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The notion of a sequentially Cohen-Macaulay module was introduced by Stanley [?], fol-
lowing the introduction of a nonpure shellable simplicial complex by Bjérner and Wachs [BW].
It was known that the Stanley-Reisner ideal of a shellable simplicial complex is Cohen-
Macaulay (see [BH]). A shellable simplicial complex is by definition pure (all facets have
the same dimension), which is equivalent to its Stanley-Reisner ideal being unmixed. A non-
pure shellable simplicial complex, on the other hand, may not be pure, so its Stanley-Reisner
ideal may not be unmixed, and hence not Cohen-Macaulay. As it turns out, however, the
Stanley-Reisner ideal of a nonpure simplicial complex is “sequentially Cohen-Macaulay”
(Definition 1 below).

If the Stanley-Reisner ideal of a simplicial complex is sequentially Cohen-Macaulay, the
complex has Cohen-Macaulay pure subcomplexes (see Duval [D] Theorem 3.3, or Stanley [?]
Chapter III, Proposition 2.10). In the language of commutative algebra, this is equivalent
to all equidimensional components appearing in the primary decomposition of a square-free
monomial ideal being Cohen-Macaulay (see [F] for more details).

The purpose of this note is to establish that, more generally, this is what being se-
quentially Cohen-Macaulay means for any module. Below we use basic facts about pri-
mary decomposition of modules to study the structure of the submodules appearing in the
(unique) filtration of a sequentially Cohen-Macaulay module. The main result (Theorem 5)
states that each submodule appearing in the filtration of a sequentially Cohen-Macaulay
module M is the intersection of all primary submodules whose associated primes have a
certain height and appear in an irredundant primary decomposition of the 0-submodule of
M. Similar results, stated in a different language, appear in [Sc|; the author thanks Jiirgen
Herzog for pointing this out.

Definition 1 ([St] Chapter III, Definition 2.9). Let M be a finitely generated Z-
graded module over a finitely generated N-graded k-algebra, with Ry = k. We say that M
is sequentially Cohen-Macaulay if there exists a finite filtration

O=MyCcMyC...CM,=M
of M by graded submodules M; satisfying the following two conditions.

(a) Each quotient M;/M;_; is Cohen-Macaulay;
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(b) dim (M;/Mp) < dim (Ma/M;) < ... < dim (M,/M,_1), where “dim ” denotes Krull
dimension.

Before we begin our study of sequentially Cohen-Macaulay modules, we record two basic
lemmas that we shall use later. Throughout the discussions below, we assume that R is a
finitely generated algebra over a field, and M is a finite module over R.

Lemma 2. Let Qy,...,Q: P all be primary submodules of an R-module M, such that
Ass(M/Q;) = {qi} and Ass(M/P) ={p}. If Q1N...NQ: C P and Q; L P for some i,
then there is a j # i such that q; C p.

Proof. Let x € Q; \ P. For each j # 14, pick the positive integer m; such that
gz C Q.

So we have that
Mi—1 Mit1

ategy Qigt e gtrCOIN..NQCP
which implies that, since x ¢ P,

mi—1 Mit1
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and hence for some j # i, ¢j C p. O

Lemma 3. Let M be an R-module and N be a submodule of M. Then for every p €
Ass(M/N), if o 2 Ann(N), then p € Ass(M).

Proof. Since p € Ass(M/N), there exists © € M \ N such that p = Ann(z); in other words
pxr C N.

Suppose Ann(N) € p, and let y € Ann(N) \ p. Now ypx = 0, and so p C Ann(yz) in M.
On the other hand, if z € Ann(yz), then zyz =0 C N and so zy € p. But y ¢ g, so

z € p. Therefore p € Ass(M).
]

Suppose M is a sequentially Cohen-Macaulay module with filtration as in Definition 1.
We adopt the following notation. For a given integer j, we let

Ass(M); = {p € Ass(M) | height p = j}.
Suppose that all the j where Ass(M); # 0 form the sequence of integers
0<hi<...<h.<dim R
so that

Ass(M) = U Ass(M)p, .

We can now make the following observations.
Proposition 4. For alli=0,...,r — 1, we have

1. Ass(M;y1/M;) N Ass(M) # 0;



Ass(M)p, . € Ass(Miy1/M;) and c=r;
If o € Ass(M;41), then height o > h,_;;
If p € Ass(M;41/M;), then Ann(M;) € p;
M;1/M;) C Ass(M);
M,

s(
(Miy1/M;) = Ass(M)p,
(
(

S

r—1i’

NS & e

S M/M,) = ASS(M><h

As
As
As <hp_ii
8. Ass(Mjy1) = Ass(M)>p, ..

