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2.7.2 Gröbner fan and state polytope . . . . . . . . . . . . . . 45
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Introduction

This book is based on six lectures and tutorials that were prepared for a work-
shop in computational commutative algebra at the Harish Chandra Research
Institute (HRI) at Allahabad, India in December 2003. The workshop was
aimed at graduate students and was conducted as part of the conference on
Commutative Algebra and Combinatorics held at HRI from December 8–13,
2003. The material in the early chapters is based heavily on the research
monograph Gröbner Bases and Convex Polytopes [Stu96] by Bernd Sturmfels.
We have attempted to explain the key concepts in this monograph to students
who are not familiar with either Gröbner bases or convex polytopes by build-
ing up the basics of these theories from scratch. The tutorials and examples
are meant to help this development. There is a special emphasis on actual
computations via various software packages.

Lectures 1, 3, and 5 were written and delivered by Rekha R. Thomas (Uni-
versity of Washington), and Lectures 2, 4, and 6 were written and delivered by
Diane Maclagan (Rutgers University). The tutorials for the lectures were pre-
pared and conducted by Tony Puthenpurakal of IIT Bombay and A.V. Jayan-
than of HRI (Tutorial 1); Amit Khetan of the University of Massachusetts,
Amherst (Tutorial 2); Leah Gold of Cleveland State University (Tutorials 3
and 5); and Sara Faridi of Dalhousie University (Tutorial 4). Amit Khetan
also contributed to Lecture 6.

We thank our hosts in India for the invitation to conduct this workshop and
their very warm hospitality. We also thank the students at the workhop for
helpful comments and corrections. Special thanks to Amitava Bhattacharya,
Tristram Bogart, Anders Jensen and Edwin O’Shea who helped to proofread
the final version. Finally, we acknowledge Sara Faridi for editing and creating
an index for the book, and Leah Gold for stellar proofreading.

Diane Maclagan (Rutgers University)
Rekha R. Thomas (University of Washington).
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Chapter 1

Gröbner Basics

1.1 Introduction

This first chapter aims to give a brief introduction to the basics of Gröbner
basis theory. There are many excellent books on Gröbner bases and their
applications such as [AL94], [CLO97], [CLO98], [GP02] and [KR00]. Our
account here will be brief, biased and focused.

Throughout this book, we let S := k[x1, . . . , xn] =: k[x] be a polynomial
ring over a field k. For the most part we may take k to be the field of complex
numbers C, the field of rational numbers Q, or the field of real numbers R. A
nonempty subset I ⊂ S is called an ideal of S if I is closed under

1. addition — i.e., for all f, g ∈ I, f + g ∈ I, and

2. multiplication by elements of S — i.e., h ∈ S, f ∈ I implies hf ∈ I.

An ideal I is finitely generated if there exists a subset {f1, . . . , ft} ⊂ I, called
a basis of I, such that I = {

∑t
i=1 hifi : hi ∈ S}. We write I = 〈f1, . . . , ft〉. In

the 1890s David Hilbert proved that every polynomial ideal has a finite basis.
This fact is known as the Hilbert basis theorem. In this lecture we define and
construct special bases of I called Gröbner bases.

The simplest polynomials in S are monomials, which are the polynomials
xa1

1 xa2
2 · · · xann where a := (a1, . . . , an) ∈ Nn. Here N stands for the set of

nonnegative integers. We denote this monomial by xa. If c ∈ k, then cxa is
called a term in S. Every polynomial is a finite sum of terms. The support of
a polynomial f ∈ S is the set supp(f) := {a ∈ Nn : f =

∑
cax

a, ca 6= 0}.

Example 1.1.1. If f = 3
2
x6

1x
8
5−
√

2x1x
16
3 −12 ∈ R[x1, . . . , x6], then supp(f) =

{(6, 0, 0, 0, 8, 0), (1, 0, 16, 0, 0, 0), (0, 0, 0, 0, 0, 0)} ⊂ N6.

1



2 CHAPTER 1. GRÖBNER BASICS

The variety of f1, . . . , ft ∈ S is the set

V(f1, . . . , ft) := {p ∈ kn : f1(p) = f2(p) = · · · = ft(p) = 0}.

The variety of the ideal I = 〈f1, . . . , ft〉 is

V(I) = {p ∈ kn : f(p) = 0, ∀ f ∈ I} = V(f1, . . . , ft).

1.2 Motivation

Given an ideal I ⊂ S and a polynomial f ∈ S, a fundamental problem is to
decide whether f belongs to I. This is known as the ideal membership problem.
We will see shortly that Gröbner bases can be used to solve this. We begin by
examining algorithms for ideal membership in the two well-known families of
univariate and linear ideals. For ease of exposition we choose the field k = C
for the first family and k = R for the second.

(i) Univariate Ideals: ([CLO97, §1.5]) Since C[x] is a principal ideal domain,
every ideal in C[x] is of the form I = 〈g〉 where g ∈ C[x]. The polynomial g is
of the form

g = cdx
d + cd−1x

d−1 + · · ·+ c1x + c0

where ci ∈ C. Without loss of generality, we may assume that the leading
coefficient cd is one. When this is the case, we say that g is monic. The degree
of g, denoted as deg(g), is then d.

• Finding the basis: It is not hard to show theoretically that I is
generated by any polynomial g in I of least degree. If I is given as
I = 〈f1, . . . , ft〉 ⊂ C[x], then g = gcd(f1, . . . , ft), the greatest common
divisor of f1, . . . , ft. The gcd can be computed by the Euclidean Algo-
rithm.

• Ideal membership: If f ∈ C[x] then, by the usual division algorithm
for univariate polynomials, there exist unique polynomials h and r ∈ C[x]
such that f = hg + r where r is the remainder and deg(r) < deg(g). The
polynomial f lies in I = 〈g〉 if and only if r = 0. Thus ideal membership
can be determined by the division algorithm.

• Solving {f1 = f2 = · · · = ft = 0}: Let g = gcd(f1, . . . , ft). Then the
variety V(f1, . . . , ft) equals V(g). The roots of a univariate polynomial
can be found via radicals when its degree is small and by numerical
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methods otherwise. See [Stu02] for a recent survey of methods for solving
polynomial equations.

(ii) Linear ideals: (See Example 1.5 in [Stu96]). Let A ∈ Zd×n be a matrix
with ith row Ai = (ai1, . . . , ain) and rank(A) = d. Consider the linear ideal

I =
〈 n∑
j=1

aijxj : i = 1, . . . , d
〉
⊆ R[x1, . . . , xn].

The variety V(I) is the (n− d)-dimensional vector space kerR(A) = {p ∈ Rn :
Ap = 0}.

A nonzero linear form f in I is a circuit of I if f has minimal support
(with respect to inclusion) among all linear forms in I. The coefficient vector
of a circuit of I is a vector in the row span of A of minimal support. For
J ⊆ [n] := {1, . . . , n} with |J | = d, let D[J ] := det(AJ) be the determinant
of AJ , where AJ is the submatrix of A with column indices J . The following
algorithm computes the circuits of I.

Algorithm 1.2.1. [Stu02, Chapter 8.3] Let B be an integer (n−d)×n matrix
whose rows form a basis of kerR(A). Then every vector in the row span of A
(which includes the rows of A) is a linear dependency of the columns of B
since BAt = 0. Thus the coefficient vectors of the circuits of I are the minimal
dependencies of the columns of B which are also called circuits of B.

For any (d + 1)-subset τ = {τ1, . . . , τd+1} ⊆ [n] form the vector

Cτ :=
d+1∑
i=1

(−1)i det(Bτ\{τi}) eτi

where ej is the jth unit vector of Rn. If Cτ is nonzero, then compute the
primitive vector obtained by dividing through with the gcd of its components.
The resulting vector is a circuit of B and all circuits of B are obtained this
way. Can you prove this?

Example 1.2.2. Let A =

(
1 2 3 4 5
6 7 8 9 10

)
. Then

I = 〈x1 + 2x2 + 3x3 + 4x4 + 5x5, 6x1 + 7x2 + 8x3 + 9x4 + 10x5〉.

The rows of

B =

 3 −4 0 0 1
2 −3 0 1 0
1 −2 1 0 0


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form a basis for kerR(A). Check that BAt = 0. Let us compute one of the
circuits of B. For τ = {1, 2, 3, 4},

Cτ = − det

 −4 0 0
−3 0 1
−2 1 0

 e1 + det

 3 0 0
2 0 1
1 1 0

 e2

− det

 3 −4 0
2 −3 1
1 −2 0

 e3 + det

 3 −4 0
2 −3 0
1 −2 1

 e4

which equals (−4,−3,−2,−1, 0). Hence −4x1−3x2−2x3−x4 or equivalently,
4x1 + 3x2 + 2x3 + x4 is a circuit of I.

The above algorithm provides a linear algebraic method for computing the
circuits of a linear ideal. The software package 4ti2 [Hem] computes circuits
via a different method. We now prove that Gaussian elimination computes
circuits of I. Let Id be the d× d identity matrix and C = (cij) be the Gauss-
Jordan form of A. Since the rank of A is d, we can assume, after possibly
permuting columns, that C has the form [Id|∗].

Proposition 1.2.3. Let C = (cij) = [Id|∗] ∈ Rd×n be the Gauss-Jordan form
(reduced row-echelon form) of A and gi = xi +

∑n
j=d+1 cijxj, i = 1, . . . , d be

the linear forms corresponding to the rows of C. Then

1. {g1, . . . , gd} is a minimal generating set for I, and

2. the linear forms g1, . . . , gd are circuits of I.

Proof. 1. Since every row of C is a linear combination of rows of A and
vice-versa, every gi is a linear combination of the fi’s and every fi a
linear combination of the gi’s. Thus I = 〈f1, . . . , fd〉 = 〈g1, . . . , gd〉.

2. Suppose g1 is not a circuit. Then there exists a linear polynomial g ∈ I
such that supp(g) ( supp(g1). However, g = t1g1 + . . . + tdgd for scalars
t1, . . . , td ∈ R. Since supp(g) ⊂ supp(g1), t2 = t3 = · · · = td = 0.
This implies that g = t1g, t1 6= 0 and hence supp(g) = supp(g1), a
contradiction. The same argument can be repeated for g2, . . . , gd.

Proposition 1.2.4. Assume the same setup as in Proposition 1.2.3.
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1. A polynomial f ∈ S is an element of I if and only if successively replacing
every occurrence of xi , i = 1, . . . , d in f with −

∑n
j=d+1 cijxj results in

the zero polynomial.

2. The linear system Ax = 0 can be solved by back-solving the “triangular-
ized” system g1 = g2 = · · · = gd = 0.

Proof. 1. Let f ′ be obtained from f by successively replacing every oc-
currence of xi, i = 1, . . . , d in f with −

∑n
j=d+1 cijxj. Then f ′ ∈

R[xd+1, . . . , xn]. This implies that f =
∑d

i=1 higi+f ′ where hi ∈ R[x]. If

f ′ = 0 then clearly f ∈ I. Conversely, if f ∈ I, then f ′ = f−
∑d

i=1 higi ∈
I ∩ R[xd+1, . . . , xn] = {0}. The last equality follows from Proposi-
tion 1.2.3(1) which implies that no polynomial combination of g1, . . . , gd
can lie in R[xd+1, . . . , xn].

2. This is the familiar method of solving linear systems by Gaussian elimi-
nation from linear algebra.

The proof of Proposition 1.2.4(1) is employing a division algorithm for
linear polynomials in many variables that succeeds in determining ideal mem-
bership for linear ideals. Note that when we perform Gauss-Jordan elimination
on A to obtain C = [Id | ∗], we are implicitly ordering the variables in R[x] such
that x1 > x2 > · · · > xn. The division algorithm used in the proof of Propo-
sition 1.2.4(1) replaces every occurrence of the “leading term” xi in gi with
xi − gi, which is the sum of the “trailing terms” in gi.

Thus the questions we started with have well-known algorithms and an-
swers when I is either a univariate principal ideal or a multivariate linear
ideal. We now seek a common generalization of these methods to multivariate
polynomials of arbitrary degrees, and their ideals. This leads us to Gröbner
bases of polynomial ideals.

1.3 Gröbner bases

In order to mimic the procedures from the last section, we first need to impose
an ordering of the monomials in S so that the terms in a polynomial are always
ordered. This is important if the generalized division algorithm is to replace
the leading term of a divisor by the sum of its trailing terms.

Definition 1.3.1. A term order � on S is a total order on the monomials of
S such that
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1. xa � xb implies that xaxc � xbxc for all c ∈ Nn, and

2. xa � x0 = 1 for all a ∈ Nn\{0}.

Part 2 of Definition 1.3.1 implies that every term order is a well-ordering
on the monomials of S which will be important for the finite termination of
the algorithms described in this chapter.

Example 1.3.2. The most common examples of term orders are the lexi-
cographic (lex) order and the graded reverse lexicographic order on S with
respect to a fixed ordering of the variables, such as x1 � x2 � · · · � xn.

In the lex ordering, xa � xb if and only if the left-most nonzero term in
a− b is positive. For example, if x � y � z, then

x3 � x2y � x2z � xy2 � xyz � xz2 � y3 � y2z � yz2 � z3.

In the (graded) reverse lexicographic order, xa � xb if and only if either
deg(xa) = |a| > deg(xb) = |b|, or deg(xa) = deg(xb) and the right-most
nonzero term in a − b is negative. Here |a| denotes the 1-norm of a which is
the degree of xa under the total-degree grading of S. Again if x � y � z, then

x3 � x2y � xy2 � y3 � x2z � xyz � y2z � xz2 � yz2 � z3.

The reverse lexicographic order defined here is degree-compatible or graded
which means that it first compares two monomials by degree and then breaks
ties using the rule described. We call it grevlex. Note that there are n! lex and
grevlex orders on S.

We will see in the next chapter that vectors in Rn≥0 can be used to define
term orders. We now fix a term order � on S. Given a polynomial f =∑

cax
a ∈ S, the initial term or leading term of f with respect to � is the

term cax
a in f such that xa � xa′ for all a′ ∈ supp(f) different from a. It is

denoted by in�(f). The initial monomial of f is the monic term xa. We can
write f = in�(f) + f ′.

Example 1.3.3. Let f = 3x1x
2
3 +
√

2x2
3 − x1x

2
2 ∈ C[x1, x2, x3] and � be

the reverse lexicographic order with x1 � x2 � x3. Then x1x
2
2 is the initial

monomial of f and −x1x
2
2 = in�(f) is the initial term of f .

We can now attempt to write down a division algorithm for multivariate
polynomials. The following algorithm is from [CLO97, Theorem 3].
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Algorithm 1.3.4. Division algorithm for multivariate polynomials
[CLO97, Theorem 3]
INPUT: A dividend f ∈ S, an ordered set of divisors {f1, . . . , fs}, fi ∈ S, and
a term order �.
OUTPUT: Polynomials a1, . . . , as, r ∈ S such that f =

∑s
i=1 aifi + r where

either r = 0 or no term in r is divisible by in�(f1), . . . , in�(fs).

INITIALIZE: a1 := 0, . . . , as := 0, r := 0; p := f
WHILE p 6= 0 DO

i := 1
divisionoccurred := false
WHILE i ≤ s AND divisionoccurred = false DO

IF in�(fi) divides in�(p) THEN
ai := ai + in�(p)/ in�(fi)
p := p− (in�(p)/ in�(fi))fi
divisionoccurred := true

ELSE
i := i + 1

IF divisionoccurred = false THEN
r := r + in�(p)
p := p− in�(p)

Example 1.3.5. (Taken from [CLO97, Chapter 3, §3])
Dividing f = x2y+xy2+y2 by the ordered list of polynomials {f1 = xy−1, f2 =
y2 − 1}, we get f = (x + y)f1 + f2 + x + y + 1. Switching the order of the
divisors and redoing the division gives f = (x + 1)f2 + x(f1) + 2x + 1. We
list all polynomials in the two division algorithms according to lex order with
x � y. Note that the remainders are different. This example shows that the
above division algorithm for multivariate polynomials has several drawbacks
one of which is that it does not produce unique remainders. This makes it
impossible to check ideal membership of f in 〈f1, f2〉 by dividing f by the
generators f1, f2.

The above example shows that arbitrary generating sets of ideals and a
naive extension of the usual division algorithm cannot be used for ideal mem-
bership. We will see that this difficulty disappears when the basis of the ideal
is a Gröbner basis.

A monomial ideal is an ideal generated by monomials. The initial ideal of
an ideal I ⊂ S is the monomial ideal

in�(I) := 〈in�(f) : f ∈ I〉 ⊆ S.
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A monomial ideal in S can be depicted by its staircase diagram in Nn which
is the collection of all exponent vectors of monomials in the ideal. Clearly, this
set of “dots” is closed under the addition of Nn to any of the dots. Equivalently,
the complement in Nn is a down-set or order ideal in Nn.

Example 1.3.6. Let I = 〈x2− y, x3−x〉 ⊂ k[x, y] and � be the lexicographic
order with x � y. The polynomial x(x2 − y) − (x3 − x) = −xy + x ∈ I
which shows that in�(I) ⊃ {x2, xy}. We will see later that in fact, in�(I) =
〈x2, xy, y2〉. The monomial ideal 〈x2, xy〉 has the following staircase diagram.

x2

xy

x

y

By the Gordan-Dickson Lemma [CLO97], all monomial ideals of S have
a unique minimal finite generating set consisting of monomials. Hence there
exists g1, . . . , gs ∈ I such that in�(I) = 〈in�(g1), . . . , in�(gs)〉.

Definition 1.3.7. 1. A finite set of polynomials G�(I) = {g1, . . . , gs} ⊂ I
is a Gröbner basis of I with respect to� if in�(I) = 〈in�(g1), . . . , in�(gs)〉.
We may assume that each in�(gi) is a monomial.

2. If {in�(g1), . . . , in�(gs)} is the unique minimal generating set of in�(I),
we say that G�(I) is a minimal Gröbner basis of I with respect to �.

3. A minimal Gröbner basis G�(I) is reduced if no non-initial term of any
gi is divisible by any of in�(g1), . . . , in�(gs).

4. The monomials of S that do not lie in the initial ideal in�(I) are called
the standard monomials of in�(I).
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Every term order produces a unique reduced Gröbner basis of I. Check
that a Gröbner basis of I is indeed a generating set (basis) of I.

Lemma 1.3.8. If G�(I) is a Gröbner basis of I with respect to the term order
�, then the remainder of any polynomial after division by G�(I) is unique.

Proof. Suppose G�(I) = {g1, . . . , gs} and we divide a polynomial f ∈ S by
G�(I) obtaining two remainders r1, r2 ∈ S. We get two expressions

f =
∑

aigi + r1 =
∑

a′igi + r2

which implies that r1−r2 ∈ I and that no term of r1−r2 is divisible by in�(gi)
for any gi ∈ G�(I). However this implies that r1 − r2 = 0 since otherwise the
nonzero term in�(r1 − r2) ∈ in�(I) and some in�(gi) would divide it.

Corollary 1.3.9. Gröbner bases solve the ideal membership problem.

Definition 1.3.10. 1. The unique remainder of a polynomial f ∈ S ob-
tained after dividing f with the reduced Gröbner basis G�(I) is called
the normal form of f with respect to G�(I).

2. The division of f by G�(I) is called reduction by G�(I).

The passage from an ideal to one of its initial ideals is a “flat” deformation
that preserves several invariants such as Hilbert function, dimension and de-
gree. This property has allowed Gröbner bases and initial ideals to become an
important theoretical tool in algebra as it allows one to study a complicated
ideal by passing to monomial ideals. The details of this deformation point of
view can be found in Chapter 15 of [Eis94]. The connection was first worked
out by Dave Bayer in his Ph.D. thesis [Bay82].

1.4 Buchberger’s algorithm

In [Buc65] Buchberger developed an algorithm to compute the reduced Gröbner
basis of an ideal I = 〈f1, . . . , ft〉 with respect to any prescribed term order �
on S. The algorithm needs as a subroutine the calculation of the S-pair of two
polynomials f and g, denoted by S-pair(f, g). Let lcm(in�(f), in�(g)) be the
least common multiple of in�(f) and in�(g). This lcm is the product of the
coefficients in in�(f) and in�(g) and the lcm of the initial monomials in in�(f)
and in�(g). Then

S-pair(f, g) =
lcm(in�(f), in�(g))

in�(g)
f − lcm(in�(f), in�(g))

in�(f)
g.
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We also let remG(h) denote the remainder obtained by dividing the polynomial
h by an ordered list of polynomials G.

We now describe Buchberger’s algorithm. The algorithm hinges on the
important fact that a set of polynomials G form a Gröbner basis with respect
to � if and only if for each pair f, f ′ ∈ G, remG(S-pair(f, f ′)) = 0. The proof
can be found in any of the books mentioned in the introduction. We reproduce
the algorithm from [CLO97, Theorem 2].

Algorithm 1.4.1. Buchberger’s algorithm [CLO97, Theorem 2]
INPUT: F = {f1, . . . , ft} a basis of the ideal I ⊂ S and a term order �.
OUTPUT: The reduced Gröbner basis G�(I) of I with respect to �.

G := F
REPEAT

G′ := G
For each pair {p, q}, p 6= q in G′ do

S := remG′(S-pair(p, q))
If S 6= 0 then G := G ∪ {S}

UNTIL G = G′.
G is a Gröbner basis for I at this point.

Producing a minimal Gröbner basis with respect to �.
Let G be a Gröbner basis of I. Make all elements of G monic by dividing each
by its leading coefficient. For each g ∈ G, remove it from G if its leading term
is divisible by the leading term of another element g′ ∈ G.

Producing the reduced Gröbner basis with respect to �.
G′ := G where G is a minimal Gröbner basis of I, G�(I) := ∅
For each g ∈ G do

g′ = remG′\g(g); G�(I) = G�(I) ∪ {g′}; G′ = G′\{g} ∪ {g′}.

Example 1.4.2. For the ideal I = 〈f1 := x2 − y, f2 := x3 − x〉 with the
lex order x � y, we begin by setting G = {f1, f2}. The first step of the
Buchberger algorithm computes S-pair(f1, f2) = f2 − x(f1) = xy − x. Note
that remG(xy − x) = xy − x. Thus we define f3 := xy − x and update G
to G = {f1, f2, f3}. Next check that S-pair(f1, f3) = y2 − x2 which reduces
modulo f1 to f4 := y2 − y. Therefore, G = {f1, f2, f3, f4}. All other S-pairs
reduce to zero modulo G. The reduced Gröbner basis of I with respect to �
is {f1 = x2 − y, f3 = xy − x, f4 = y2 − y}.
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Definition 1.4.3. A finite subset of I is a universal Gröbner basis of I if it is
a Gröbner basis of I with respect to every term order.

In Chapter 2 we will see that every ideal has a universal Gröbner basis.
We construct a universal Gröbner basis for linear ideals.

Proposition 1.4.4. (Linear ideals revisited)

1. The set of linear forms {g1, . . . , gd} computed from the Gauss-Jordan
form C of the matrix A in Proposition 1.2.3 is the reduced Gröbner basis
of the linear ideal I = 〈g1, . . . , gd〉 with respect to any term order such
that x1 � · · · � xn.

2. The set of all circuits of I is a minimal universal Gröbner basis of I.
([Stu96, Proposition 1.6]).

Proof. 1. Note that the terms of each gi = xi +
∑n

j=d+1 cijxj are already
ordered in decreasing order with respect to the above lex order and that
G = {g1, . . . , gd} is reduced in the sense that no term of any gi other
than xi lies in in�(I) = 〈x1, . . . , xd〉. To show that G is a Gröbner basis
it suffices to show that the remainder obtained by dividing S-pair(gi, gj)
with respect to G is zero for all i 6= j ∈ [d]. This follows from the
following general fact: If f = in�(f) + f ′ and g = in�(g) + g′ are two
monic polynomials such that in�(f) and in�(g) are relatively prime, then

S-pair(f, g) = in�(g) f − in�(f) g

which reduces to zero modulo {f, g}. This is an important criterion
for avoiding S-pairs that will eventually reduce to zero, known as Buch-
berger’s first criterion.

2. (proof from [Stu96]) The argument in part 1 shows that every reduced
Gröbner basis of I arises from a Gauss-Jordan form. We argued earlier
that all the elements of these Gröbner bases are circuits of I. Thus the
circuits of I form a universal Gröbner basis of I.

To prove minimality, we need to argue that each circuit l appears in some
reduced Gröbner basis of I. Let � be a term order such that {xi : i 6∈
supp(l)} � {xi : i ∈ supp(l)} and G := G�(I). The term order makes
any monomial not containing a variable in the first group of variables
cheaper, regardless of its degree, than any monomial containing a variable
in the first group. Such term orders are known as elimination orders. The
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lex order is an example of an elimination order with {x1} � {x2} � · · · �
{xn}. Suppose l does not appear in G. Then there exists l′ ∈ G such that
in�(l) = in�(l′). By the elimination property of �, supp(l′) ⊆ supp(l)
and hence supp(l − l′) ( supp(l). However this contradicts that l is a
circuit of I as l− l′ is a nonzero linear form with strictly smaller support.

Here is another example of a universal Gröbner basis.

Proposition 1.4.5. [Stu96, Example 1.4] Consider a polynomial ring in 2m
indeterminates: (

x11 x12 · · · x1m

x21 x22 · · · x2m

)
and the ideal I generated by the 2 × 2 minors Dij = x1ix2j − x1jx2i, 1 ≤ i <
j ≤ m of the above matrix. Then {Dij} is a universal Gröbner basis of I.

Finding universal Gröbner bases is a hard task in general. Chapter 2 gives
a general algorithm for finding a universal Gröbner basis of an ideal. In special
cases, a universal Gröbner basis can be described using intrinsic features of the
ideal. In Chapter 3 we will construct a universal Gröbner basis for the special
class of ideals called toric ideals.
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1.5 Tutorial 1

Macaulay 2 [GS] is a mathematical software package, freely available from
http://www.math.uiuc.edu/Macaulay2/

Start Macaulay 2 with the command “M2” (without quotes), and you will be
provided with an input prompt. We begin by illustrating some of the basic
commands that we need in this tutorial. Most often the commands are self
explanatory. We have provided an appropriate description whenever they are
not.

i1 : 2+2

o1 = 4

i2 : 3/5 + 7/11

68

o2 = --

55

o2 : QQ

i3 : 2*3*4

o3 = 24

i4 : 2^8

o4 = 256

i5 : 6!

o5 = 720

Note that an input to Macaulay 2 is on a line that starts with an i and the
outputs are on lines that start with o. For instance, o2 is the answer to the
input 3/5+7/11 in i2. The second output line o2 tells you what sort of object
the output is. In this case, it is an element of the ring Q which in Macaulay 2
is denoted as QQ.

Rings and Fields in Macaulay 2 :

ZZ - The ring of integers.
QQ - The field of rationals.
RR - The field of reals.
CC - The field of complex numbers.
ZZ/p - Finite field of order p, where p is a prime number.

Warning : Macaulay 2 does not accept rings of order a composite integer.
Polynomial rings are defined over ZZ, ZZ/p and QQ.

i6 : k = ZZ/32003
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o6 = k

o6 : QuotientRing

i7 : R = k[x,y,z]

o7 = R

o7 : PolynomialRing

i8 : R=QQ[a_0..a_6]

o8 = R

o8 : PolynomialRing

Different term orders in Macaulay 2 :

The default order in Macaulay 2 is the graded reverse lexicographic order.
Other orders one can use are :

GRevLex Graded Reverse Lexicographic order (default)
GLex Graded Lexicographic order
Lex Lexicographic order
Eliminate n Elimination order, eliminating first n variables
ProductOrder {n1, ..., nv} Product order
Weight Order Represent the term order using a vector

(See Chapter 2 for details)

i9 : R = QQ[x,y,z, MonomialOrder => GLex]

o9 = R

o9 : PolynomialRing

i10 : R = QQ[a..e, Weights => {2,89,100,23,1}, MonomialSize => 16]

o10 = R

o10 : PolynomialRing

In line i10, the numbers in the curly brackets represent the weight for each
variable. Setting MonomialSize => n specifies that monomial exponents may
be as large as 2(n−1) − 1. The default value is 8, allowing for exponents up to
127. Currently the maximum value is 16, allowing for exponents up to 32767.

Ideals of a polynomial ring:

i11 : R = QQ[x,y,z]

o11 = R

o11 : PolynomialRing

i12 : I = ideal (x^2+y^2, x^3*y+y^3)

2 2 3 3

o12 = ideal (x + y , x y + y )

o12 : Ideal of R



1.5. TUTORIAL 1 15

The command leadTerm(I) gives the generators of the initial ideal of I
with respect to the term order specified in the ring R.

i13 : leadTerm(I)

o13 = | x2 xy3 y5 |

1 3

o13 : Matrix R <--- R

i14 : gb I

o14 = | x2+y2 xy3-y3 y5+y3 |

o14 : GroebnerBasis

i15 : J = ideal(x^3*y+x*y^2,x^4,x^3*y^2)

3 2 4 3 2

o15 = ideal (x y + x*y , x , x y )

o15 : Ideal of R

i16 : I + J

2 2 3 3 3 2 4 3 2

o16 = ideal (x + y , x y + y , x y + x*y , x , x y )

o16 : Ideal of R

i17 : I*J

5 3 3 3 2 4 6 4 2 5 2 3 4

o17 = ideal (x y + x y + x y + x*y , x + x y , x y + x y ,

6 2 4 3 3 4 5 7 4 3 6 3 3 5

x y + x y + x y + x*y , x y + x y , x y + x y )

o17 : Ideal of R

To suppress the output, put a semicolon at the end of the command.

i18 : intersect(I, J);

o18 : Ideal of R

i19 : I:J

2 2

o19 = ideal (y + x, x*y - y, x - x)

o19 : Ideal of R

1. Define the polynomial ring Q[x, y, z, w], ideals I = 〈x2 + 2xy3, z2 −
w3, xz − 3yw〉 and J = 〈y3 − 2zw2, z2 − 3yw, x2y − z2w〉. Compute
initial ideal and Gröbner bases of I, J, I + J, IJ, I : J and I ∩ J with
respect to the monomial orderings lex and grevlex.
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Do the following exercises without the help of Macaulay 2. They have been
taken from [CLO97].

2. Use Buchberger’s algorithm to compute Gröbner basis of the ideal I =
〈y − z2, z − x3〉 ∈ Q[x, y, z] with grevlex and lex orders.

3. Let f, g ∈ S be such that in�(f) and in�(g) are relatively prime and
the leading coefficients of f and g are 1. Show that S-pair(f, g) = −(g−
in�(g))f +(f−in�(f))g and hence reduce to zero modulo {f, g}. Deduce
that the leading monomial of S-pair(f, g) is a multiple of the leading
monomial of either f or g in this case.

4. Show that the polynomials f1 = x− y2w, f2 = y − zw, f3 = z −w3, f4 =
w3 − w ∈ Q[x, y, z, w] with lex ordering where x � y � z � w form a
Gröbner basis for the ideal they generate. Show that they do not form
a lex Gröbner basis if w � x � y � z.

5. (Division algorithm)

Divide f = xy2 + 1 by f1 = xy + 1 and f2 = y + 1 using lex order with
x � y.

6. Solve the linear equations

3x + 4y − z + w = 0

x− 3y + 3z − 4w = 0

x− y + z − w = 0

by computing a Gröbner basis of the ideal generated by the polynomials

f1 = 3x + 4y − z + w, f2 = x− 3y + 3z − 4w, and f3 = x− y + z − w.

Note that the matrix corresponding to the Gröbner basis is a row reduced
Gauss-Jordan form of the matrix of the original equations.

The next 3 exercises are from [Stu96, p. 6].

7. Compute all circuits in the following ideal of linear forms:

I = 〈2x1 + x2 + x3, x2 + 2x4 + x5, x3 + x5 + 2x6〉.
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8. Let U be a universal Gröbner basis for an ideal I in k[x1, . . . , xn]. Show
that for every subset Y ⊆ {x1, . . . , xn} the elimination ideal I ∩ k[Y ] is
generated by U ∩ k[Y ].

9. Note that for a term order �, in�(f) in�(g) = in�(fg) for f, g ∈ S. Show
that in�(I) in�(J) ⊆ in�(IJ) for any two ideals I and J . Find I and J
such that this containment is proper.

10. Saturation of ideals: [CLO97, Ex. 8, p. 196], The following exercise
illustrates an algorithm to compute the saturation of ideals. We need
this exercise in Lecture 3. Let I ⊂ S be an ideal, and fix f ∈ S. Then
the saturation of I with respect to f is the set

(I : f∞) = {g ∈ S | fmg ∈ I for some m > 0}.

(a) Prove that (I : f∞) is an ideal.

(b) Prove that we have the ascending chain of ideals

(I : f) ⊆ (I : f 2) ⊆ (I : f 3) ⊆ · · ·

(c) By part (b) and the Ascending Chain Condition we have (I : fN) =
(I : fN+1) = · · · for some integer N . Prove that (I : f∞) = (I :
fN).

(d) Prove that (I : f∞) = (I : fm) if and only if (I : fm) = (I : fm+1).

When the ideal I is homogeneous and f is one of the variables xn then
one can use the following strategy to compute the saturation [Stu96,
Lemma 12.1].

Fix the grevlex order induced by x1 � x2 � . . . � xn and let G be a
reduced Gröbner basis of a homogeneous ideal I ⊂ S.

(e) Show that the set G′ =

{f ∈ G : xn does not divide f}∪{f/xn : f ∈ G and xn divides f}

is a Gröbner basis of (I : xn).

(f) Show that a Gröbner basis of (I : x∞n ) is obtained by dividing each
element f ∈ G by the highest power of xn that divides f .
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1.6 Solutions to Tutorial 1

1. We provide Macaulay 2 code for the solution of Exercise 1. The calcula-
tion shown here is only for the lex order and only for some of the ideals.
The commands can be repeated on the other ideals. The grevlex order
can be done similarly. We show how to change the monomial order in
the ring at the end.

i1 : S = QQ[x,y,z,w, MonomialOrder=>Lex, MonomialSize=>16]

o1 = S

o1 : PolynomialRing

i2 : I = ideal(x^2+2*x*y^3, z^2-w^3, x*z-3*y*w)

2 3 2 3

o2 = ideal (x + 2x*y , z - w , x*z - 3y*w)

o2 : Ideal of S

i3 : J = ideal(y^3-2*z*w^2, z^2-3*y*w, x^2*y-z^2*w)

3 2 2 2 2

o3 = ideal (y - 2z*w , - 3y*w + z , x y - z w)

o3 : Ideal of S

i4 : IplusJ = I + J;

i5 : toString IplusJ

o5 = ideal(x^2+2*x*y^3,z^2-w^3,x*z-3*y*w,y^3-2*z*w^2,

-3*y*w+z^2,x^2*y-z^2*w)

i6 : ItimesJ = I*J;

o6 : Ideal of S

i7 : IcolonJ = I:J;

o7 : Ideal of S

i8 : IintersectJ = intersect(I,J);

Abort (y/n)? y

returning to top level

The command intersect(I,J) took more than several seconds and so
it was aborted by the user by typing CTRL C. The reader can try it.
Sometimes Macaulay 2 will bring you back to the session, but other times
it will quit which is what happened here. So we restart the program
and redo our calculations to continue. We next calculate the reduced
Gröbner basis and initial ideal with respect to lex order for the ideal I.
The commands can be repeated on the other ideals.

i7 : GI = gens gb I
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o7 = | z2-w3 xz-3yw x2+2xy3 xw3-3yzw xyw+2y4w

y4zw+3/2y2w2 y4w3+3/2y2zw |

1 7

o7 : Matrix S <--- S

i8 : leadTerm GI

o8 = | z2 xz x2 xw3 xyw y4zw y4w3 |

1 7

o8 : Matrix S <--- S

i9 : leadTerm I

o9 = | z2 xz x2 xw3 xyw y4zw y4w3 |

1 7

o9 : Matrix S <--- S

Note that the commands in i8 and i9 produced the same answer. We
now change the monomial order to grevlex and import ideals into this
new ring R. Note that since grevlex is the default order, no monomial
order needs to be specified.

i14 : R = QQ[gens S, MonomialSize => 16]

o14 = R

o14 : PolynomialRing

i15 : I = substitute(I,R)

3 2 3 2

o15 = ideal (2x*y + x , - w + z , x*z - 3y*w)

o15 : Ideal of R

i16 : GI = gens gb I

o16 = | xz-3yw w3-z2 xy3+1/2x2 y4w+1/2xyw y4z2+3/2y2zw |

1 5

o16 : Matrix R <--- R

i17 : leadTerm I

o17 = | xz w3 xy3 y4w y4z2 |

1 5

o17 : Matrix R <--- R

We now retry the computation of I ∩ J in the ring R with grevlex order
and see that it does compute the intersection. We show just the initial
ideal of I ∩ J with respect to grevlex.

i18 : J = substitute(J,R);
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i19 : IintersectJ = intersect(I,J);

i20 : numgens IintersectJ

o20 = 23

i21 : leadTerm IintersectJ

o21 = | xz3 z2w3 xz2w2 x2zw2 xy2z2 x3z2 xy3z x2y2z x3yz

y3w3 x2yw3 y4w2 x2yz2w y4zw y5w xy4w y4z2 xy5 x2y4 |

1 19

o21 : Matrix R <--- R

Now that we have the ideal I ∩ J in Macaulay 2, the reader can try to
change the term order in the ring back to lex and compute the required
initial ideal and Gröbner basis.

2. With respect to the lex ordering x � y � z, the leading terms of f =
y − z2 and g = z − x3 are y and −x3 respectively. By the division
algorithm, we obtain that S-pair(f, g) = x3z2 − yz and x3z2 − yz =
−z2(z − x3)− z(y − z2). Hence {f, g} is a Gröbner basis for I.

Similarly, one can see that {f, g} is a Gröbner basis with respect to the
grevlex order as well.

3. Since in�(f) and in�(g) are relatively prime, S-pair(f, g) = in�(g)f −
in�(f)g. Thus, every monomial of S-pair(f, g) is divisible by either
in�(f) or in�(g). In particular, this is true for the leading monomial
of S-pair(f, g).

4. The leading terms of fi for 1 ≤ i ≤ 4 are x, y,z and w3 respectively. We
tabulate the S-pairs below.
S-pair(f1, f2) = −y3w + xzw = −y2w(f2) + zw(f1).
S-pair(f1, f3) = −y2wz + xw3 = w3(f1)− y2w(f3).
S-pair(f1, f4) = −y2w4 + xw = w(f1)− y2w(f4).
S-pair(f2, f3) = −z2w + yw3 = w3(f2)− zw(f3).
S-pair(f2, f4) = −zw4 + yw = w(f2)− zw(f4).
S-pair(f3, f4) = −w6 + zw = w(f3)− w3(f4).
The second equalities above are obtained by applying the division algo-
rithm. Hence, the fi’s form a Gröbner basis for I.

If the term order is w � x � y � z, then the leading terms of the fi’s
are −wy2, −zw, −w3 and w3 respectively. Note that the S-pair(f1, f2) =
−zx + y3 is not divisible by the leading term of any of the fi’s.

5. Check that f = y(f1)− f2 + 2.
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6. Fix any term order with x � y � z � w. Recall that f1 = 3x+4y−z+w,
f2 = x − 3y + 3z − 4w and f3 = x − y + z − w. It can be checked
that S-pair(f1, f2) = m1 = 13y − 10z + 13w, S-pair(f2, f3) = m2 =
−2y + 2z − 3w, and S-pair(f1, f3) = m3 = 7y − 4z + 4w. None of these
S-pairs are divisible by f1, f2, f3 and hence the current partial Gröbner
basis consists of f1, f2, f3,m1,m2 and m3. Computing all S-pairs and
their normal forms we see that the reduced Gröbner basis of the ideal
is x + 1/2w, y − 2/3w, z − 13/6w. Check that the matrix of coefficient
vectors of these three polynomials is a reduced row echelon form of the
original matrix of coefficient vectors.

7. Let

A =

2 1 1 0 0 0
0 1 0 2 1 0
0 0 1 0 1 2

 .

Then one can see that the rows of

B =

0 2 −2 −1 0 1
1 −1 −1 0 1 0
1 0 −2 0 0 1


form a basis for ker(A). Let τ = {3, 4, 5, 6}. We compute Cτ , circuit
corresponding to τ .

Cτ = − det

−1 0 1
0 1 0
0 0 1

 e3 + det

−2 0 1
−1 1 0
−2 0 1

 e4

− det

−2 −1 1
−1 0 0
−2 0 1

 e5 + det

−2 −1 0
−1 0 1
−2 0 0

 e6

= (0, 0, 1, 0, 1, 2).

Therefore, x3+x5+2x6 is a circuit of I. By varying the set τ over all four
element subsets of {1, . . . , 6}, one can compute all circuits of I. They are
{x3+x5+2x6, x2−x3+2x4−2x6, 2x1+x2−x5−2x6, x1+x3−x4+x6, 2x1+
x3−2x4−x5, x1−x4−x5−x6, x2+2x4+x5, 2x1+x2+x3, x1+x2+x4−x6}.

8. Without loss of generality assume Y = {x1, . . . , xr} for some r ≤ n.
Consider an elimination term order � on S with the property that
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{xr+1, . . . , xn} � {x1, . . . , xr}. Since U is a universal Gröbner basis for
I, U is a Gröbner basis of I with respect to the term order �. To show
that U ∩k[Y ] generates I∩k[Y ] it suffices to show that U ∩k[Y ] contains
a Gröbner basis for I ∩ k[Y ]. Let f ∈ I ∩ k[Y ]. Since U is a Gröbner
basis for I with respect to �, there exists an element u ∈ U such that
in�(u) divides in�(f) ⊂ k[Y ]. This implies that in�(u) and hence all of
u lies in k[Y ] since � is the elimination order defined above. Therefore,
we conclude that in�(I ∩ k[Y ]) ⊆ 〈in�(u) : u ∈ U ∩ k[Y ]〉. Since the
reverse containment is obviously true, we conclude that in�(I ∩ k[Y ]) =
〈in�(u) : u ∈ U ∩ k[Y ]〉. By the definition of a Gröbner basis, U ∩ k[Y ]
is a Gröbner basis for I ∩ k[Y ] with respect to � and hence generates
I ∩ k[Y ].

9. We prove that in�(I) in�(J) ⊆ in�(IJ). Let f ∈ in�(I) and g ∈ in�(J).
Since in�(I) and in�(J) are generated by initial forms of elements in I
and J respectively, we may assume that f = in�(f1) and g = in�(g1) for
some polynomials f1, g1 ∈ k[x1, . . . , xn]. Then f1g1 ∈ IJ and by the first
part in�(f1g1) = fg. Therefore fg ∈ in�(IJ). Hence in�(I) in�(J) ⊆
in�(IJ).

Let S = k[x, y] with grevlex monomial order and I = (x5, x4y2, x2y5(x +
y), xy8, y10). Then it can be seen that

in(I) = (x5, x4y2, x3y5, x2y7, xy8, y10),

in(I)2 = (x10, x9y2, x8y4, x7y7, x6y8, x5y10, x4y12, x2y16, x3y15, xy18, y20),

in(I2) = (x10, x9y2, x8y4, x7y6, x6y8, x5y10, x4y12, x3y14, x2y16, xy18, y20).

Therefore x7y6 ∈ in(I2) but x7y6 /∈ in(I)2.

10. (a) If g, h ∈ (I : f∞), then fmg, fnh ∈ I. Thus fmax(m,n)(g + h) ∈ I.
This implies (g + h) ∈ (I : f∞). Now if g ∈ (I : f∞), then fmg ∈ I
for some m > 0. This implies that h(fmg) ∈ I. But h(fmg) =
fm(hg). Thus hg ∈ (I : f∞). Therefore (I : f∞) is an ideal.

(b) If fmg ∈ I, then fm+1g ∈ I. Therefore the chain of inequalities
follows.

(c) Let g ∈ (I : f∞). Thus fmg ∈ I for some m > 0. If m ≤ N , then
g ∈ (I : fm) ⊆ (I : fN). If m > N , then since (I : fN) = · · · = (I :
fm), g ∈ (I : fN).

(d) Clearly, if (I : f∞) = (I : fm), then (I : fm) = (I : fm+1). Now
suppose that (I : fm) = (I : fm+1). Assume by induction that for
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any 0 ≤ r < `, (I : fm+r) = (I : fm+r+1). Then (I : fm+l+1) =
((I : fm+l) : f) = ((I : fm+l−1) : f) = (I : fm+l). Therefore,
(I : f∞) = (I : fm).

(e) Let J = (I : xn). To prove that G′ is a Gröbner basis of J with
respect to the given reverse lexicographic order, it suffices to show
that {in(g) : g ∈ G′} generates in(J). Let f ∈ J be a homogeneous
element. Since G is a Gröbner basis for I and xnf ∈ I, there exists
homogeneous ri ∈ S such that xnf =

∑
i rigi where gi ∈ G. Since

xnf and all the elements of G are homogeneous, in fact, in(xnf) =∑
i ri in(gi). Since the term order is reverse lex with xn cheapest,

in(xnf) = xn in(f). Therefore in(f) =
∑

xn-in(gi)
(ri/xn) in(gi) +∑

xn|in(gi)
ri(in(gi)/xn). Again due to the choice of term order, it is

clear that if xn | in(g), then xn|g, for any homogeneous element g.
Therefore in(gi)/xn = in(gi/xn) and hence we obtain that in(J) is
generated by {in(g) : g ∈ G′}.

(f) We prove by induction that the set Gm =
⋃m−1
i=0 {(f/xin) : f ∈

G and xin is the largest power ofxn dividing f}
⋃
{f/xmn : f ∈ G

and xmn divides f} is a Gröbner basis for (I : xmn ), m ≥ 1. The
assertion for m = 1 is proved in (e). Assume by induction that
m > 1 and the assertion holds for all ` < m. Let J = (I : xm−1

n ).
By induction, Gm−1 is a Gröbner basis for J . Now using the fact
(I : xmn ) = (J : xn) and proceeding as in (e), we one proves the
assertion.
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Chapter 2

The Gröbner Fan

2.1 Introduction

The main goal of this chapter is to introduce the Gröbner fan of an ideal in a
polynomial ring, which is a polyhedral fan associated to the given ideal, with
one top-dimensional cone for each initial ideal of the ideal. No familiarity with
polyhedral theory is assumed. Throughout this chapter, the polynomial ring
is written as S = k[x1, . . . , xn], with no assumptions on the field k. We denote
by Rn≥0 the set of vectors v ