) = 0, then it must be the case thatN

(
(∆W )∨

)
= 0 which can only happen if ∆W is a simplex,

so it has a leaf.
If pd(N

(
(∆W )∨

)
) = 1, then Theorem 8 tells us that N

(
(∆W )∨

)
has a minimal resolution supported on a tree

T . Choose a labelling of the vertices of T for which the N
(
(∆W )∨

)
-homogenization yields a resolution, let ml be

the label of one of the free vertices of T and let mj be the label of the vertex which shares an edge with ml. For any
other minimal generator mi of N

(
(∆W )∨

)
we must have that mj

∣∣lcm(ml,mi) to ensure connectivity of the induced
forest generated by the lcm of ml and mi. In the proof of Theorem 10 we saw that

mj

∣∣lcm(ml,mi)⇐⇒ F l ∩ F i ⊂ F j

which is exactly the condition needed for F l to be a leaf of ∆W with joint F j . Hence, we can conclude that ∆ is a
quasi-forest.
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To sum up the results of this paper, we can make the following statement.

Theorem 18. Let I be a square-free monomial ideal in a polynomial ring S. Then the following are equivalent.

1. pdS(I) = 1

2. N (I∨) is a quasi-forest

3. I has a minimal free resolution supported on a graph-tree.
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