Proof. 1. We use induction on the length r of the filtration of M. The case r = 1 is
clear, as we have a filtration 0 C M, and the assertion follows. Now suppose the
statement holds for sequentially Cohen-Macaulay modules with filtrations of length
less than r. Notice that M,_; that appears in the filtration of M in Definition 1 is
also sequentially Cohen-Macaulay, and so by the induction hypothesis, we have

Ass(Miy1/M;) NV Ass(My—1) #0 for i =0,...,r—2
and since Ass(M,_1) C Ass(M) it follows that
Ass(Miy1/M;) N Ass(M) # 0 for i =0,...,r — 2.
It remains to show that Ass(M/M,_1) N Ass(M) # (.
For each i, M;_1 C M;, so we have ([B] Chapter IV)
Ass(M;) C Ass(Msy) C Ass(M;y) U Ass(Ma /M) (1)

The inclusion My C M3 along with the inclusions in (1) imply that
Ass(Msy) C Ass(M3) C Ass(Ma)UAss(Ms/Ms) C Ass(My)UAss(Ma /My )UAss(Ms/Ma).

If we continue this process inductively, at the i-th stage we have

ASS(Mi) - ASS(Mz;l) U ASS(Mi/Ml;l)
- ASS(Ml) U ASS(MQ/Ml) U ASS(M3/M2) U...uU ASS(Mi/Mi_l)

and finally, when i = r it gives
ASS(M) C ASS(Ml) U ASS(MQ/Ml) U ASS(Mg/Mg) U...U ASS(M/Mrfl). (2)
Because of Condition (b) in Definition 1, and the fact that each M;1/M; is Cohen-

Macaulay (and hence all its associated primes have the same height; see [BH] Chap-
ter 2), if for every i we pick g; € Ass(M;11/M;), then

he > height @¢ > height 1 > ... > height @,_1.

where the left-hand-side inequality comes from the fact that Ass(M;) C Ass(M). By
our induction hypothesis, Ass(M) intersects Ass(M;11/M;) for all i < r — 2, and so
because of (2) we conclude that

height ©; = he—i, and Ass(M)n,_, € Ass(M;11/M;) for 0 <i <r —2.

And now Ass(M)p, has no choice but to be included in Ass(M /M, _1), which settles
our claim. It also follows that ¢ = r.



2. See the proof for part 1.

3. We use induction. The case i = 0 is clear, since for every p € Ass(M;) = Ass(M; /M)
we know from part 2 that height o = h,. Suppose the statement holds for all indices
up to ¢ — 1. Consider the inclusion

Ass(M;) C Ass(M; 1) C Ass(M;) U Ass(M;1/M;).

From part 2 and the induction hypothesis it follows that if o € Ass(M;;1) then
height o > h,_;.

4. Suppose Ann(M;) C p. Since /Ann(M;) = [\ eags(ar,) €'+ We have
ﬂ o Cp
p'€Ass(M;)

so there is a g’ € Ass(M;) such that ' C p. But by part 2 and part 3 above
height ¢ > h,_;;1 and height = h,_;
which is a contradiction.

5. From part 4 and Lemma 3, it follows that
Ass(M;y1/M;) C Ass(M;41) C Ass(M).

6. This follows from parts 2 and 5, and the fact that M;,1/M; is Cohen-Macaulay, and
hence all associated primes have the same height.

7. We show this by induction on e = r —i. The case e = 1 (or i = r — 1) is clear, because
by part 6
Ass(M/M,_1) = Ass(M)p, = Ass(M)<p,.

Now suppose the equation holds for all integers up to e —1 (namely i = r —e+1), and
we would like to prove the statement for e (or i = r — e). Since M;1/M; C M/M;,
we have

Ass(M;11/M;) C Ass(M/M;) C Ass(M;11/M;) U Ass(M/M; 1) (3)

By the induction hypothesis and part 6 we know that
Ass(M/M;11) = Ass(M)<p, , , and Ass(M;1/M;) = Ass(M)y,

which put together with (3) implies that
Ass(M)p, ., € Ass(M/M;) C Ass(M)<p,_,
We still have to show that Ass(M/M;) 2 Ass(M)<p, . -

Let
p € Ass(M)<p,_,, = Ass(M/M;11) = Ass((M/M;)/(Mig1/M;)).

