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Abstract

We find a minimal generating set for the De Concini-Procesi ideals indexed by hooks, and
study their minimal free resolutions as well as their Hilbert series and regularity.

1 Introduction

In their study of the cohomology ring of the flag variety, De Concini and Procesi [DP], defined for
any partitiony, of n, an idealZ,, of the polynomial ringR = Q[z1,...,z,]. In particular, they
showed that the cohomology ring of the variety of the flags fixed by a unipotent matrix of ghape
may be presented as the graded quotient of the polynomiaRimgthe idealZ,,. The space?/Z,

is actually an interesting graded representation of the symmetric dgtgugnd it has been studied

from different points of view by several authors. Garsia and Procesi [GP], studied its graded charac-
ter and showed that it can be expressed in terms of Kostka-Foulkes polynomials. These polynomials
appear in the expansion of the classical Hall-Littlewood polynomials in the basis of Schur functions
[M2, Chapter 1ll], and were conjectured to have positive integer coefficients. The result of Garsia
and Procesi mentioned above, gave an elegant proof of this positivity conjecture. N. Bergeron and
Garsia [BG] showed that as symmetric group representationd} tig are isomorphic to certain
spaces of harmonic polynomials. Aval and N. Bergeron in [AB], and Tanisaki in [T] gave different
sets of generators for the ideB|. Finally, another important feature of ti$,-modulesk/Z,, is

that they led Garsia and Haiman [GH] to the definition of the doubly graded modules that appears
in the famous:! conjecture, recently solved by Haiman [H1].

Despite the space/Z,, having been extensively studied from the point of view of representa-
tion theory and combinatorics, no commutative algebra investigation of these objects has been done
so far. The goal of this paper is to begin that study. One of the strongest tools for finding numerical
informations about an ideal in a polynomial ring is finding its minimal free resolution. The resolu-
tion in particular produces all the numerical invariants that are described by the Hilbert function of
the ideal. Finding an exact description of the resolution for a general ideal is usually a difficult task,
there is a lot of research and numerous conjectures on this problem. However, when the partition
w1 indexing the De Concini-Procesi ideB| is a hook, we are able to produce a minimal generating
set forZ,, that we break into two parts. We show that one part forms an ideal with linear quotients,
whose resolutions are described by Herzog and Takayama [HT]. We then show that the second part
forms a regular sequence over the first part, and hence the resolution of this part is also well under-
stood. Below we describe this construction in detail, and compute the Ppisedes associated to
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such an ideal (i.e. the generating function encoding the ranks of the free modules appearing in a
minimal free resolution of the ideal). We also give a description of the Hilbert seriBg Df.

This paper is organized as follows. In Section 2, we give the basic definitions of partitions
and the language used in the paper. We introduce De Concini-Procesi ideals, and compute a new
generating set for them in the case of hooks; we show later in Section 4 that this generating set is
minimal. Section 3 contains a review of resolutions, Cohen-Macaulay rings, and the other commu-
tative algebra tools that we use in the paper. In Section 4 we study the resolutions of such ideals,
and conclude with the formula of the corresponding bigraded Pdirgeies. Finally, in sections 5
and 6, we compute the regularity and build the Hilbert series of the madgililg.

We hope that our exposition will appeal to readers not only in commutative algebra, but also in
combinatorics and invariant theory. This is why, throughout the paper, we review the background
material we need from each field to make the concepts accessible to a wider audience.
AcknowledgmentsAll the test examples that supported this research were run using the computer
algebra program Macaulay2 [DS]. We would like to thanks Francois Bergeron and Tony Geramita
for constant support and for useful discussions.

2 De Concini-Procesi Ideals

In this section, we introduce a family of ideals of the polynomial ridg= k[z1,...,x,] indexed

by partitions ofn. These ideals were first introduced by De Concini-Procesi [DP], as ideals of the
polynomial ring with rational coefficients. For our purpdseay be an arbitrary field of character-
istic 0. Let us start with some definitions and notation about partitions, that will be used in the rest
of this paper.

2.1 Partitions

We letP = {1,2,...}, andN = P U {0}. The cardinality of a se$ is denoted byS|. We define
a partition of n € N to be a finite sequenge = (u1, ..., 1) € N¥, such thath:1 wi = n and
u1 > ... > ug. If pis a partition ofn we write u - n. The nonzero termg; are calledpartsof .
The number of parts qf is called thdengthof 1, denoted by/(u).
The Young diagranof a partition(s1, ..., ) - n, is the diagram with:; squares in the'"-
row. We use the symbal for both a partition and its associated Young diagram. For example, the
diagram ofu = (5,4, 2, 1) is illustrated in Figure 1.

