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Abstract

We introduce a new closure operation on sets of ideals in a commutative Noetherian ring of
characteristic p, called the blowup closure. We develop the theory of this operation and prove
that given a set of ideals in a Noetherian ring of characteristic p, under mild conditions, the
tight integral closure of this set agrees with the blowup closure of certain extensions of those
ideals in an extension of the original ring. We then use properties of blowup closure to settle
open questions on tight integral closure posed by Hochster in [Ho2]. In particular, we show that
under mild conditions on the ring, tight integral closure persists under ring maps, and that it
commutes with localization if and only if tight closure does.

In [Ho2] Hochster defined an operation on a set of ideals in a commutative Noetherian ring of
positive characteristic : tight integral closure (or TI closure). This operation mixes the ideas of
tight and integral closure in the sense that one can describe the tight closure or the integral closure
of any given ideal as the T'I closure of a certain set of ideals. Using this operation, Hochster was
able to prove a Briancon-Skoda type theorem for sets of ideals in a regular ring which significantly
improved the original tight closure version in [HH1]. However, it turned out to be very difficult to
verify basic properties of TT closure, even though from the definition one would expect most of the
properties of tight closure to generalize to T'I closure.

In this paper we introduce the blowup closure of a set of ideals which has the advantage that one
can reduce its study to the case where all the ideals are principal. In practice, this is the simplest
case in which one can work with several ideals at the same time. Moreover, we show that under
mild conditions, T'I closure can be described as a blowup closure in a larger ring (Corollary 3.5).

Consequently, we show that the T'I closure of a set of ideals can be expressed as the tight closure
of one ideal in an extension ring of the original one. We apply this fact to address the questions
on TT closure that were stated in [Ho2]. We settle the question of persistence of T closure under
ring maps (Theorem 3.4), and show (Theorem 3.6) that TI closure commutes with localization if
and only if tight closure does.

We also develop a theory of test elements for T'I closure in Section 3.3. Test elements are the
key ingredients for tight closure arguments, and the existence of test elements is one of the most
important results in tight closure theory (see [HH2] or [HH3]). However, this notion does not exist
for integral closure, and so we alter the traditional definition of test elements in tight closure theory
to make sense of test elements for T'I closure. T'I closure test elements, unlike those in tight closure,
depend on the ideals that one works with. In Theorem 3.12, we describe specific test elements for
the T'T closure of a set of ideals in an affine algebra, via a similar result of [HH2] for tight closure.
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This result produces an easy method for calculating T'T closure test elements when the defining set
of equations for the algebra is known.

In Section 3.4 we define test exponents for T'I closure (see [HH4] for this notion in tight closure
theory) and show that the existence of test exponents in T'I closure is related to the problem of
T1 closure commuting with localization. The final section of the paper deals with T'I closure in
characteristic zero.

Acknowledgments. The contents of this paper are part of my PhD thesis at The University of
Michigan. I am grateful to Karen Smith and Mel Hochster for their guidance during the preparation
of the thesis.

1 Basic Definitions

In all the discussions, we assume that all rings are commutative with identity. When we refer to a
ring of characteristic p, we mean p is a positive prime integer.

Notation. If Ris a ring, then 2 € R° means that z is an element of R that is not in any minimal
prime of R, and M(R) is the set of all minimal primes of R. By R’ we mean the normalization
of R (see Definition 1.1). When R has prime characteristic p, ¢ is a power of p, and I is an ideal
of R, I'Y denotes the ideal generated by the gth powers of the elements of I. In particular, if I
is generated by z1,...,a,, then I'9 is generated by z19,...,2,9. For a graded ring S and f a
homogeneous element of S, by S(;) we mean the zeroth graded piece of the localized ring Sy, i.e.,

Sy = (S¢)o-

1.1 Integral Closure

Definition 1.1. Let R be a Noetherian ring, and let py, ..., p,, be the minimal primes of R. Then
we define the normalization of R, denoted by R/, to be

(R/p1) % ... x (R/pm),

where for i = 1,...,m, (R/p;)’ is the integral closure of the domain R/p; in the field of fractions
of R/pi.

We refer the reader to [M] or [BH] for basic properties of integral closure of rings and ideals.
We state some well-known facts on integral closure that we will use later in this paper; for written
proofs we refer the reader to [F].

Proposition 1.2. Let R be a reduced Noetherian ring, and let p1,...,pm be the minimal primes
of R. Then:
(a) The minimal primes of R' are pi*, ... pnt, where for 1 < i< m,

P = (R/p1) X ... x (R/pic1) % (0) X (R/pis1) X ... X (R/pm)';
(b) B [pit = (R/pi) , for alli.
We next focus on the notion of integral closure of an ideal.

Definition 1.3. For a ring S and an ideal J of S, the integral closure of .J in S, denoted by .J, is
defined as the set of all all z € S that satisfy an equation of the form "ta;z" .. 4a,_12+a, =0
where a; € J?, i = 1,...,n; or equivalently, the set of all z € S for which there exists a ¢ € S that
does not belong to any minimal prime of S, such that ca™ € J" for all positive integers n ([Ho2] 1.2).



Below we record a useful feature of integral closure that we use often in the later sections.

Proposition 1.4. Let R be a domain, and let I = (g1,...,9s) be an ideal in R. For every i, let S;
be the normalization of R[g1/gi,...,9s/g:). Then z € I if and only if x € IS; for alli=1,...,s.

Proof. Suppose that 2 € I. Then it follows that = € IS; = IS; for all 4, since I1S; = (g;)S; is a
principal ideal, and S; is a normal ring, and so IS; is integrally closed.

Now suppose that z € IS; for all 7. Let V be a valuation domain containing R. Since I is a
finitely generated ideal, the image of I in V' will be generated by one of the g;. It follows that for
some i, S; C V. Then z € IS; implies that 2 € IV, and so z € T (see [ZS2] page 353). O

The integral closure of an ideal I in a ring R is closely related to the normalization of the Rees
ring of I, where the Rees ring of I is the graded subring of the polynomial ring R[¢t] of the form:

RIt|=RaItaI**q....

A well known description for the integral closure of Rees rings, which follows from Proposition 20
in Chapter 5 of [B], is the following:

Theorem 1.5. Let R be a normal domain, and I an be ideal of R, and t be an indeterminate over
R. Then the normalization of R[It] in its field of fractions is

ReTteaIt e ...,

where J denotes the integral closure of the ideal J in R.

1.2 Tight Closure

Tight closure is an operation on ideals in Noetherian rings of positive prime characteristic p and
Noetherian rings that contain a field. The main idea for characteristic p arguments is that when R
is a ring of prime characteristic p, the Frobenius map (the map from R to R that takes an element r
to its pth power rP) will be a ring homomorphism. The theory is extended to rings of characteristic
zero via the method of reduction to characteristic p. For details and references on tight closure,
and for proofs of the facts stated below, see [HH1], [Hu] or [BH].

Definition 1.6. Let R be a Noetherian ring of characteristic p > 0. Let I be an ideal of R. Then
the tight closure of I , denoted by I*, is the collection of all z € R for which there exists ¢ € R°
such that cz9 € Il9 for all large ¢ = p°. We say that an ideal I is tightly closed if T = I*.

It is easy to check that the tight closure of an ideal is itself an ideal. In general the integral
closure of an ideal is much larger than its tight closure.

Example 1.7. Let R = k[z, y] be a polynomial ring over a field of characteristic p. Let I = (22, y?).
Then I = (2%, zy,y?), while I* = I = (22, y?) since R is a regular ring.

A key element in tight closure theory is the existence of test elements.

Definition 1.8. Let R be a Noetherian ring of characteristic p. An element ¢ € R° is called a test
element for R, if for every ideal I of R and every z € I*, cz? € Il for all ¢ = p°, e > 0. The ideal
generated by the test elements for R is called the test ideal of R, and is denoted by 7(R).

Under certain mild conditions on the ring, Hochster and Huneke proved that test elements exist.
Before stating this result, we introduce some terminology.



Note 1.9. If R is a ring of characteristic p, R is essentially of finite type over a ring S if it is a
localization of a finitely generated algebra over S. R is F-finite if the Frobenius map is a finite
map. Below, as well as in the next sections, we frequently assume that our rings are F-finite or
essentially of finite type over an excellent local ring. It is worth pointing out that these are not
very restrictive conditions on a ring. For example, any reduced finitely generated algebra over a
perfect field or any complete local ring with perfect residue field will satisfy these properties (see
Chapter 10 of [BH] or [Hu]). It is straightforward to check that both these properties are preserved
after localizing at a multiplicative set in R, and after taking finitely generated algebra extensions.

Theorem 1.10 (existence of test elements). Let R be a Noetherian reduced ring of positive
characteristic p, and suppose that R is essentially of finite type over an excellent local ring, or that
R is F-finite. Let ¢ € R° be such that R, is regular. Then ¢ has a power that is a test element for
R, and remains so after localizing or completing R.

A very useful property of tight closure follows from this theorem.

Theorem 1.11 (persistence of tight closure). Let R — S be homomorphism of Noetherian
rings of positive characteristic p. Suppose that R is essentially of finite type over an excellent local
ring, or that R,cq (i.e. R modulo the nilradical of R) is F-finite. Then

'S C(I1S)".
These theorems are [Hu] 2.1 and 2.3, respectively.

Remark 1.12. Persistence improves several features of tight closure. One property that we will
use is the following: If tight closure persists for the map f : R — S of Noetherian rings, then the
contraction of a tightly closed ideal of S will be a tightly closed ideal of R. To see this, let J C S
be tightly closed in S, and take u € (f~'(.J))". Then f(u) € (f~(J)S)" C J* = J (see Proposition
10.1.2 of [BH]). Hence f(u) € J, and so u € f~'(J).

1.2.1 Tight Closure in Equal Characteristic Zero

The method of reduction to characteristic p allows one to extend tight closure theory to rings of
equal characteristic zero, that is, rings of characteristic zero containing a field. Consequently, tight
closure results in characteristic p find analogous statements in characteristic zero. For a brief but
more detailed treatment of this topic see [Hol] or [HH1]. The complete and general source on tight
closure theory in equal characteristic zero is [HH2].

The definition of tight closure in equal characteristic zero is based on the existence of descent
data, which provide us with a finitely generated subalgebra Rp of the ring over a finitely generated
algebra D over the integers. We can then look at fibers of Rp over maximal ideals of D, which are
rings of positive characteristic over finite (and therefore perfect) fields. We define tight closure for
R via the (usual positive characteristic) definition of tight closure for these fibers.

Definition 1.13. Let R be a finitely generated algebra over a field K of characteristic zero, let T
be an ideal of R and let z € R. By descent data for R, I, and z we mean a triple (D, Rp, Ip),
where D is a finitely generated Z-subalgebra of K, Rp is a finitely generated D-subalgebra of R,
and Ip is an ideal of Rp such that:

(a) Ip and Rp/Ip are D-free.

(b) The canonical map K ®p Rp — R induced by the inclusions of K and Rp in R is a K-
algebra isomorphism.

(¢) I=1IpR.

(d) = € Rp.



Descent data always exists: see [HH2] Section 2.1.

Definition 1.14. Let R be a finitely generated algebra over a field K of characteristic zero and
let I be an ideal of R. We say that an element z of R is in the tight closure of I, denoted by I'*, if
there exist descent data (D, Rp, Ip) such that for every maximal ideal m of D, if k = D/m, then
zp € I* in Ry, where the subscript k& denotes images after applying k®p. If I = I*, then we say
that I is tightly closed.

In fact, by replacing D by a localization at a single element, one can see that it suffices to check
that for almost all m € MaxSpecD, i.e. for all m in a Zariski dense open subset of MaxSpecD, if
k = D/m, then xy € I

The following theorem follows from [HH2] 2.5.2 and 2.5.3:

Theorem 1.15 (independence of choice of descent and uniform multipliers). Let K be a
field of characteristic zero, let R be a finitely generated K-algebra, let I be an ideal of R and let
u € R. Let (D, Rp, Ip) be descent data for R, I, and u.

(a) If u € I*, then for every mazimal ideal m of D, if k = D/m, then z € I* in Ry.

(b) There is an element cp of R}, such that w € I* iff for almost all mazimal ideals m of D
and k = D/m, cpup? € Il for all positive powers q of p.

Part (b) involves the existence of wuniversal test elements; these are the characteristic zero
analogues of test elements ([HH2] 2.4.2). When R is reduced and equidimensional, I C R, u € I*
and c¢p € Rp is a universal test element, then for almost all m € MaxSpecD, if £ = D/m, we have
crup? € I for all positive powers ¢ of p. We will state a theorem due to Hochster and Huneke
which enables us to explicitly calculate universal test elements in Section 3.5 (Theorem 3.23).

1.3 Tight Integral Closure

Tight integral closure (or T'I closure) is an operation on a set of ideals in a Noetherian ring that
generalizes the ideas of tight and integral closure. This notion was introduced by Hochster in 1998
([Ho2]). Below, we give a brief description of T'I closure and refer the reader to [Ho2] for properties
of this operation.

Definition 1.16. Let R be a Noetherian commutative ring of prime characteristic p, and let
Ii,...,I, be ideals in R. We define z € R to be in (I1,...,I,)*, called the tight integral closure (or
TI closure) of Iy, ..., I, if and only if there exists an element ¢ € R° such that cz? € If +...4+ I,
for all large powers ¢ of p.

Note that if n = 1, (I)* = I, and if I ,..., I, are all principal ideals, then (Iy,...,I[,)* =
(Li+...+ L)%

It turns out that T'I closure has several of the basic properties of both tight and integral closure:
its study reduces to the case of domains and it respects inclusions of ideals. In the case of a set
of monomial ideals in a polynomial ring, their T'I closure can be computed as the sum of their
integral closures (see [Ho2] for details of these results).

Using T'I closure, Hochster was able to prove an improved version of the Briancon-Skoda the-
orem ([Ho2] Theorem 2.3). Below we demonstrate by an example this result in a case where T'J
closure can be computed.

Example 1.17. Let R be the polynomial ring k[z, y, u, v] over a field k of characteristic p, and let
I = (v?,v%) and J = (22,y?) be ideals of R. Then it follows from the TI closure version of the

Briancon-Skoda theorem ([Ho2] Theorem 2.3), that (I + .J)2 C (I,.J)* So

(u,v,2,9)* = (u, 0%, 2%, y%)? C ((u®,0%), (2%, 9%))7 = (u?, 0?) + (22, 42) = (u, 0%, uv, 2%, %, 2y).




This is an improvement of the tight closure Briangon-Skoda theorem ([HH1] Theorem 5.4),

which would yield (I 4+ .J)* C (I 4+ J)*, and hence

TT closure can be defined for affine algebras over fields of characteristic zero by the method of
reduction to characteristic p, described in Section 1.2. In [Ho2], characteristic zero analogues of
several of the results on T'I closure are stated.

Definition 1.18. Let R be a finitely generated algebra over a field K of characteristic zero, and let
IZ={IL,...,I,} be asetofideals of R. We say that an element z of R is in the tight integral closure
of T, denoted by Z*, if there exist descent data (D, Rp, I1 p, ..., I, p), such that for every maximal
ideal m of D, if k = D/m, then z} € Z;*, where Z}, denotes the set of ideals {I; g, ..., [, }, with
Ly =k @It p.

1.4 Questions on 7] closure

As can be seen above, T'I closure is able to generalize several statements, and to tie up tight closure
and integral closure into one definition. However, there are many useful properties that both tight
and integral closure satisfy, but have been turned out to be difficult to verify for T'I closure using
Definition 1.16. In [Ho2], Hochster stated the following questions:

Question 1.19. Does T'I closure persist? That is, if A : R — S is a homomorphism of Noetherian
rings of characteristic p, and Iy,...,I, are ideals of R, then is it true that (Iy,...,I,)*S C
(L,S,..., I,S)*?

This property holds for both tight closure (with mild conditions on the ring, see Theorem 1.11)
and for integral closure. It is easy to show that it also holds for for T'I closure if h(R°) C S°; this
happens for example when % is a flat map, or if h is any injective map of domains. In general, the
lack of a test element theory for T'I closure makes the problem obscure in its original setting. This
question will be answered in Section 3.2.

Question 1.20. If R is a Noetherian ring of characteristic p, I, ..., I, are ideals of R and ¢ € R°
and z € R are such that
cxP’ ¢ Ilpe + ...+ Inpe7

for infinitely many e (rather than all large €), then can one conclude that z € (Iy,...,[,)*?

This is again a property that holds for both tight and integral closure, and it is reasonable to
expect it for T'I closure. In Section 3.2 we give an affirmative answer to this question.

Question 1.21. Can one develop a theory of test elements for T'I closure (see Definition 1.8)?

Such a theory exists for tight closure (see Section 1.2), but it is not possible to define such a
notion for integral closure that does not depend on the ideal:

Example 1.22. Let R be the polynomial ring k[z,y], where k is a field. If ¢ € R — {0} were an
integral closure test element for R, then one would have cz™ € I™ for all ideals I of R, all z € T
and all positive integers m.

Now take the family of ideals {I,}n,eN, Where for each n, I, = (22", y*"). Then z"y" € I, for
all n, since (z"y")? = 2?"y?" € I,%. As cis a test element, this implies that cz"y” € (27, y?")
for all n. Since this holds in the polynomial ring k[z, y], one can reduce to the case where ¢ is a
monomial in R = k[z, y], which is not possible, since the degree of ¢ will have to grow larger when
n gets large.



Still, one could hope to find elements ¢ that work for Definition 1.16, but depend on the ideals
I, ..., I,. Such specific elements of R are introduced in Section 3.3.

Question 1.23. Does T closure commute with localization?

It is known that integral closure commutes with localization, and the same is conjectured for
tight closure. In Section 3.2 we show that the question of T'I closure commuting with localization
is equivalent to the question of tight closure commuting with localization.

Question 1.24. Let R be an affine algebra over a field K of characteristic zero, and Z be a set of
ideals in R and z € Z*. Let (D, Rp,Zp) be descent data. Then can one find a ¢ € R9, such that
for all m € MaxSpecD and k = D/m, cxx? € Zil for all positive powers ¢ of p?

The last question will be addressed in Section 3.5.

2 Blowup Closure

We now explore a new notion: the blowup closure of a set of ideals. Here, we are motivated by the
fact that the extension of an ideal I to its blowup scheme ProjR[It] is locally principal. For a set
of ideals, we consider the blowup scheme of their product, and each one of the original ideals will
be locally principal there. This is the simplest situation to handle several ideals at the same time.
Although the definition of blowup closure makes sense for any commutative ring of positive
characteristic, we immediately restrict ourselves to rings R such that R is either essentially of finite
type over an excellent local ring, or R,eq is F-finite. The reason is that tight closure persists for
maps from such rings (Theorem 1.11), and this property simplifies most blowup closure arguments.
These conditions are not very restrictive, since the class of such rings includes most rings that one
would normally encounter in commutative algebra and in algebraic geometry (see Note 1.9).

Definition 2.1. Let R be a Noetherian commutative ring of prime characteristic p, and let Iy, ..., I,
be ideals in R. We define 2 € R to be in ([3,...,1,)", called the blowup closure of I, ..., I, if
and only if for every affine open set of the blowup of the product ideal I = I...I,, if S is the
coordinate ring of that affine set, then z € (JS)*, where J =11 + ...+ I,,.

The following discussion shows how for certain rings, one can reduce the process of checking if
an element z isin (Iy,...,I,)" to checking if it is in (JS;)*, 1 < ¢ < m, for any fixed open affine
cover SpecSy, ..., SpecS,, of the blowup of I.

Lemma 2.2. Let R be a ring of positive characteristic p, and let J be an ideal of R. Then for
x € R, x € J* if and only if there are g1, ... ,gs € R that generate the unit ideal in R, and for each
7, 1<j<s,z€ (']gj)*'

Proof. If x € J*, it is immediate that z € (JRy)" for all f € R, therefore one direction is clear.
Suppose we are given a sequence of elements gq,...,¢s € R such that (¢1,...,9s) = R, and for
each 7,1 <j <s,z € (Jy)"

For each j, let ¢; be such that ijpe € Jy; [P°] for all large enough e. One can replace each c¢; by
its product with a large enough power of g;, so that ¢c; € R. Let ¢ be the product of all the ¢;’s for
j=1,...,5 Then c € R and cz?" € Jgj[’”e]7 for all j =1,...,s, and all large enough e.

Fix p®. Then for each j, there is some power N; of g; such that gjvjc;rpe e JP) Let ¢ be a
power of p that is larger than all the N; for 5 = 1,...,s. Then for all j, ggcxpe e JPl. On the
other hand, since (g1, ..., gs) is the unit ideal, so is (g7, ..., g¥), and so it follows that cz?" € JPl

Therefore z € J*.
O
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Now let X be a scheme, and let 7 be a sheaf of ideals on X. Suppose that there is an open
affine cover Uy, ..., U, of X, such that for each ¢, U; = SpecB;, where B, is essentially of finite type
over an excellent local ring, or (B;),eq is F-finite. Suppose z € J(U;)" in Ox (U;), for i = 1,.

Let U be any open affine set of X. We will show that z € J(U)".

One can write i as (UNU)U...U (U NU,). If U = SpecA, then one can refine this cover of U

into
SpecAy U...USpecAy,,

where the elements f;,..., f, of A generate the unit ideal of A. So for every j, we have an inclusion
SpecAy; C U;, for some 7, 1 < ¢ < n. This corresponds to a homomorphism of rings B, — Ay;.
Since 2 € J(SpecB;)”, from the persistence of tight closure it follows that 2 € J(SpecAy;)”". Since
the f,,..., f, generate the unit ideal, Lemma 2.2 implies that z € J(U)".

We have thus proved that:

Theorem 2.3. Let R be a Noetherian commutative ring of prime characteristic p, such that R is
either essentially of finite type over an excellent local ring, or R,.q is F-finite. Let I,... I, be
ideals in R. If x is an element of R, then x € (I1,...,I,)" if and only if for every non-nilpotent
element f of a fized set of generators for the product ideal I =1, ...1,,

NS (-]R[It](ft))*,
where J = I + ...+ I, and R[It] ) is the zeroth graded piece of the localized Rees ring R[It]y,

Note 2.4. Let R be a ring as above, and Iy,...,I, be ideals of R with I = I, ...[,, and J =
ILi+...4+1,. Let G be a fixed set of generators for the ideal I such that every f in G is of the form
f = fi...fn, where each f; is an element of a fixed set of generators f{, . ,f;i for I;. For future
reference we show what (.]R[It](ft))* looks like in practice when f is not nilpotent.

(JR[It](e))" = ((Ii+ ...+ L)R[I ... Int] g, . fn))
~ (L + n)R[]{—lf—z ..f;])
(e SRR p |
BT -~
= (oo BRI B2, 22

2.1 Blowup Closure Can Be Tested Modulo Minimal Primes

Theorem 2.5. Let R be a Noetherian ring of positive characteristic such that R is either essentially
of finite type over an excellent local ring, or R,..q is F-finite, and let I, ..., I, be ideals in R. Then
x € (I1,...,I.)" if and only if T € (I1R/p,...,I.R/p)”, for all minimal primes p of R, where T
is the image of x in R/p.

We first specify the structure of the minimal primes of Rees rings.

Proposition 2.6 (minimal primes of Rees rings). Let R be a Noetherian ring, and py, ... , Pm
be the minimal primes of R. If I is any ideal of R, then:
(a) The minimal primes of R[It] are p1, ..., pm, where for 1 <1 < m,

pi=pRNRI=p; & (INp)td (IPnp)t? ... ;

(b) For all primes p of R, R[It]/p~ (R/p)[I(R/p)t].



Proof. (a) See [Va], Proposition 1.1 part (7i7).
(b) For p € SpecR, construct the map

¢ : R[It] — R/p[I(R/p)t]

with ¢(zt") = 7t", where 7T is the image of z in R/p.

This is a surjective homomorphism of graded rings. To find the kernel, we observe that ¢(zt") =
0 if and only if 7t" = 0. So zt™ is in the kernel of ¢ if and only if x € I™ N p. So the kernel of ¢ is
equal to p, and hence we have an isomorphism R[It]/p ~ (R/p)[I(R/p)t]. O

Corollary 2.7. Let R be a Noetherian ring, and let I be an ideal of R. Suppose ft" is a homoge-
neous element of R[It] for some positive integer n.

(a) There is a one to one correspondence between the minimal primes of R[It] that do not
contain ft", and the minimal primes of R[It] sy

(b) Suppose f € I and p is a minimal prime of R not containing f. Let p be the minimal prime
of R[It] corresponding to p, and let p be the minimal prime of R[It] s corresponding to p. Then

R[It];y  (R[I1] -
o (R )(m_<R/p[<fR/p)tD(m-

p

Proof. The statement of part (a) is equivalent to saying that there is a one to one correspondence
between M(R[It]sm) and M(R[It](sm)).
When n = 1, we have R[It]; ~ R[It] sy[u,u™"]. This is because R[It](sy ~ R[g1/f,-.. ,9s/f],

where g1,..., ¢, is a fixed set of generators for I. We can then define the map

Rlgi/f,- .. g5/ fllu,u™"] — R[It]z.

by sending u™ to (ft)™ for all nonzero integers m. It is easy to check that this map is an isomor-
phism, and it follows that all members of M(R[It]s;) are extensions of those in M(R[It] ).

If n > 1, then R[It](fn) ~ R[%], where by % we mean all elements of the form %, where

f ’
z € I™. This is isomorphic to (R[It](”))(ft), where R[It](®) = R[I"t] is the nth Veronese subring of
R[It]. By the previous paragraph, we know that that there is a one to one correspondence between
M((R[I#]") ;) and M((R[It](”))(ﬂ)). On the other hand, the homogeneous primes of R[I#](") are
contractions of the homogeneous primes of R[I?] (see [E]). Since all the minimal primes of R[It] are
homogeneous by Proposition 2.6, it follows again that M(R[It]sn) and M(R[It](sn)) correspond.
This settles part (a).
To prove part (b), from part (a) we notice that since R[It]s; ~ R[It](s[u, u™"], we have

Rl 4y BRIty (RN (R -1
T[u,u ]_ﬁR[It]ft_< b )jt_< p )(ft)[U7u )

where the second isomorphism is because localization is flat, and the third follows again from part
(a) of this theorem along with part (b) of Proposition 2.6. Therefore

R[It](s1) N (R[It]) |
(1)

4 P

and combining this with Proposition 2.6 part (b), we obtain the desired result. U



Proof of Theorem 2.5. Let I =1, ...1,, J =1L + ...+ I,,, and G be a fixed set of generators for I.
Take z € (I1,...,I,)”. Then for any f € G,

T € (JR[It](ft))*. (1)
Since tight closure can be tested modulo minimal primes (see Section 1.2), we see that Equation 1
is equivalent to
R[It -
T E (,]7[ }(ft)> ,
p

for every minimal prime p’ of R[It] 4, which by part (a) of Corollary 2.7 and Proposition 2.6
corresponds to a minimal prime p of R that does not contain f. From Corollary 2.7 part (b) we

see that
— o (BT (5 (B T -
€ (J p, ) ~ (J< — )(m) ~ (JR/plI(R/p)t](1)"-

p
This holds for all minimal primes p of R that do not contain f. Hence we equivalently have
T € (IIR/p7 tee 7InR/p)N

for all minimal primes p of R. U

2.2 Basic Properties of Blowup Closure

The following fact, which follows from the contraction property of tight closure, makes the compu-
tation of blowup closure simpler in several cases.

Proposition 2.8. Let R be a Noetherian commutative ring of prime characteristic p, such that R
is either essentially of finite type over an excellent local ring, or R,.q is F-finite. Let I, ..., I, be

idealsin R, I =01 ...1,,J=0L+ ...+ 1I,, feIl andz € R. Then
z € (JR[It)(s)" iff « € (JR[It);y),
where R[It]' is the normalization of R[It].

Proof. Let py,...,pm be the set of minimal primes of R[It] that do not contain ft. These corre-
spond to minimal primes p},...,p], of R[It](ft) (Corollary 2.7) and minimal primes pi*, ..., pp*

of R[It]/(ft) (Proposition 1.2 and [E] proposition 4.13).
Suppose z € (.]R[It];ﬂ))*. Since tight closure can be tested modulo minimal primes (see [BH]
Proposition 10.1.2(e)), we see that for i =1,...,m,

7 *
TE JLH](M
Piﬁ ’

where T is the image of z in the ring R/p;. But Proposition 1.2 implies that

R[It]zft)N R[It] s\’
pif Pl ’

so T (or rather the image of 7 under this isomorphism) belongs to

(s(mtiny
D

10



Therefore, by the contraction property of tight closure ([Hu] Theorem 1.7), for all 7,

e (U5 ) 0 e (o ()

Applying Proposition 10.1.2(e) of [BH] again, we see that = € (JR[It](s))".
The reverse inclusion follows because of the inclusion of R[I] ) in R[It]zft), and the persistence
of tight closure (Theorem 1.11). O

Theorem 2.9. Let R be a Noetherian ring of prime characteristic p,such that R is either essentially
of finite type over an excellent local ring, or R,eq is F-finite, and let I, ... , I, be ideals of R. Then:
(a) The ideal (I,...,I,)" is tightly closed, and

(Lo L)EC (L. L)

(b) If all I, ... , I,, are principal, then (I,...,L,)~ = (I1 + ...+ I,)".
(c) If n=1, then (L)~ = I.
(d) (L,...,I,) =(L,...,I,)".

Proof. Throughout the proof, we let G be a fixed set of generators for the ideal I = I ..., such
that every f in G is of the form f = f; ... f,, where each f; is an element of a fixed set of generators
for I,. Welet J =1 +...+ I,.

(a) We can assume that R is a domain (Theorem 2.5 and [Ho2| Proposition 1.4).

For every non-nilpotent element f in G, tight closure persists under the map R — R[It](ft) ,
and so (JR[It](f))"NR is tightly closed in R (see Remark 1.12). On the other hand, the intersection

of tightly closed ideals is tightly closed, and since (Iy,...,I,)" is the intersection of finitely many
ideals of the form (JR[It](ft))* N R, it follows that (Iy,...,I,)" is tightly closed in R.
Now let z € (Iy,...,I,)*. Then ¢z? € I} + ...+ I, for all large ¢ = p° and some nonzero

ceR.If feG,and f= fi...f, where f; is a generator of I; as above, then this equation can be
extended to

cz? € IfR[It](ft) +...+ IZR[It](ft)
= (f)IR[It](p1) + - - -+ (fu)R[It](51) (see Note 2.4)
= (f1,. . fa)VIR[It) )
= ,][(I]R[[t](ft)
= (JR[It)(s0)

for all large powers ¢ of p. It follows that z € (.]R[It](ft))*. Since this holds for all f € G, by 2.3
we conclude that z € (Iy,...,I,)".

(b) We can again assume that R is a domain. If Iy, ..., I,, are principal, then so is their product
I. So for each f € G, R[It](y) is the same as R. We therefore have

(Liy..., L) = (L +...+ L,)".

(c) Assume that R is a domain. In this case, I = .J = I;. We use the “normalized” definition
of blowup closure, following Proposition 2.8, and we obtain

(D~ = () IR[It];yNR=T,
feg

since the extension of I to the normal ring R[It]zft) is principal , and therefore tightly closed (see
Proposition 1.4 and [HH1] Corollary 5.8).

11



(d) We use the “normalized” definition of blowup closure, following Proposition 2.8.

Let J/ =T, +...4+ 1T, and I' = I, ...I,. Then R[It] = R[I't]", since (I')® = I", and so
ProjR[I't]’ like ProjR[It] is covered by affines of the form SpecR[It];ft) for f € G. On the other
hand, suppose f = fi...f, € G where f, € I;,7=1,...,n.

Then

(PRI ) = ('R 0)" = (o SR )" = (TR )
as pointed in Note 2.4. Tt follows that (Iy,...,1,)" = (I1,...,I,)". O

Theorem 2.10 (blowup closure from contractions). Suppose that R and S are Noetherian
domains of prime characteristic p, such that R is either essentially of finite type over an excellent
local ring, or R,cq s F-finite. Let I, ..., I, be ideals of R. Suppose S is a module finite extension
of R. Then

(LS,..., ,S"NRC (L,...,I,)"

Proof. Let I and J be the product and the sum of Iy, ..., I,, respectively, and let G be a fixed set
of generators for I in R.

Suppose S is generated as an R-module by elements uq, ..., %,. Then uq, ..., u, also generate
S[(IS)t] as a module over R[It]. To see this, take a homogeneous element zt" € S[(IS)¢]. Then
z € I"S,and soif I = (vy,...,v,) in R, we can write z = ayv1 +. ..+ a,v, foray,...,a, € S. On
the other hand fori =1,...,r, a; = a;1u1+.. .4+ @i Um, Where a;; € Rfor j =1,..., m. Rewriting
the equation describing z above, we have 2 = bju; + ...+ by, where b; € I" for j=1,...,m.

It follows that zt" = (b1t")u; + ...+ (bt")uy,. So S[(IS)t] is module finite over R[It]. A similar
argument shows that S[(IS)t] 4 is module finite over R[It] s).
Now let z € (I1S,...,I,S)” N R. Then by definition, z belongs to

(JS[(IS)t](ft))* ﬂ*R
= (-]S[(IS)t](ft)) N R[It](ft) NR
C (JR[It](ft))* NR by contraction of tight closure ([Hu] 1.7)

This holds for all f € G, which implies that z € (I1,...,1,)". O

Theorem 2.11 (persistence of blowup closure). Let ¢ : R — S be a homomorphism of
Noetherian rings of prime characteristic p, and let I, ..., I, be ideals of R. Suppose that either R
is essentially of finite type over an excellent local ring, or that R,.q is F-finite. Then:

(I, ..\ I)“S C (IS, ... , I,S)™.

Proof. Let I = I, ...I,and J = I +.. .4+1I,. Fix a finite set of generatorsfor I, and let f = f; ... f,,
fi € I, be in that set. If R is essentially of finite type over an excellent local ring or R,.4 is F-finite,
then R[It](ft) will have the same property since it is an algebra of finite type over R.

On the other hand, if ¢(f) is not nilpotent, then ¢ induces a map

R[It] sy = SIIS)t](4(5)1) »
under which tight closure persists (see Theorem 1.11). It follows that when ¢(f) is not nilpotent,

*

(RN (JR[It)(51))") S C (JR[It] (1)) SIIS)t](s(ryry C (SISt syt)) -
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If g1,...,9r is a set of generators for I in R, then IS is generated by the ¢(g;), 7 =1,...,r,
that are nonzero. From the discussion above and Theorem 2.3, it follows that
(Ii,..., I,)"S C (I1iS,..., I,S)".
O

Blowup closure satisfies most properties that TI closure does. However, in many cases these
two operations do not produce the same ideal. Here is an example of ideals in a polynomial ring
for which these two operations are not the same:

Example 2.12. Let R = K[z, y] be a polynomial ring over a field & of characteristic p. Consider
the ideals I = (y*) and J = (2, 22%y). Notice that I and J are both integrally closed ideals. We
know from [Ho2] Proposition 1.9 that

ey? ¢ (L)) =147 = (2°,y°,2%).

We show that, however, zy? € (I,J)~. To show this, we check the ideal I + J against two
localized Rees rings. With notation as in Note 2.4, if we take f; = y® and f; = 2%y, we have

X
$y2 € (y37 $2y)k[$7 Y, ;]7

since zy? = y3(z/y).
If we take f; = 4% and f, = 23, we have

y
myz € (y37 $3)k[$7 Y, 5]7

since zy? = 23(y/z)>.
Therefore zy* € (I,.J)", but zy? ¢ (I,.J)*.

Moreover, blowup closure fails to respect inclusions: If Jy,...,.J, is a set of ideals such that
I; C Jj,fori=1,...,n, then the inclusion (Iy,...,I,)~ C (Jy,...,Jn)" does not necessarily hold.
Here is an example:

Example 2.13. Let R = k[z,y,u,v]. Let I} = (23,2%y), I, = (v*), J1 = (23,2%y,u) and Jp =
(y3,v). Then 2y? € (I, )~ as was shown in the previous example. But zy® ¢ (Jy,.J2)", because
looking at the affine patch corresponding to the generators v and v of Jy and J,, respectively, we

can see that s 5
‘ryz ¢ (u7 v)k[m,y,u,v,;, 77 ?]

We show in the next section that T'I closure can be described as the contraction of the blowup
closure of some ideals in a larger ring. Before discussing this, we demonstrate a case where blowup
closure can be directly calculated.

2.3 The Case of Monomial Ideals in a Polynomial Ring

Theorem 2.14. Let R = k[z},. .., :U}nl, o2tz ] be a polynomial ring in distinct variables
2,1 <i<nandl < j < my, over an algebraically closed field k of prime characteristic p. Let
I, ..., I, be monomial ideals in R, where the generators of I, are monomials in the variables

m’i,...,miniforlgign. Then (I,..., L)~ =L +...+ 1, .

13



To prove this theorem, we will show that ([y,...,I,)” is a monomial ideal. Then, for a given
monomial M € (I1,...,I,)”, we will show that for some 1 < a < n,

Me RNIR[IY =1,

and it will follow that (Iy,..., L)~ =L +...+ 1,

We begin by fixing the notation. For each z, let I; = (fp e ,fi ), Where f’ is a monomial in
the polynomial ring S; = k[z?, ..., m] Let J=I+... 4L, =(fl,.... fL,..., ff,..., fi), and
I:h.mh:(5.mm:1g@gsﬁ1gjgn)

Our first goal is to show that

(h,os L)~ = () (. ;;)R[ft];ﬁl”mt)mzz.
1§1J§s
1<j<n
By 2.4, for a fixed index set %y,...,%,, we are interested in the tight closure of the ideal

(fhy... ,f”) in the ring:

1 1 f11 ; ik o

T e L N TP
1 s e 0 ) ) )

m n fil fil flrrlz flri

Equivalently, by Theorem 2.8, we can study the tight closule of this ideal in the normalization
of the ring described in 2. We claim that the tight closure of (f}
the ring in 2 is equal to (f“, oy f1) fitself.

Tosee this, let f = f} ... f'. Since R[It]is a monomial subring of R[t], R[It] is also a monomial
ring, and it is weakly F-regular (i.e., all ideals are tightly closed; see [Sm2]). Also, tight closure
commutes with localization for R[It] ([Sm2]). Since normalization also commutes with localization
([E] Proposition 4.13) it follows that

J- (2)

EEE , ') in the normalization of

(JR[It]},)" = JR[It]},.

On the other hand,

(TR ) € (URIAG)T) = (TRIH)), = TR,
and so (JR[It]( ;)" = JR[It]{ ;-
We have therefore shown that if Iy, ..., I, are monomial ideals in a polynomial ring R, then
(I, ..., I, (] AT )Ileﬂ( mnNER (3)

Notice that this argument does not require the distinction of the sets of variables generating
L,..., I,

Proposition 2.15. Let Iy,..., I, be monomial ideals (not necessarily generated by distinct vari-

ables) in a polynomial ring R = klu, ..., un,| where k is an infinite field. Then (I1,...,1,)" is
also a monomial ideal in R.

14



Proof. We use the fact that an ideal I in a polynomial ring R = k[uy, ..., u,;,] over an infinite field
k is generated by monomials, if and only if I is invariant under the action of the torus (k*)™ (see
[Ho3] page 319), where k* denotes k — {0}, and the torus action on R is defined as follows. If
A= (A, .., An) € (K*)™, and z is a monomial u1' ... u,,°" of R, then

Az = (Au)? oo (Amtm)™ = M A

and if z is a sum of monomials My + ...+ M,, then Az = AM; + ...+ AM,.

The action of the torus on monomials with negative powers is defined in a similar way. In the
ring Rlu; ™', ... u,~ '], where R is as above, if A = (A1,...,An) € (%)™ and © = w1 .. .4, "™,
where the ¢; are integers, then

A= (M) o Antn) = AL A,

and if w = My 4+ ...+ M,, where M; are monomials in the u; with integer powers, then Au =
AMy + ...+ AM,.

We show that ([y,...,I,)" is invariant under the action of the torus (k*)™. Suppose each I; is
generated by f{, . ,f;’i. By the discussion preceding the theorem we only need to prove that for
any given index set iy,... i, if

ze(fl,... ’flz)R[It]zfimﬁ;t)

and A € (k*)™, then
Az € (fh,. .., Z)R[It]?ﬁl...f;t)'

Take A = (A1,...,An) and z as above. Then z can be written as
v=Afl .+ AL

with Ay, ..., A, € R[If];
So

fill...f{;t)'

Az = )\(Alfill) + . AALT)
= AA)AF) + - 4+ (A (Af])
Since each fljj is a monomial in the u;, )\fljj will be just some scalar times fljj, and will therefore
still belong to ( 111 oo )
As for the A;, we claim that AA; still remains in R[It];f; fT ) for y = 1,...,n. To see this,
i1 in

fix some j. One can write 4; as

B

A=— 7
J (fh o fmyrtr

where B; € R[It]'. We can then write B; as
Bj =Mt + ...+ Mt

where M, ..., M, are monomials of R that belong to I" (see Theorem 1.5). So if we set f =
fll1 oo flythen Ay = Myf~" + ...+ M, f7", and so

)\AJ = O(lle_r +...+ Cl(stsjf_r,
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where a1, ..., a5; € k are scalars. It follows that

Olel + .. .—1—6145st

— ] !
Therefore Az € (f},... ,f[:l)R[It];ft), and so we are done.
O
Lemma 2.16. Let R = k[uy, ..., um, ]]\\/{—11, e ,]\]\4,—:], where Uy, ..., u, are distinct variables, and
Mi,..., M, and Ny,..., N, are nonzero monomials in the polynomial ring k[uy, ..., u,] over a
field k. Suppose M, g1, ..., gs are nonzero monomials in k[uy, . .. , uy] such that M € (¢1,...,9s)R.

Then for some i, 1 <i<s, M € (g;)R.

Proof. Since M € (¢1,...,9s)R, there are Ay,..., A, in R such that M = A;g1 +...+ Asgs. After
taking the common denominator A of the right hand side of the equation, and multiplying both
sides of the equation by A, we end up with an equation of the form AM = pig1 +...4+ psgs, where

P1,...,DPs are polynomials in k[uy,..., U], and for each i, A; = Z. Now notice that AM is a
monomial, and so when you add the polynomials p1g1,...,psgs all terms that are not equal to a

scalar multiple of AM cancel out with each other. So we can without loss of generality for each 1,
replace p; with «;Q);, where o; € k is nonzero if the monomial AM appears as a term of p;g;, and
Q; is a monomial in kf[uy, ..., u,] for which Q;9; = AM. So AM = a1Q191 + ...+ asQgs, and
a1+ ...+ a5 = 1. Now it is clear that least one of the a; must be nonzero; say « is nonzero. Then
@1 Q1 is a term of py, and since A; = & € R, % € R, and therefore M = %gl € (g1)R. O

A Noetherian ring R satisfies Serre’s condition (R,,) if R, is a regular local ring for p € SpecR
with dim R, < n. We say that R satisfies Serre’s condition (S,,) if depthR, > min(n,dim R),) for
all p € SpecR. For more on these conditions, see the first three chapters of [BH].

Proposition 2.17. Let R and S be two domains, which are finitely generated k-algebras, where k
is an algebraically closed field. Then:

(a) For a positive integer n, if R and S satisfy (S,), then so does R @y S.

(b) For a positive integer n, if R and S satisfy (Ry,), then so does R®y S.

Proof. (a) This is Theorem 5.5.5 of [V].

(b) One can express R and S as

R Elug, ..., um] and S — Elvi, ... ,v,,]7
(gl,... 795) (hl,...,ht)
where 41, ..., Uy, and vy, ..., v, are distinct variables. Then
RS = Elu, ..., tm,v1,. .., 0]

(917"-7957h17"'7ht) 7

see [ZS1] for the tensor product of two rings.

Suppose R and S satisfy (R;,), that means the defining ideals J; and J; of the singular loci
R and S, respectively, have heights larger than n. The defining ideal J of the singular locus of
R ®y S, is the ideal generated by the d X d minors of the Jacobian matrix

16



duq Stm
s, da o ¢
m e m 52 e 52 7
0 ... 0 mo i
: o she ok
0 ... 0 ﬁ e ﬁ
where d is the height of the ideal (g1, ..., gs, b1, ..., h¢) in the polynomial ring k[u1, ..., Um, v1,.. . , U]

(see Corollary 16.20 of [E]). On the other hand, d = d; + dz, where d; is the height of (g1,...,9s)
in kluy, ..., un], and dq is the height of (hq,..., k) in k[v1,...,v,] (see Chapter II of [Har]).

It is an easy exercise to see that the only time that the determinant of a square matrix of the

form
A 0
0 B

is nonzero is when A and B are both square matrices. So [J is generated by determinants of the
form

det ( P ) — (det A)(det B),

where A and B are square matrices. In particular, it contains products of d; X d; minors of
the Jacobian of R with dy X dy minors of the Jacobian of S. Therefore J O J1J2, and hence
ht 7 > min(ht 71, ht J3) > n, since R and S are (R,,). Therefore R ®, S is smooth in codimension
n.

O

Corollary 2.18. Let R and S be two normal domains, which are finitely generated k-algebras,
where k is an algebraically closed field. Then R ®y, S is also a normal domain.

Proof. Serre’s normality criterion says that a ring being normal is equivalent to it satisfying (Sg)
and (Ry), and so by Proposition 2.17 R®;, S is normal. If K and K’ are the quotient fields of R and
S respectively, Theorem II1.15.40 of [ZS1] proves that K ®j K’ is a domain when % is algebraically
closed, and since R @ S is a subring of K ®j K’, it follows that R @ S is a domain. O

Below, we adopt the following notation. If R®y S is the tensor product of two finitely generated
k-algebras R and S over the field &k, and if 2 € R and y € S, by 2 ®; y we mean the product of
r®i 1 and 1®g y, where 2 @1 1 and 1®y y are the images of z and y in R ®y S under the inclusions
R — R®i S and S — R @y S, respectively (see [ZS1]).

Lemma 2.19. Let R =k[z},... 2L ... 2% ... 2% ], I and J be as in Theorem 2.14. Let M be

y Mmoo 1y bmy,
a monomial of R that belongs to (I1,...,I,)". Fir an index set iy,...,i,, such that 1 <1, <s,,

for 1 < v < n. Suppose that for some fized B, 1 < B < n, M € (fli)R[It];f; .gnt)- Then for
i in

any index set ji,...,Jn, 1 < jy < 8y, 1 < v < n, such that jg = ig (so that f]i = f’i)’ we have

M e (ff;)R[It]/(fjll...fjﬂnt)'
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Proof. We know that M € (I,...,I,)", so for all index sets j1,...,J, one has

! * _ 1 n !
M € (‘]R[It](fjll...fjﬂnt)> = (oo BRI 1 gn s

as we proved earlier in this section.

Since the fjl17 ..., fj. are monomials in distinct sets of variables, Corollary 2.18 implies that
R[It]zf}l,,,fjﬂnt) = Sl [Ilt]/(fjll t) Sk - Ok Sn[Int]/(fjﬂnty (4)
where for each v, 1 <wv <n, S, = k[z},...,2}, ].
So, for the index set ¢y, ... ,1,, following the structure in 4, we can write M = M; ® ...® M,,
where each M, is a monomial in S, for 1 < v < n, and Mjp € (fli)Sg[Igt]Efp e
5
Let 71,...,Jn, 1 < j» < s, be any set of indices such that jz = ig, that is, ffﬂ = fli Then
. 5 12 . 5 12
since My € (fiﬁ)Sg[Igt](f{;t), we still have M € (fjﬁ)R[It](f}1~~~ffnt)' O
Proof of Theorem 2.14. We want to show that (Iy,...,I,)~ = I;+...+1I,. Clearly I, +...+1I, C
(I,...,I,)”. We need to show that the other inclusion holds. From Proposition 2.15 we know
that since I,..., I, are monomial ideals, (I1,...,I,)" is a monomial ideal.
So we pick a monomial M of R = k[z1, ... ,m}nl, o2y, o xp [such that M € (Ih, ..., I,)".
Our goal is to show that for some o, 1 < o < n, M € I, R[It].
Fix an index set #1,...,1,, and let f = 111 ... f{>. Then from Equation 3 we see that
M e (JRIH () = (Fh - IR o)

From [EGA] Lemma 2.1.6, it follows that ProjR[It] = ProjR[I"t] for some h > 1, and we
obtain

RIt]{ 4y = RI"] ny).-

Since I is a monomial ideal, I” is a monomial ideal (see [E] Chapter 4), and we can write Ih =

(Hy,...,H,), where Hy,..., H, are monomials. So we have
M e ( 111, , [L)k[m%, ,x}nl,... Y xy, CHit L ,H,,t](fht),

which is isomorphic to

Kol 2l noon M H
Tlyeo oy T ...,gvl,...,xmn,fh,...,fh

Y my?
and hence from Lemma 2.16 it follows that for some 5, 1 < g < n, M € (fli)R[I_ht](fht) which

implies that M € (fli)R[It];ﬂ).
We would like to prove that this choice is consistent for all the affine sets, that is, there is some
B3 such that M € (fti)R[It];ﬂ 1) for all choices of index sets i1, ..., iy.
Lo

Suppose that for each a = 1,...,n — 1, there is some index 74, 1 < 74 < S, and some index

set i1, ...,10, with i, = 74, for which M ¢ (fi)R[It]/(f; o) Then by Lemma 2.19, for all 7,
Lo

I,

1 < j < s,, if one picks the index set v1,...,vn-1,7,

M ¢ (f5)RIyy g 17)
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for 1 < @ < n — 1. Therefore for all possible j,
M € (fI)R[It],

(FA P ey
Applying Lemma 2.19 again, one gets that M € (fzz)R[It];f}l A7) for all index sets i1, ..., iy.

We have now proved that M € (I} + ...+ I,)R[It]', implies that for some 5, 1 < 8 < n,
M € IgR[It]'. Therefore
M e RNIGR[It) =15

by Proposition 2.20. U
Proposition 2.20. Let R be a Noetherian domain, and let X be a normal scheme, with a proper

birational map © : X — SpecR. Suppose that I is an ideal of R such that IOx is an invertible
sheaf of ideals on X. Then IOx NR = 1.

Proof. See Proposition 6.2 of [L1] and the remark following it for the proof. O

3 Applications to TI closure

In this section we apply the notion of blowup closure to study properties of TI closure and to
answer the questions mentioned in Section 1.4. It turns out (Corollary 3.5) that the T'I closure
of a set of ideals is the contraction of the blowup closure of certain extensions of those ideals in
an extension of the original ring. In fact, the TI closure of a set of ideals can be described as the
contraction of only one of the affine patches used to calculate the blowup closure mentioned above.
To facilitate the arguments, we call this particular patch the multiple closure.

3.1 Definition and Basic Facts

Definition 3.1. Let R be a Noetherian ring of positive characteristic p, and let Iy, ..., I, be ideals

in R. We define z in R to be in the multiple closure of I, ..., I, denoted by (Iy,...,I,)", if and
only if the image of z is in:

I I, \"
((wl, ey W) Rlwy, .. wy, Lo, —]) )

Y
w1 W,
where wq, ..., w, are indeterminates.

Recall that the ring

L I
S =R[wi,... , Wy, —y...,—]
w Wn
above is obtained as follows: We take a ring extension R[wq,...,w,] of R, and we consider the

Rees ring R[wy, ..., w,]|[I't] ring of the product I’ of the ideals I + (w1),..., I, + (w,). We then
localize this Rees ring at the element wq ... w,t, and take the zeroth graded piece of the localized
ring to obtain S. The ideal (wy,...,w;,) in S is just the sum of the ideals Iy + (w1), ..., I, + (wy,)
extended to S. So the multiple closure of Iy, ..., I, in the ring R is one of the affine patches to be
considered to compute the blowup closure of Iy + (w1), ... , I, + (wy) in the ring Rlw;, ..., wy] (see
Theorem 2.3). It turns out that the multiple closure of Iy, ..., I, is in fact the blowup closure of
L + (w1),..., I+ (w,) in Rlwy,...,wy], contracted back to R (Corollary 3.5). Multiple closure
therefore enjoys all the basic properties of blowup closure.

We verify that multiple closure can be tested modulo minimal primes, and hence one can reduce
most arguments to the case of domains.
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Proposition 3.2 (multiple closure can be tested modulo minimal primes). Suppose that
R is a Noetherian ring of positive characteristic p, and let Iy, ..., I, be ideals in R. An ele-

ment x of R is in (I1,...,1,)"~ if and only if for all minimal primes p of R, the image T of = in
R/pisin (ILiR/p,...,I,R/p)".

Proof. The proof follows from the description of minimal primes of localized Rees rings, as in
Corollary 2.7.

Let I = (I1 4+ (w1)) ...(In+ (wy)). Then by Proposition 2.6 and Corollary 2.7, a minimal prime
p' of

I I
S = Rlwy, ..., w,, o w—r;] ~ Rlwiy - oy Wy It () omt)
corresponds to a minimal prime p' of R[wy, ..., w,] that does not contain w . ..w,, which in turn

corresponds to a minimal prime p of R. By the same results, we have the following isomorphisms

S/p = (Blwi, ... wal/p)I(Rlws, ... w,]/p)])

(w1 ...wnt)
which is isomorphic to
(R/D)w1,- w0l TR/, 0y

which is isomorphic to

w W,

(R/p) [irse g, 2, LD

Now take z € (I,... 7In)'i. By Definition 3.1, this is equivalent to
z € ((wy,...,w,)S)" NR.

From the isomorphisms above, equivalently for all p € M(R)

or, equivalently

TE ((wl, ey wn) (R/p)[we, ..., Wy, M, e ,MD* NR/p

wn W,

By Definition 3.1 this is equivalent to 7 € (I1R/p, ... 7InR/p)'i. O

Theorem 3.3. Let R be a Noetherian ring of prime characteristic p such that either R is essentially
of finite type over an excellent local ring, or R,.q is F-finite. Let I, ... I, be ideals of R. Then

(Lo L)~ = (I I)E

Proof. Since T closure and multiple closure can both be tested modulo minimal primes ([ho2] 1.4

and 3.2 above), we can assume that R is a domain. Suppose that S = Rlwy, ..., wy, 1{:_11’ . ,i—”],
where w1, ..., w, are indeterminates. Pick z € (Iy,...,I,)". Then there is a nonzero c¢ in R such

that cz? € 7+ ...+ 1,7 for all large ¢ = p°. Since we have the inclusion R C S, it follows that for

all large ¢
ez € (L9 + ...+ L,9S C (w9, ..., w,9)S = (w,.... 7,wn)[q]s _
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Hence

*

zZ € ((wl,... ,wn)S)*ﬁR: (Il,... ,In)N.

To show the other inclusion, we choose an element ¢ in R such that R, is regular. Then

1 1
Sewy vy, = Re[wr, ... ywpy,—, .., —]
w1 Wy,
is regular, and therefore d = cw;...w, has a power ¢ that is a test element for the ring S

(Theorem 1.10). By multiplying ¢’ with appropriate powers of elements in i—ll, . ,i}—”ﬂ,

assume that ¢’ € R. .
Now take z € (I1,...,1I,)". Then

we may

d2? € (w9, ..., w,%)S

for all ¢ = p°.
So for a given ¢, we can find Cy,...,C, in S, such that

2 =Ciw %+ ...+ Cw,2.

By taking common denominators, we can find a positive integer N, which we can take to

be larger than ¢, such that C; = (wl.f‘;n)N for every ¢ = 1,...,n, where A; is a polynomial in
R[wy, ..., wy,]. So we get
2wy .. .wn)N =Auw %4+ ... .+ 4,0,
Since R[wy,...,w,] is a free module over R generated by the monomials in wy,...,w,, and
2?7 € R, we can without loss of generality take each A; to be is a monomial of the form
BiwlN...wi_leiN_qwi+1N ..w,N, where B; € R, for all i = 1,...,n. So we can write ¢/29
* A A B B
1 w4 n a_ 2L q LI
——w it ———m—m———w, = —w . w
(wy...w,)N et (wy ... w,)N " w et wpd

which implies that B; € 7 forall i = 1,...,n. So
e 9+ ...+ 1,7
This holds for all ¢, hence z € (I1,...,I,)* O

This equality translates the T'I closure of a set of ideals in R into the tight closure of an ideal
in an extension ring of R. In particular, most properties of tight closure can now be extended to
T1 closure.

3.2 Basic Properties of 7'/ Closure Via Multiple Closure

Theorem 3.4 (persistence of T'I closure). Let R be a Noetherian ring of prime characteristic
p that is either essentially of finite type over an excellent local ring or R,cq is F-finite. LetIy, ..., I,
be ideals of R. Suppose R — S is a homomorphism of rings. Then TI closure persists under this
map:

(I, ... L) S C (IS, ..., I.S): .
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Proof. The properties mentioned above for R are preserved when we pass to the ring Rt =

Rlwy, ..., wy, i—ll, e ,UIJ—"], since this is just a finitely generated algebra over R. Moreover, we

have the obvious induced map

LS IS
Rt —>Sf:S[w1,...,wn,1—,...,—]
w1 Wn

under which tight closure persists. Therefore, by Theorem 1.11,
(wy,...,w,)*St C ((wl, e ,wn)5f>

which implies that (Iy,...,I,)* S C (I1S,...,[,S)*. O

An interesting corollary is that multiple closure (or T'T closure) is indeed a blowup closure in a
larger ring.

Corollary 3.5. Let R be a Noetherian ring of prime characteristic p such that either R is essen-
tially of finite type over an excellent local ring, or R,.cq is F-finite. Let I, ... I, be ideals of R. If
S =Rlwy,...,wy,], and fori=1,... ,n, I! = I; + (w;) is an ideal of S, then

(I, L) = (L., L)~ = ((I},..., I.)S)" NR,

'Tn

Proof. From Theorem 3.4, [Ho2] Proposition 1.4, and Theorem 2.9 part (a) we have

rn

(Ii,...,L)*S C (L,S,..., L,S)*C (I},..., Il)*C (I,..., I))",

and so
(I,..., I,)* C (I{,... ,IT’Z)NQR.

On the other hand, let I’ and J’ denote the product and sum of I, ..., I}, respectively, and let

YT

G’ be a fixed set of generators for I’ such that w; ...w, € G’. By Theorem 2.3,

(I7,..., 1)~ = () (I'SU't)s))" N S.
feg’

From the previous paragraph, for every f € G', (I1,...,I,)* C (.]’S[I’t](ft))* N R. On the

other hand, by definition of multiple closure, we know that if f = wy...w,, then (I1,...,[,)" =
(J’S[I’t](ft))* N R. So we have

(L,....L)y*=(,...,I,)S)"NR.
O

One can see that tight closure commuting with localization and T'I closure commuting with
localization are equivalent properties.

Theorem 3.6. Let R denote the class of all Noetherian rings R, such that R is either essentially
of finite type over an excellent local ring or R,.q is F-Finite. Then TI closure commutes with
localization for all rings in R if and only if tight closure commutes with localization for all rings in

R.
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Proof. 1t is clear that if TI closure commutes with localization for any ring, then so will tight
closure, since the tight closure of an ideal is equal to the TI closure of a set of principal ideals
([Ho2] proposition 1.4).

Now suppose that tight closure commutes with localization, and take a set of ideals Iy, ..., I,
in a ring R described above. Let U be a multiplicative set in R. Then

U-'(,..., 1) =U"1 K(wl, , W) R[wy, ... ,wn,i—ll,...,i—:])*ﬂR}
::Qqu..ﬁmJU_Uﬂwh.”,um,£3.”,éﬁD*ﬂ[WJR

= (U 'nL,..., U'L,)~
O
In Section 3.4 we strengthen the statement of Theorem 3.6 using the notion of test exponents.

Theorem 3.7. Let R be a Noetherian ring of prime characteristic p such that either R is essentially
of finite type over an excellent local ring, or R,.q is F-Finite. Let I, ..., I, be ideals of R. Suppose
that ¢ € R° and z € R are such that cz? € 7+ ...+ L,9 for infinitely many powers ¢ of p. Then
z € (_[17 c.. ,In)i.

Proof. Let
I I,
S:R[wl,...,wn,—l,...,—].
w1 W,
Since ¢ € R°, it immediately follows that ¢ € S°; see Corollary 2.7. Also, ¢2? € [T+ ...+ I,?
implies that cz? € (wq,... 7wn)[‘ﬂ in S for infinitely many g. Therefore

I L\ .
L —{)HR:UL”whﬁ

gee ey
w1 W,

zZ € ((wl, ey wp) Rlwy, L wh,

3.3 Test Elements for 7'/ Closure

Theorem 3.3 allows us to develop a theory of test elements for T'I closure (see Section 1.2). Test
elements are useful since they help us decide whether a given element of a ring is in the T'I closure of
a given set of ideals in that ring. Test elements do not exist for integral closure (see Example 1.22),
and since the T'T closure of one ideal is the integral closure of that ideal (see Section 1.3), we expect
the test elements for T'I closure to depend on the ideals. We therefore first specify what we mean
by test elements for TI closure.

Definition 3.8. Let R be a Noetherian ring of prime characteristic p. Let Iy, ..., I, be ideals in
R. We say that ¢ € R° is a TI closure test element for Iy,..., I,, or in short, a test element for
I, ... I, if for every z € (I1,...,I,)% cz? € I] + ...+ I}, for all nonnegative powers ¢ of p. We
call the ideal generated by the test elements for Iy, ..., I, the test ideal for I, ..., I,, and denote
it by 7(I1,..., I,).

From the proof of Theorem 3.3 it immediately follows that:

Corollary 3.9. Let R be a Noetherian ring of prime characteristic p such that either R is essen-

tially of finite type over an excellent local ring, or R,cq is F-finite. Let I, ..., I, be ideals of R,
and let S = R[wy, ..., wy, 5;—11, ceey i—:‘l] Then

7(S)NRCr(L,...,I,).
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Here, 7(5) is the usual tight closure test ideal for S. We also obtain locally stable T1I closure
test elements for a set of ideals; these are T'I closure test elements of a set of ideals I, ..., I, that
remain test elements for these ideals after we localize the ring at any multiplicative set.

Theorem 3.10. Let R be a Noetherian ring of prime characteristic p such that either R is es-
sentially of finite type over an excellent local ring, or R,.q is F-finite. Let Iy,..., I, be ideals of
R. Let ¢ be an element of R° such that R, is reqular. Then for some positive integer N and all

choices a1 € I,...,a, € I, , (cay .. .an)N is a locally stable T1 closure test element for the ideals
I,... I,
Proof. Let U be a multiplicative set in R. Suppose z € (U4, ... ,U_lfn)i. Therefore
U1 UL\~ «
zZ € ((wl, oy Wy ) U R[wy, . .., w0y, S 7]) = ((w1,...,w,)U'S),
w1 Wy
where I I
S:R[wl,...,wn,—l,...,i],
w W,

and U denotes the multiplicative set U in R, as well as the image of U in §.
Since R, is regular, so is Scy, .., and so cw; ... w, to some positive power N is a locally stable
test element for S (see Theorem 1.10). This means that (cw; ...w,)" is a test element for U~LS,

and therefore (ca; ...a,)N = (cw; .. wn)]\[(g—l1 ... 22)N is a test element for U~'S for any a; € I,.
For any such test element d = (cay ...a,)" we have

dz? € (wy,...,w,)U'S
for all powers ¢ of p, and following the proof of Theorem 3.3, we get
d9 e UL+ ...+ U LY

for all nonnegative powers ¢ of p.
This implies that d is a TI closure test element for U='I;,...,U~'I,, and since this holds for
all U, we conclude that d is a locally stable T'I closure test element for Iy,..., I, in R. U

For ideals in a finitely generated algebra over a field of characteristic p, we are able to compute
explicit TI closure test elements. Using a theorem of Lipman and Sathaye, Hochster and Huneke
described specific tight closure test elements for such rings.

Theorem 3.11 (Corollary 1.5.5 [HH2]). Let k be a field of characteristic p and let R be a d-
dimensional geometrically reduced domain over k (meaning that k @ R is reduced) that is finitely
generated as a k-algebra. Let R = k[uy, ..., um]/(91,--.,9s) be a presentation of R as a homo-
morphic image of a polynomial ring. Then the (m — d) X (m — d) minors of the Jacobian matriz
(0gi/bu;) are contained in the test ideal of R, and remain so after localization and completion.
Thus, any element of the Jacobian ideal generated by all these minors that is in R° is a completely
stable test element.

Theorem 3.12. Let k be a field of characteristic p and let R be a d-dimensional geometrically

reduced domain over k that is finitely generated as a k-algebra. Let R = klu1, ..., um|/(91,--.,9s)
be a presentation of R as a homomorphic image of a polynomial ring. Take ideals I, ... I, of R
where for each i =1,... n, I; is minimally generated by the elements fi,..., f;,. of R. Then

Ilml_l .. .Inmn_ljm—d g T(Il’ e 7In) ’

where Jy_q is the ideal generated by the (m — d) X (m — d) minors of the Jacobian matriz J(R) =
(56)-
J
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duq SUm
duq SU m

zl 0 0 wy 0 0 0 0 0

:L‘,ln1 0 0 0 wy; 0 0 0 0

0 z? 0 0 0 ws 0 0 0

A 0 22, 0 0 0 0 ws 0 0

0 0 xy 0 0 0 0 Wy, 0

0 0 zy 0 0 0 0 0 Wy,

Figure 1: Part of the Jacobian matrix

Proof. Let S be the ring

I I,
S:R[wl,...,‘wn,—l,...,—].

w W,

Then there is a surjective map to S from the polynomial ring

H=k[uy, ... , Uy, Wy,..., W, 2T1,... ,m}nl,... e, ]
‘ j .
mapping z! to 5}—1 If for 1 <7< mnandl < j < m, Fjis an element of the polynomial ring
J .
Eluy, ..., U] whose image in R is f;, the kernel p of this map is generated by
Glyeve s §s, wlrl Fl,... , W1 F,}Zl,... ywpzy — FY'y oo wpxy, — FL

and possibly other polynomials. So S is isomorphic under this map to H/p. A part of the Jacobian
matrix for this presentation of S will then look like the matrix shown in Figure 1.

Now dim R = d, and sodim S = d+n. If m' = mq1+.. 4+m,,, then m+n+m'—(n+d) = m+m’—d,
and so we take the ideal Z of the (m +m’ — d) X (m 4+ m' — d) minors of this matrix. We note that
7 is contained in the ideal generated by the (m + m’ — d) x (m + m’ — d) minors of the Jacobian
matrix of S, and so from Theorem 3.11 we can conclude that Z is in the (tight closure) test ideal
for S. Corollary 3.9 then implies that ZN R C 7(I1, ..., I,).

To find elements of 7 that are in R, we make the following partition of the matrix:

Step 1. We take the m’ x m’ minor of the lower right corner of the matrix by taking the first n
columns, and for each ¢, 7 = 1,...,n, removing one of the columns (say the s;th column) involving
a w;. The outcome is xl .. .mg‘nwlml_l Lw,mr L

Step 2. The upper left corner of this matrix is just J(R). By taking the (m — d) X (m — d)
minors of the upper left corner we obtain 7,,_4.

So
$1 $n w mp—1 mn—lj CT
sy c - Ls, W1 o Wy m—d & L.
It follows that:
T myp—2 I mp—2
n 1 -1 -1
(—) oo (/) Ty oy w1 T wy ™ g C T,
w W,



and so

F) F'L™ % L™ *Jn_aCTI, (5)
since for each 1, x’sgw, = FSZz € 1.
By repeating Step 1, and for each ¢ = 1,...,n allowing s; to vary between 1 and m;, we see
that the inclusion in (5) will hold for 1 <s; < m; and i =1,...,n. It follows that

L. L, ™= L2 =0t L, gL C T
O

In practice, k being of characteristic zero or perfect and R being reduced ensures that R is
geometrically reduced (see tensor products over fields in [ZS1]).

Example 3.13. Let R = k[z,y, z] be a polynomial ring over a perfect field & of characteristic p.
Let I = (f,¢) and J = (h) be ideals of R. Then every element of I is a T'I closure test element for
the ideals I and J.

3.4 Test Exponents and the Localization of 7'/ Closure

A recent advance in tight closure theory is the development of test exponents. Hochster and Huneke
show in [HH4] that the existence of test exponents for tight closure is roughly equivalent to tight
closure commuting with localization. This result suggests that the study of test exponents could
provide a breakthrough in the localization problem for tight closure.

The situation is similar for T'I closure: below we define T'I closure test exponents, and establish
that T'I closure commuting with localization is related to the existence of test exponents, although
the result we get for T closure is somewhat weaker than the corresponding result for tight closure
in [HH4]. Nevertheless, Theorem 3.17 below strengthens our previous statement (Theorem 3.6)
on the equivalence of tight closure commuting with localization with T'I closure commuting with
localization.

We begin by stating some relevant facts from tight closure theory.

Definition 3.14 ([HH4]). Let R be a reduced Noetherian ring of positive prime characteristic p.
Let ¢ be a fixed test element for R, and let I be an ideal of R. Then ¢ = p® is called a test exponent
for ¢ and I, if whenever cu® € Il9] for some v € R and Q > ¢, then u € I*.

Thus the existence of test exponents reduces the process of checking whether an element u of
the ring is in the tight closure of an ideal I, to just checking if cu® € I9] for some large Q, rather
than all large (). It is easy to see that the existence of a test exponent for an ideal forces that
ideal to commute with localization (see Proposition 2.3 of [HH4]). The converse of this statement
is however difficult to prove. Here, we produce a parallel definition for T'I closure test exponents.
It will easily follow that the existence of such an exponent for a set of ideals will force the T'T
closure of those ideals to commute with localization. For the converse, we exploit the fact that T'T
closure can be described in terms of tight closure and apply results of [HH4] to achieve the desired

statement.
Definition 8.15. Let R be a Noetherian ring of prime characteristic p, and let Iy,..., I, be a
set of ideals in R. Let ¢ be a fixed test element for Iy,...,I, in R. Then ¢ = p° is called a test

exponent for ¢, Ir,. .., I,, if whenever cu® € I? 4+ ...+ I,9 for some u € R and Q > ¢, then
u € (Il, ... ,In)i.
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Theorem 3.16. Let R be a Noetherian ring of prime characteristic p, and let I, ..., I, be ideals
of R. Suppose that c is a locally stable test element for I, ..., I,, and suppose that ¢, I, ..., I,
have a test exponent q. Then TI closure commutes with localization for Iy, ..., I,.

Proof. Let U be a multiplicative set in R, and let 2/1 € (U~'Iy,...,U~I,)*. We have
c1eU ' L9+ ... +ULY,

and so for some u € U, ucz? € [T+ ...+ I,9 hence c(uz)? € " + ...+ I,%. Since ¢ is a test
exponent, this implies that uz € (Iy,...,I,)" and so

2/1e U NI, ..., L)~
O

Theorem 3.17. Let R be a Noetherian ring of prime characteristic p that is either essentially of
finite type over an excellent local ring or R,.q is F-Finite. Let I, ... I, be ideals of R. Suppose
that the tight closure of the ideal (wy,...,wy,) in the ring S = Rlwy, ... ,wy, I1/w1, ..., I w,]
commutes with localization at all primes ideals in Ass (S/(w1,...,w,)"). Let ¢ be a locally stable
test element for Iy,... I, in R, which is also a locally stable test element for the ring S (such
test elements exist; see the statement and proof of Theorem 8.10). Then ¢, I, ..., I, have a test
erponent.

Proof. Since tight closure of the ideal (wq,...,w,) commutes with localization at all primes in
Ass (S/(wy, ..., wy,)"), Theorem 2.4 of [HH4] implies that ¢, (wy, ..., w,) have a test exponent g.

Now suppose cu® € % + ...+ I,? for some v € R and Q > ¢q. Then cu® belongs to the ideal
(wr,... 7wn)[Q] in S, which implies that u € (wy,...,w,)". Hence

U € (wl,... ,wn)*ﬂR: (Il,... 7In)i,
which proves that ¢ is a test exponent for ¢, I, ..., I,. O

We are now able to strengthen one direction of the statement of Theorem 3.6.

Corollary 3.18. If R, S, I,...,I, are as in Theorem 3.17, then the TI closure of I,...,I,
commutes with localization at any multiplicative set in R, if the tight closure of (w1,...,wy,) in S
commutes with localization at all primes that belong to Ass (S/ (w1, ..., w,)").

3.5 T1I Closure in Equal Characteristic Zero

The translation of T'I closure into tight closure enables us to extend T'I closure to rings of charac-
teristic zero in an effective way. The definition of T'I closure in characteristic zero was introduced in
[Ho2], but due to the difficulty of working with the positive characteristic definition, several ques-
tions remained unanswered (see Section 1.3). In this section, we address some of those questions
for affine algebras over fields of characteristic zero. We show that T'I closure in equal characteristic
zero has similar features to tight closure in equal characteristic zero. We also introduce universal
test elements for T'I closure based on universal test elements for tight closure.
We begin by recalling the definition of T'I closure in characteristic zero:

Definition 3.19. Let R be a finitely generated algebra over a field K of characteristic zero, and let
I ={IL,...,I,} be aset ofideals of R. We say that an element z of R is in the tight integral closure
of T, denoted by Z%, if there exist descent data (D, Rp, I1 p, ..., I, p), such that for every maximal
ideal m of D, if k = D/m, then z} € Z;*, where 7}, denotes the set of ideals {I; g, ..., [, }, with
Liy =k @It p.
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See Definition 1.13 for the definition of descent data. Similar to the positive characteristic
situation, we can describe T'I closure in equal characteristic zero in terms of tight closure.

Theorem 3.20. Let R be an affine algebra over a field K of characteristic zero, which can be
presented as

R=Kluy,...,um]/(91,---,9s)

where uy, ..., Uy, are indeterminates and gy,...,gs are polynomials in Kuy, ..., uy]. Suppose
Ii,...,I, are ideals of R, and x € R. Then z € (I1,...,I,)* if and only if

I I, \"
x € ((‘wl, coywp) Rlwy, L wh, —1, e —])
wy

wn
where w1, ..., w, are indeterminates.

Proof. The main point of the proof is that one can construct descent data that work for the ideals

Ii,..., I, in R as well as for the ideal (wy,...,w,) in
I I
S =R[wi,... , Wp,—,...,—].
w1 W,
Suppose that for each ¢, I; = (f{, e 7f;l) in Rand foreveryiand j,1 <i<mnand 1<j<s,,
F} is a polynomial in Klui, ..., un] whose image in R is f;. Pick u € K[uy, ..., uy,] whose image
in R is z.
We can represent S as a polynomial ring
KUty ooy Uy Wiy ey Wyl .. ,ail,... oty a) ]
modulo the ideal J which is generated by g1, ..., gs, polynomials of the form ‘w,'a; —F} for1<i:<m

and 1 < j <'s;, and possibly other polynomials (see the proof of Theorem 3.12 for a more detailed
description of this isomorphism).

We can now construct descent data D for (wy,...,w,) and z in S by adjoining the coefficients
of all the generators of J in K and the coefficients of « in K to the ring of integers Z. We then
replace D by a localization at a single element to assure that it satisfies the properties of descent
data (Lemma of Generic Freeness, [HR]). This D will also work as descent data for Iy, ..., I, and
z in R, since it is an enlargement of some basic descent data that one would construct, and once
some descent data work, every enlargement of them work as well (see Section 1.2).

With this construction, we have that z € (Iy,...,I,)* if and only if for every maximal ideal m
of D, setting k = D/m

T € (Il,lm ce ,Imk)i

in Ry. Since k is a finite and therefore perfect field, Ry will be F-finite, and so equivalently
wn Wn

I I, *
Tk € ((wly--wwn)Rk[’wh...,'wml—’k"_"_’k]) ]

This is equivalent to z € ((w1, ..., w,)Sk)", and since this holds for all residue class fields k of D,
we conclude that equivalently z € ((wy,...,w,)S)". O

The description of T'I closure as tight closure in characteristic zero yields the following;:
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Theorem 3.21 (independence of choice of descent). Let K be a field of characteristic zero,
R a finitely generated K-algebra, I,...,I, ideals of R and v € R. Let (D,I1p,...,I,p) be
descent data for R, I, ..., I, and w. Ifu € (I1,...,I,)*, then for almost all mazimal ideals m of
D (i.e. for m in a dense open subset of MaxSpecD), if k = D/m, then ug € (It g, ..., I %) in
Ry.

Proof. By joining finitely many elements of K to D and localizing at an element, we obtain descent

data (A, S4,7v4) for

I I,
S = R[wy,. .. ,'wn,—l,...,—],
w Wn
v = (wy,...,wy) and u. We can localize both A and D at an element of D so that A will be free

and hence faithfully flat over D ([HR]).
Let m € MaxSpecD and let ¥ = D/m. Take m’ € MaxSpecA that lies over m, and let
kK = A/m'. Since tight closure is independent of the choice of descent, uj € yp* in Sp. On the

other hand Sy = k' @ Sk (where Sy, = Ri[wy, ..., wy, I;—’lk, cee {Z—:]) The map k — k' is a finite
separable extension of fields, since both k and k' are finite. It follows now from [HH3] Theorem
7.29a° that ug € ™ in Sk, which implies that ug € (I1 g, ..., In k)™ in Ry. O

We now introduce the notion of universal test element for T closure in the case where R is an
affine domain over a field of characteristic zero.

Definition 3.22. Let R be an affine algebra over a field of characteristic zero that is a domain
and let Iy,..., I, be ideals of R. Let (D,Rp,I p,...,I,p) be descent data. Then an element
cp € RY, is called a universal test element for I p,..., I, p if for every w € (Iy,...,I,)*, and
almost all m € MaxSpecD, if k = D/m, then

crur? € Lt + .o 4+ I,
for all positive powers ¢ of p, where p is the characteristic of k.

Similar to the situation in the positive characteristic case, we can explicitly calculate universal
test elements for the T'I closure of a set of ideals. We first state the analogous theorem for tight
closure.

Theorem 3.23 ([HH2] 2.4.10). Let A D Z be a domain finitely generated over Z with fraction
field F, and let R4 be a finitely generated A-algebra. Suppose that Rx is an absolute domain of
dimension d, that is, F @7 Ry (where F is the algebraic closure of the field F) is a domain. Let

Ry=Alur,...,uml/(91,---,9s)-

Then every element of the ideal generated by the (m — d) X (m — d) minors of the Jacobian matriz
(8gi/bu;) is a universal test element of R4 over A.

Similar to the positive characteristic situation, we can deduce

Theorem 3.24. Let K be a field of characteristic zero and let R be an equidimensional finitely
generated reduced algebra over K. Take ideals I, ..., I, of R where for each i1 =1,... n, I; is
minimally generated by the elements fi, ..., T’;li of R. Let (D,Rp,I1 p,...,I.p) be descent data
such that if F is the fraction field of D, then Ry is an absolute domain of dimension d. Suppose
that Rp is presented as

Rp = Dlur, ..., uml/(g1,--,9s).
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Then every nonzero element of

-1 -1
-Z—I,Dm1 cee In Dmn jm—d

)

is a uniwersal test element for It p, ..., I, p, where Ty _q is the ideal generated by the (m — d) x
(m — d) minors of the Jacobian matriz (8g;/u;).

Proof. Let uw € (I,...,I,)*. Then for almost all maximal ideals m of Rp, if k = D/m, uy €
(It gy - - -, Ing)*. Equivalently, by Theorem 3.20, uy € ((w1, ..., w,)Sk)", where
I I,
Sp = Rplwy,... W, =, ,— .
w Wn

If ¢ is a universal test element for Sp over S, then ¢ is a test element for S; for almost all
m € MaxSpecD, k = D/m (see [HH2] or Theorem 1.15). If ¢ happens to be in Rp, it will follow
that cp is a TI closure test element for the ideals Iy x,..., I,  for almost all m € MaxSpecD,
k = D/m, and so ¢ will be a universal test element for I p,..., I, p.

As in Theorem 3.12 we use the D-algebra structure of Sp and construct part of its Jaco-
bian matrix, and take appropriate minors of the Jacobian to generate universal test elements for
Lp,...,Inpin Rp.

With the presentation of Rp as a finitely generated D-algebra given above, Sp will be isomorphic
to the polynomial ring

1 1 n n
Dluy, ... U, Wiy ey Way Ty e T ye e Ty e, Ty

modulo the ideal generated by

1 1 1 1 n n n n
g1s--- 505, W1y _Flv"' y W1y, _le7"' y Wndy _Fl yoee s Wy, _an
and possibly other polynomials, where F} is an element of the polynomial ring Dluy, ..., un) whose

image in Rp is fJ’, 1 <2< n,1<j<m; A part of the Jacobian matrix of Sp will then look like
the matrix shown in Figure 1 on page 25.

We are given that dim Rx = d, and so dimSy = d+n. If m' = m; + ...+ m,, then
m4+n+m — (n+d)=m+ m’ — d, and so to obtain universal test elements via Theorem 3.23,
we are interested in the ideal generated by the (m 4 m’ —d) x (m 4+ m’ — d) minors of this matrix,
which is contained in the ideal generated by the (m+m’—d) X (m+ m’— d) minors of the Jacobian
matrix of Sp.

Following the exact same steps as in the proof of Theorem 3.12, we can see that this ideal will
contain the ideal

H = ILDml_l .. .In7Dm"_1jm_d.

Since H C Rp, every element of H gives a universal test element for I1 p, ..., I, p.
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