If ¢ O Ann(M;41/M;), then (by part 6)

0D ﬂ q = p 2 q for some g € Ass(M)y, _,
quss(M)hr

—1

which is a contradiction, as height p < h,_;_1 < height q.
It follows from Lemma 3 that o € Ass(M/M;).



8. The argument is based on induction, and exactly the same as the one in part 4, using
more information; from

Ass(M;) C Ass(M;y1) C Ass(M;) U Ass(M;11/M;),
the induction hypothesis, and part 6 we deduce that
ASS(M)>h

ZNpr—q41

C Ass(M;iq1) € Ass(M)>p, ., UAss(M),

r—17

which put together with part 4, along with Lemma 3 produces the equality.
O

Now suppose that as a submodule of M, My = 0 has an irredundant primary decompo-
sition of the form:

My=0= () @’n...nQY (4)
1<ji<r

where for a fixed j <7 and e < sj, ng is a primary submodule of M with
h; h; h; h;
Ass(M/Q¢”) = {pe’ } and Ass(M)n, = {1, -, s }-

Theorem 5. Let M be a sequentially Cohen-Macaulay module with filtration as in Defi-
nition 1, and suppose that My = 0 has a primary decomposition as in (4). Then for each

1=0,...,r—1, M; has the following primary decomposition
h; h;
1<j<r—i

Proof. We prove this by induction on r (length of the filtration). The case r = 1 is clear,
as the filtration is of the form 0 = My C M. Now consider M with filtration

0O=MyCcMyC...C M,=M.

Since M,_ is a sequentially Cohen-Macaulay module of length r — 1, it satisfies the state-
ment of the theorem. We first show that M, 1 has a primary decomposition as described
in (5). From part 7 of Proposition 4 it follows that

Ass(M/M,_1) = Ass(M)p,
and so for some /"' -primary submodules P of M (1 < e < s;), we have
M,y =P n...nph. (6)

We would like to show that Q" =P fore=1,..., 5.
Fix e = 1 and assume Q}l“ o 73{“. From the inclusion My C 73{“ and Lemma 2 it follows

that for some e and j (with e # 1 if j = 1), we have plgj - p;”. Because of the difference

in heights of these ideals the only conclusion is pgj = p’l”, which is not possible. With a
similar argument we deduce that Q" P fore =1,...,s;.

Now fix j € {1,...,r}and e € {1,...,s;}. If M, = Q) we are done. Otherwise, note
that for every j and gJZj -primary submodule QZj of M,

R
Qe’ N Mr—y



is a go?j—primary submodule of M,_; (as 0 # Ass(Mr_l/(QZj NMy_1)) = Ass((My—1 +
ng)/QZj) - Ass(M/QZj) = {pzj}) So My = 0 as a submodule of M,_; has a primary
decomposition

MoN M1 =0= () (QYNM_1)N...0(Q% N My_1).

1<j<r
From Proposition 4 part 8 it follows that
Ass(M,—1) = Ass(M)>p,
so the components Qi” N M, _1 are redundant for t = 1,..., s1, so for each such ¢ we have
hy 5
(N (@7 NM, 1) C Q' N M, 1.
QUi o)

If Q}elj NM._1 & Qi“ N M,_, for some e and j (with ng % Qi”), then by Lemma 2 for
some such e and j we have p];j - pi“, which is a contradiction (because of the difference
of heights).

Therefore, for each ¢ (1 <t < s;1), there exists indices e and j (with Qi # Q") such
that .
er N Mr—l g Q?l N Mr—l-

It follows now, from the primary decomposition of M,_; in (6) that for a fixed ¢
Phin...nPhngl c o
Assume Pthl g Q;”. Applying Lemma 2 again, we deduce that
pi C pi“, or there is t' # t such that p?,l C pi“.

Neither of these is possible, so P C Q" for all .
We have therefore proved that

M,y =900 n...ngM.
By induction hypothesis, for each i < r—2, M; has the following primary decomposition

h; h; h; h;
M; = ﬂ (Q7 NM,_1)N...N(Qs) N M,_q) = ﬂ QY N...nQJ
2<j<r—i 1<j<r—i

which proves the theorem.
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