Figure 1: The partitiomn = (5,4,2,1)

For a partitionu = (u1, . .., i) denote theconjugatepartition i/ := (pf, . .., u3,), where for
eachi > 1, y is the number of parts qf that are bigger than or equal to The diagram of’ is
obtained by flipping the diagram @facross the diagonal.

b

Partitions of the formu = (a) andp = (1°) = (1,...,1), with a,b € P are calledone-row
andone-columrpatrtitions, respectively. More generally, a partition is said to bedkif it is of the
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formp = (a + 1,1%), witha, b € N.

Sometimes, it will be useful to denote hook partitions using a different notation. The hook
u = (a+ 1,1%) in Frobenius’s notatiorfM2, page 3] will be denoted by = (a | b). Note that its
conjugate ig/’ = (b | a). See Figure 2 for an example.

|
[ ]
n=(2]1) W=(1]2)

Figure 2: Frobenius notation

2.2 De Concini-Procesi ideals

From now on, we shall assume that a partitiomdfasn terms. So we will add enough zero terms
to any partition until we have the right number of terms. Let (u1,..., u,) be a partition ofr,
andy’ = (uf ..., ) its conjugate partition. For any < k < n, we define

Ok (1) o= pgy + Hppq + o g
Recall that for anyl < r < n, theelementary symmetric polynom[&t2] is defined by

er(x1,...,xp) = Z Ty iy + T

1<i1 <. .<ir<n

Given a subsef C {z1,...,z,}, lete.(S) be ther'™ elementary symmetric polynomial in the
variables inS. Clearly, every,.(S) is a homogeneous polynomial id of degreer.

We are now ready to introduce the ideals originally defined by De Concini and Procesi [DP].
We use a different and simpler set of generators which was defined by Tanisaki [T].

Definition 2.1 (De Concini-Procesi ideal).We letC,, denote the collection of partial elementary
symmetric polynomials

Co={er(S) | S C{mr,. . an}, |S|=k>1, k>r>k—0op(u)} @)

The De Concini-Procesi ideaf,, is the homogeneous ideal generated by the elementg,ah
symbols,

T, = (Cp).

Note thatj,, (1) = n, for any partitionu of n. Hence when we sét = n in (1), we obtain
thatZ, contains the ideal generated by the elementary symmetric polynomials in all the variables
X1y.eeyTp-

Example 2.2. Let u = (3,1,0,0) - 4 andy’ = (2,1, 1,0) be the partitions appearing in Figure 2.
Then(61(p), ..., 0a(p)) = (0,1,2,4). Hence

(1 - 51(/‘)7 co 4= 54(/‘)) = (L 1,1, 0)>



and the collectior,, consists of the following elements. Fbr= 1 there is no admissible,.(.S).
For k = 2 we get the set of monomials:

X1x2, T1X3, 14, L2L3, T2T4, T3T4.
Fork = 3:
T1T2 + X123 + Tox3, T1T2 + T1T4 + T2y, T1T3 + T1T4 + T3T4, T2T3 + ToZTg + T324,

T1X2T3, T1X2X4, T1TL3T4, T2L3T4.

Finally for k = 4, as already noted, we get the complete set of the elementary symmetric functions
er(x1, 9,3, 14), fOr 1 <r < 4.

When the indexing partitiop is a hook, the ideal,, can be split in two parts. We have the
following result.

Proposition 2.3 (Generators of De Concini-Procesi ideals indexed by hookd)ety = (a | b)

n be a hook. Then the De Concini-Procesi ideal associateddhe polynomial ringc[z1, . . . , 4]
is
IM - j,u, + (‘:'u7
where
T = @iy w1 <01 < <lipgr <) (2)

is the ideal generated by all square-free monomialsqin .. , z,, of degreeb + 1, and
Eu=(ei(wy,...,2n) [1 <0< D) 3)

is the ideal generated by all elementary symmetric polynomials of degréen the variables
T1y.enyTp-

Proof. The partitionu = (a | b) is of sizen = a + b+ 1. We can write

Then we have

and so

1—61(1),2 — 62(11), ..o ym— () = (1,2,3,....,b,b,....b,0).
( () 2(1) n () = ( )

a

The definition ofC,, in (1) implies that nd, with 1 < k < b, contributes a generator to the id&gl
The first index making a nontrivial contribution to the 8gtis k = b + 1, which adds t,, all
epr1(S), with |S| = b + 1, or in other words all the square-free monomials of degreel in the
variablesz, ..., z,. We denote byJ, the ideal generated by these square-free monomials.
Now all the indicesk, with b + 2 < k < n — 1 add toC,, elements of the forma,.(.S), with
k>r >b+1,and|S| = k. Each suche,(S) is a homogeneous polynomial of degreevhich



we can write as the sum of square-free monomials of degr&incer > b + 1, and all square-
free monomials of degrefe+ 1 or more are already if,,, suche,(S) do not contribute any new
generators td@,,.

Finally, for k = n we obtain all the elementary symmetric polynomials in all the variables. For
the same reasons as above, the only new contributions are

e1(x1y . xpn)ye2(T1, ..y Tpn)y ey (X1, Tp).

We denote the ideal generated by these elementary symmetric polynomigls\e conclude that
Ty =T+ & O

Example 2.4. Let u = (2 | 1) F 4. It follows from the computations in Example 2.2, that the ideal
Z,, splits into two parts

7, = (122, T123, T124, T2X3, T2L4, T3T4) + (X1 + T2 + T3 + 24).

The first part is generated by all monomials of degree 2 in the variahles, x3, x4, and the
second is generated by(z1, x2, z3, x4), the elementary symmetric polynomial of degree 1.

3 Commutative algebra tools

Let R = k[x1,...,x,] be a polynomial ring over a fielél of characteristic 0, with the standard
gradingdeg x; = 1, for all i. Letm = (x4, ..., x,) be the (irrelevant) homogeneous maximal ideal
of R. We are usually interested in the quotie¢ht= R/I where! is an ideal ofR generated by
homogeneous polynomials. In this situatidhinherits the grading and the irrelevant maximal ideal
from R via the quotient map. Much of what we discuss below will be in this context, but applies
more generally to local rings.

3.1 Resolutions

Resolutions provide us with an effective method to study a finitely generated médula a
sequence of free modules mapping to it. Among the many applications, the ranks of these free
modules, also known as “Betti numbers”, are numerical invarianté/ahat make it possible to
compute the Hilbert function of\/ directly. There is a large amount of literature focusing on
different aspects of resolutions, studying them using homological, geometrical, or combinatorial
tools. We refer the interested reader to [E2], [He] or [BH] to learn more about current research in
this field. Eisenbud’s book [E2] in particular contains a beautiful exposition on the history of the
subject.

Definition 3.1 (Minimal free resolution). A free resolutiorof R/I is an exact complek

& & 05— [ 0 6
0— - Sk F = 2 SR R/II—O0.

of free R-modulesF; (Fy = R). The resolution isninimalif ¢;(F;) C mF;_; fori > 0.

It is worth noting that the difference between the resolution of the ifiéas anR-module), and
the resolution of the quotieri?/I is just the one free modul&y: given the above resolution for
R/1I, the resolution for is the following:

di ; i
0—>~--11>Fii>Fi_1l—1>~--ﬁ>F1i>I—>O.



In this paper, we will always be considering the resolutioRgf .

It follows from the Hilbert Syzygy Theorem [E2, Theorem 1.1] that the length of a minimal
free resolution ofR/I is finite; i.e. F; = 0 for i > n, wheren is the number of variables iR
(the resolution could stop even earlier, there are formulas to compute the length of a resolution). A
minimal free resolution of?/1 is unique up to isomorphism [E1, Theorem 20.2].

If each F; is a free module of rank;, the resolution of?/1 is

02
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0 — ROm Omy Rm—r Omot DR RIT 0. (4)

The3; are called théetti numberof R/I; these are independent of which minimal resolution one
considers.

In the case wheré is a homogeneous ideal, and theref&# is graded, we define thgraded
Betti number®f R/I. This is done by making the mapshomogeneous, so that they take a degree
j element ofF; to a degreg element ofF;_;. To serve this purpose the degree of each generator
of F; is adjusted. So we can write the free modBje= R% as

Rﬂz_@R :sz

where for a given integer, R(a) is the same a® but with a new grading:
R(a)d = Ra+d-

So the resolution shown in (4) becomes

0—>EBR j)oma 2, EBR om-ts L B EBR )i 2 R 2 R/ 0. (5)

This is called thegraded minimal free resolutioof R/1, and thes; ; are thegraded Betti numbers
of R/I. Clearly,) " 8;; = Bi.
J

Definition 3.2 (Bigraded Poincag series). Thebigraded Poincag seriesof an ideall is the gen-
erating function for the graded Betti numbers/of

PR/I Q7 Z/B’L,]q tj

Definition 3.3 (Linear resolution). The graded resolution described in (5) ikreear resolution if
for someu, ; ; = 0 unlessj = u + ¢ — 1. In other wordsR/I has a linear resolution if for some
u, it has a graded minimal free resolution of the form

0 — R(—(u+m — 1))Pmutm=1 2m R (y 4+ — 2))Pm-tauwtm-2

6777.—1
—_—

O R(—(u + 1))t 25 R(— ()P 2 R 2 R/T — 0.

In this case, all the generators of the idé&lave degree equal to



Discussion 3.4 (Resolutions using mapping coneshe mapping cone technique provides a way
to build a free resolution of an ideal by adding generators one at a time. A resolution obtained using
mapping cones is not in general minimal. However, we will be focusing only on the special case of
multiplication by a honzerodivisor, in which case we obtain a minimal free resolution. For a more
general or detailed description, see [Sc], [HT], or [E2].

Suppose thaf is an ideal in the polynomial ring, ande € m is a nonzerodivisor i/ I (i.e.
e is a regular element mofl see Definition 3.8). The goal is to build a minimal free resolution of
R/I + (e) starting from a minimal free resolution &/I. Consider the short exact sequence

0— R/I:(e) =% R/T — R/I+ (e) — 0

where! : (e) is the quotient ideal consisting of all elements R such thatce € 1. Sincee is a
nonzerodivisor ink/I, we havel : (e¢) = I, and so our short exact sequence turns into

0 — R/I - R/I — R/I+ (e) — 0.
Suppose we have a minimal free resolutiorRyfl

U= 7 TN U . NN (LN ) g} (6)

Then we can obtain the following minimal free resolutionffl + (e)

0—7"'di—+l>Fz‘i>Fi_1di—_l>"‘£>F1LR&R/I—F(G)—)O @)

where for each > 0, as a freeR-module
F,=A; & Ai—1 andd;(z,y) = (ey + d;i(x), —0;—1(y)).
The resolution is minimal because far, y) € A; @ A;—; ande € m, we have
ey € mA;_1, 6i(x) € mA; 1, §i—1(y) € mA; o => d;(z,y) € mF;_1.

We now focus on the grading of eaé¢f. Suppose that the element R is homogeneous of
degreemn, and for eachi, each of the free modules; in (6) are of the form

A; = P R(=j)™
J
where thes; ; are the graded Betti numbers. We would like to compute the graded Betti numbers
of R/I + (e).

Lemma 3.5. Let I be an ideal of the polynomial ring, ande € m a homogeneous element of
degreem which is a nonzerodivisor ik /I. Consider the minimal free resolutions (6)®f I, and
(7) of R/I + (e) obtained by mapping cones. For eack 0 we have

F=@ R © @R - m)
J J

Proof. We prove this by induction oh In the case wheré= 1, we have the homogeneous map

di:A ®R— R



whered; (z,y) = ey + d1(x). In particular, ifz € A; is a homogeneous element of degtethen
dy(z,0) = 01(x) is also a degreehomogeneous element &f If y € R is a homogeneous element
of degreet, thend; (0,y) = ey has degree + m. In order to makel; a homogeneous (degree 0)
map, we shift the grading of the componétof F; by m, so that

@R §)Pvi @ R(—m).

Suppose our claim holds for all indices less thaand we have the homogeneous map

d F A®A11—>E1—@R Bllj@@R ]_ /812]
J

We use the same argument as we did in the case=ofl. If x € A; is a homogeneous element
of degreet, thend;(z,0) = d;(z) is also a degree homogeneous element df,_;. If y € A;_;

is a homogeneous element of degteéhend;(0,y) = (ey, —d;—1(y)) has to be a homogeneous
element ofF;_; of degree. By definition, this is already true for the componént; (y), butey has
degreem + t. So in order to maké; a homogeneous (degree 0) map, we have to shift the grading
of each component df; that comes fromd; _; by m, so that

Fy = @R %@@R —j —m)Pi—1a,

O]

Corollary 3.6. Let!I be an ideal of the polynomial rin§ ande € m be a homogeneous element of
degreem which is a nonzerodivisor if /1. Then

Prirye)(q,t) = (1 +qt™)Pr/1(q,t).

bi
Proof. By Lemma 3.5, if for a fixed, A; = @5 R(—j)" then
7=0

b;
F?, R /BLJ@@R ]_ 61 1J

Jj=0

So we have

PR/I+(e) Q7 =1+ Z 2/81 jtj + Zﬁz 1,jt]+m qi

z>1 7=0

= Z Z Bitlq + " Z Z Bitl g™

i>0 j=0 i>0 j=0

b;
= (1+qt™) Z Z Bit'qd

i>0 j=0

= (1+qt")Pg/1(q,1).



3.2 Krull dimension, Cohen-Macaulay rings, minimal primes

A minimal prime ideal (with respect to inclusion) containihg called aminimal primeof 7. Given
any ideall of R, theKrull dimensionor dimensiorof the quotient ringR/I is equal to the length
of the maximal chain of prime ideals containifg

PoCpr1C--Chpr

(here,pg is a minimal prime off). Theheightof a prime ideap is the maximal length of a chain of
prime ideals

P=pPoOpP1D Dby,
and the height of a general ideais the smallest height of its minimal primes.

Example 3.7.If I = (zy,zz) C R = k[z,y, 2], then the minimal primes of are(x) and(y, z).
In this caseheight I = 1 (as(z) D (0) is a maximal chain) andim R/I = 2.

Definition 3.8 (Regular sequence, depth, Cohen-Macaulay)l.et R is a polynomial ring with
standard grading, antla homogeneous ideal &. ConsiderS = R/I with homogeneous maximal
idealm. A sequencey, ..., y,, of elements inn is aregular sequencef S if
(I) (ylavym)S#Sy
(i)  y1 is anonzerodivisor ity
(i)  y; is a nonzerodivisor it%/(y1,. .., yi—1)-
The length of a maximal regular sequenceiis called thedepthof S.
In general, the depth &f is less than or equal to the dimension$fbut in the case equality is
obtained, i.edepth (S) = dim (.5), the ring isCohen-Macaulay

For more on dimension theory and on the theory of Cohen-Macaulay rings, see [E1], Appendix
A of [BH], or [V].

We will need the definition of the dual of a square-free monomial ideal. This is the same as
Alexander dual, but we state the (equivalent) definition in a slightly different language (see [F]
for more). Recall that anonomial idealis an ideal generated by monomials, andcaare-free
monomial ideal is an ideal generated by square-free monomials in the variables, z,,.

Definition 3.9 (dual of an ideal). Let I be a square-free monomial ideal in the polynomial ring
k[z1,...,x,]. ThenIY is a square-free monomial ideal, where each generatbf &f the product
of the variables appearing in the generating set of a minimal prinie of

Note that if/ is a monomial ideal, its minimal primes are generated by single variables.

Example 3.10.If I = (zy,zz,yzw) C k[z,y,z,w], then the minimal primes of are (z,y),
(z,2), (z,w)and(y, z). SoIY = (zy, vz, 2w, y2).

Recall that if/ and.J are two ideals of?, their quotientis the ideal defined as
I:J={zeR|xJCI}.

Definition 3.11 (linear quotients). If I C k[x1, ..., z,] is a monomial ideal and'(!) is its unique
minimal set of monomial generators, théfs said to havdinear quotientsf there is an ordering
My, ..., M, onthe elements af/(/) such that for every = 2, ..., ¢, the quotient ideal

(Ml, .. ‘7Mi—1) : Ml

is generated by a subset of the variables. . . , x,,.



Lemma 3.12. Let be an ideal in the polynomial rin® = k[x1, ..., z,] generated by all square-
free monomials of a fixed degree Then

1. I has linear quotients;
2. R/I has alinear resolution;

3. R/I is Cohen-Macaulay.

Proof. We can order the generating monomials/déxicographically as\/y, ..., M,. Take such
a monomialM; = z;, ...xj,, written so thatj; < j» < ... < jm. Since(M,...,M;_q)is a
monomial ideal, and/; is also a monomial, the quotient idg@l/y, ..., M;_1) : M; is generated

by monomials. Observe that

1. If s < j, forsomej; € {j1,...,Jm}ands & {j1,...,jm}, thenzs € (My,..., M;_1) : M;.
This is because the monomi&Z is a degreen monomial that is lexicographically smaller
t

i

thanM;, that |szM e {My,...,M;_1}.

2. If wis a monomial in(My, ..., M;_1) : M;, thenM; | uM; for somel < i. SinceM; <je,
M;, there exists, such thates | M;, x5 1 M; ands < j; for somej; € {j1,...,Jm}-

It follows thatz, | v, and(M,..., M;—1) : M; is generated by the set of variables with
s < jmands ¢ {ji1,...,jm} as described in part 1. This proves tlidtas linear quotients.

Since the generators df all have the same degree, and sirdchas linear quotients, it also
follows thatR/I has linear resolution (Lemma 5.2 of [F]).

Now we focus on the structure éf. Since every generator dfhas exactlyn variables, each
such generator misses exaotly- m variables from the sdty, ..., z,}. Soif Aisanyn —m+1-
subset of{ x4, ..., x,}, A must contain at least one variable from each oftie Also no proper
subset ofA will have this property (i.e.A is the minimal set with such a property). Sbis a
generating set for a minimal prime éf Since all minimal primes of are generated by subsets of
{z1,...,2,}, it follows that/" is generated by all square-free monomials of degreem + 1.

So we have shown thdt’ satisfies the hypotheses of our lemma, and hence it satisfies parts 1
and 2. In particularR/I" has linear resolution, and so by Theorem 3 of [ER], equivaleRtly, is
Cohen-Macaulay.

O

4 Resolutions of De Concini-Procesi ideals of hooks

In this section we study the minimal free resolutions of the De Concini-Procesiigezfla hook
w1 = (a | b). We have seen thdi, is the sum of two ideals

IM:jM+gM

where J,, is generated by monomials, ady is generated by elementary symmetric functions.
Below we show how we can recover the resolutiorZpfusing the resolutions of each one of the
summands.

SinceJ, is generated by all square-free monomial&of k[z1, ..., x,] that have degrele+1,
by Lemma 3.127, is a Cohen-Macaulay ideal with linear resolutions and linear quotients. On the
other hand, it is easy to see that all the minimal primegjphave uniform height: — b. This is
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because every generator@f is a product of exactly + 1 variables in the sefz1, ..., z,}, and so

a minimal subset ofz1, ..., z,, } that shares at least one variable with each one of these generators
must haven — b elements. Such an ideal will have height equahte b, and so it follows that
dim R/J, = b.

We have thus shown that

Corollary 4.1. For ahooku = (a|b), the ideal7, of R has linear quotients, linear resolution, and
R/J, is Cohen-Macaulay of (Krull) dimensidn

Next, we focus on the ided],, which is generated by the firselementary symmetric functions.

Proposition 4.2. For a hooku = (a | b), the set of generators

e1(X1, oy Tn)y ey ep(XT1,. .o, Tp)
of £, form a regular sequence over the quotient riRg.J,,.

Proof. LetS = R/J,,. We know by Corollary 4.1 tha is a Cohen-Macaulay ring, anlim S = b.
To show thaty (z1,...,2,),. .., e(x1,. .., z,) forms a regular sequence f) by Theorem 2.1.2
of [BH], it is enough to show thatim S/&,, = 0. We prove this by induction. Let = ((a — 1) | b)
andfi = (a | (b — 1)) be two hooks consisting of — 1 squares. Notice that

To see this, split the generating set0f into two sets:G consists of all those generators that
do not contain the variable,, andG is the rest. S@7 consists of all square-free monomials
of degree + 1 in the variablesy, . . ., z,—1, which is by definition the generating setgf.

Similarly, if we factor out the variable,, from each monomial ir&7, we will be left with all
square-free monomials of degrieim the variables:, . . ., x,,_1, which by definition generate
the ideal7;.

2. Since every termim;(z1, ..., zy) is a square-free monomial of degrgeve can partition all
such monomials into those that containand those that don't. It is then easy to see that for
everyi,

ei(ml, ce ,l’n) = ei(l‘l, c. ,l’nfl) + l’nez;l(l‘l, c. ,l’nfl).

It follows that

_ k[l’l, N ,.%'n] ~ k[.ﬂ:‘l, e ,:L'n_l]
EH—F(JJTL) jp,“‘g“‘i‘(xn) jﬁ+gﬁ
and so by the induction hypothesis,
S
dim — = 0. 8
im .+ (@) 0 (8)

It follows thatdim S/€, = 0 or 1.
Now suppose thatim S/€, = dim R/(J, + &,) = 1.
So it follows that there is a prime ideglof R such that

Sinceyp is a prime ideal and every monomial generatog/pfbelongs ta, at least one variable
of R has to be irp; say,z,, € p (the equality (8) that we shall use holds if one replacgsvith any
other variable inR). But then

T+ &+ (xy) SpCm

11



but this contradicts the fact that

. k[xl,...,:cn}
dim ——————— =0
T &t (an)

We are now ready to state our central claim.

Theorem 4.3 (Main theorem). Let » = (a|b) be a hook. Then the bigraded Poinéaseries for
the idealZ,, is the following

b
Prz,(q,t H 1+ qth) - (1 + qt**? Z ( > (1+qt)’ ) 9)

Proof. As usual, letZ,, = J,, + &,..

Step 1.The ideal 7, has linear quotients (Corollary 4.1). It follows from Corollary 1.6 of [HT]
that, if G(J,,) indicates the generating set fgf,, the bigraded Poincarseries of7,, is the

following:
Pz (a.t) =14 3 (1+qt)Fetigresthd (10)
MeG(Tu)
where, if we order the elements 6f(7,,) lexicographically as\My, ..., M,, then fori =
1,...,m

5et( ) = {j € {1 TL} ‘ T € (Ml,...,Mifl) : MZ}

In our case, as the degree of each of the monomials gene(@ingb + 1, Equation (10)

turns into
Prig.(g:t) =1+ Z (1 4 qt)lsetODlggb+1
MeG(Ty)

(11)

-1+ qtb+1 Z (1 +qt)|set(M)|‘

MeG(T,)

So now we focus ofset(M;)| for M; € {M;, ..., M,}. Suppose\l; = - x4, ,, Where
i1 < ...<idpy1. TheneachV e {M;,..., M;_ 1} is of the formM = xul~ Ty, WIth

ur < ... < upy1, @andM is lexicographically smaller thaf/;. So the relationship between
the indices is such that

up < 11 or ifuy =d1,...,uy =174 thenul+1 < 441-
So by an argument identical to that in the proof of Lemma 3.12

set(Mj) = {u <n | Ty € (Ml, ce 7Mj—l) : M]}

={u <idpi1 | zu t M;}.

We can now conclude that
|set(Mj)| = lpp1 — (b + 1). (12)

12



We have shown that, it/ is any degreé + 1 square-free monomial with highest index
(thatis,x,, | M andz, { M for v > u), then|set(M)| = u— (b+ 1). So to compute the sum
in (11), all we have to do is count the number of square-free ddgreé@ monomials with
highest indexu, for any givenu. This number is clearl)(“‘l) So for a given;, the number
of degreeb + 1 square-free monomiale with |set(M)| = i is exactly(*}?).

Therefore
n—b—1

b .
Ppg,(q:t) =1+qt"™ Z ( +7’> + qt)"
(13)

=1+ tb“Z( ) 1+ qt)°

since by Equation (12),can reach at most — b — 1, which by definition is equal ta.

Step 2.Since &, is generated by a regular sequence okg(7,, (Proposition 4.2), we can use a
mapping cone construction to find its minimal graded resolution (see Discussion 3.4). We
do this by adding the generators&f, one at a time, tq7,, and applying Corollary 3.6. As

the generators (z1,...,2,),...,ey(z1,...,2y,) Of £, have degrees, . .., b, respectively,
each time we add &(z1, . . ., z,,), the Poincak series gets multiplied by a factor @f+ ¢t*),
and hence

b

k=1

f[(Hqt’“ (+qtb“z< >1+ t)) (from (13)).
k=1

O]

Corollary 4.4 (The set of generators ofZ,, is minimal). Lety = (a|b) be a hook. The generating
set forZ,, described in Proposition 2.3 is minimal.

Proof. The number of generators 8f, is by definition(,"',) + b. On the other hand, the minimal
number of generators dj, is the first Betti numbeg; of R/Z,,, which is the coefficient of in the
Poincaé series’z7, (¢, 1). It is easy to see by Theorem 4.3 that this coefficient is

‘L /b+i
b+1 )
+1+4 ; ( ) >
So all we have to show is that
n b+
b=b+1

(o) romes+ (1))

which is equivalent to showing that

n—b—1
n b+1
(i) =2 (0)
This last equation follows easily from induction en O
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4.1 Combinatorial interpretations

From Theorem 4.3 it can be seen that the Poiacaries ofZ,, can be defined recursively. For
simplicity, for any hooky = (a | b) we denote byP.; (q,t) the bigraded Poincérseries
PRz (¢,t), and byP,)(¢) the nongraded PoinoéaseriesPR/I(aw (g,1).

We start with the vertical partitio0 | b). In this case the idedl, is generated only by
the elementary symmetric functions; the quotientZgfis the coinvariant algebra, a well-known
representation of the symmetric group (see e.g., [Hu]). The nongraded Rogeras in this case
is

g
= Popy(a) = (1+ )"t
L]

Using Equation (9), by subtracting(,_,;)(¢) from P, (q), we find that the nongraded
Poincaé polynomial ofu satisfies the following recurrence:

a+b o
Plajny (@) = Pla-1p)(a) + ( . )q(l +q)*t.

This recursion allows us to compute the nongraded Poénpalynomial of(a | b) by adding
one cell at a time to the first row of the vertical partiti@n| b)

a Py (@) = (1+ )" (1+ <ng 1) 0)

= Pl (q) = (1+Q)b+1<1+ <ng1>(]+ <bz2>Q(1+Q))a

until we reach the hooka | b), which gives us

Py (@) = (14" (1+ qza: (b N Z) (1+90).
=1

The graded Poincarpolynomial satisfies a similar recurrence:

b1
Popy(g,t) = [J (1 + qt*)
Pt

b

b+a a

P (at) = Pu-sfart) + T+ at) - et (0 7)o any
k=1

Once again, like the nongraded case, one can use this recurrence t&hyijld, ¢) starting from
Popp) (g: 1)

14



Now we turn to the question of a combinatorial interpretation of the coefficigntsf ;) (g, ).
In the case of the vertical partitiof® | b) such an interpretation is given by Cauch#binomial
theorem, which states that

n n
[[+ath) =3¢ (Z) .
k=1 k=0

are thet-binomial coefficients which have many interesting combinatorial interpretations ([St1]),
and

Here

[l = [ [2]e - [l with [l o= 14t 4.+, (14)

The following question begs to be answered: in general, is it possible to find a combinatorial
interpretation for the graded Betti numbers of the De Concini-Procesi ideals?

5 Regularity of Hooks

Definition 5.1 (Castelnuovo-Mumford regularity). Let I be anideal of & = k[x1,...,z,]. The
Castelnuovo-Mumford regularitgr simply regularity of R/I, denoted byreg(R/I) is defined as
the maximum value of of — i where the graded Betti numbgy; # 0 in a minimal free resolution
of R/I.

Corollary 5.2 (Regularity of hooks). Lety = (a | b) be a hook. Thereg(R/I) = b(b+ 1)/2.

Proof. The graded Betti numbeys; ; appear as the coefficients of the Poirgcaeries

b
PR/Iu q7 H —|—qtk (1 + qtb+1 Z < > 1 + t) )
k=1

Factor 1 Factor 2

So the question is to find the tergf¥’ in this polynomial, where the coefficie ; is nonzero and
j — 1is maximum. The terms with nonzero coefficients in each factor are of the following forms:

Factor 1: ¢™m¢b1++bm  wherel <b; < ...<by, <b, 0<m <b,
Factor 2: ¢¢t't¢t*1  where0 < e < a.

b(b+ 1)

To show thateg(R/I) = , we need to show that this bound is achieved by the possible

choices ofj — i, and is the maximum possible bound.
Consider the terms in Factor 1. We have

bit...+bym—m < ((b—(m—l))+(b—(m—2))+...+b)—
= (@24 40— (1424 .+ (b =m) - m

_bb+1)  (bmm)b-m+1)

2 2

_bb+1).
- 2

15



Similarly, for terms in Factor 2, sinde> 0, we have

b(b+ 1)
T

For the product of a term in Factor 1 and a term in Factor 2 we have

et+b+1—(e+1)=0b<

bi+...+bp+e+b+1—(m+e+1)
=bhi+...+b,+b—m

< bo+1) _(b=—mb-—m+1) +b—m same argument as above

- 2 2
b(b+1) b—m+1
= —(b— — -1
5 (b—m) < 5 )
b(b+1 b—m—1
_ D <m>
2 2
1 .
< b(b; ) sincem < b.
The bound is achievedif. = b, sothath; = 1, ..., b,, = b, and for any, so that we have the term

with nonzero coefficient

eb+1 (1 b)tetbl _ petbt1, 205D petpi

q =4q

b(b+ 1)
2

which clearly has the property that- i = , as desired. O

6 The Hilbert series of hooks

The goal of this section is to find the Hilbert series/dfZ,, wheny is a hook partition, namely, the
series

hiyz, (@) = dim k(R/T,)sq°,

s=0
where as usualim ; means dimension as a vector space @verhis has been done in the general
case of a partitiom = (u1, ..., u,) of n by Garsia and Procesi. In [GP], they provide an explicit
basis fork/Z,, as aQ-module, from which it follows that
dimg(R/Z,,) < " ) (15)
1 = .
© : By B

and

hiyz,(0) = Y Kau1/a) 4. (16)

AFn

Here, f* andn(p) are two well-known parameters associated with partitions ([St2]),k0d )

are the Kostka-Foulkes polynomials we referred to in the introduction ([LS]). The computation of
K>, (q) is somewhat complicated. This motivates us to use the results of this paper to give a new
description of the Hilbert series in the case of hooks.
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Let u = (a|b) be a hook partition of,, and consider the idedl, = J,, + &,,. SinceR/J, is a
Cohen-Macaulay ring (Corollary 4.1), and the generato(s, ..., z,),...,ey(z1,...,2,) Of &,
form a regular sequence ovAy 7, (Proposition 4.2), it follows that (see [V] Theorem 4.2.5)

b
hyz, (@) = [[(1 = ¢)hryz,(a). (17)

=1

So we focus on finding.r, 7, (¢). Recall thatJ, is generated by all square-free monomials
of degreeb + 1 with variables in{x1, ..., z,}. So each graded pie¢®&/J,); is generated by all
monomials of degree, involving c of then variables withc < b. There are(’cL) ways of choosing
variables from{z1, ..., z,}. Choose such a monomial, without loss of generality,

Gc

ai
)t e

We need to choose the positive integeys. . . , a. such thati; + ... + a. = s.
This is classically equivalent to insertirg- 1 bars between the sequence of integers .., s,
as below:
L..o,a1|ar+1,...;a1+az] ... [(ar+ ...+ aec—1)+1,...,s.

What we are doing here is choosiag- 1 of the s — 1 available slots, and there af& |) ways
of doing that. So we have

hryg,(q) =1+ izb: <Z> (Z: 1) q°

s=1c=1

Therefore, by Equation (17)

hryz,(a) = f[u ) (1 S ()(;2 1)q)

On the other hand

() -2 ()

s—1 s=c
_ qi (0= =)
— qci <(8 - Cij_L ic - 1))418_‘3 because <Z J;‘7> = <ZJ;]>

J=0
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So

where[b],! is described in (14) above. So we have proved that
Proposition 6.1. Let . = (a | b) be a hook partition ofi. Then

b

n —cC
ez @) = Bt Y- ()1 -0 (19
c=0
Note that if we sety = 1 in (18), we find that
. n! n!
dim ,(R/Z,) = CES T

as was expected by Formula (15).
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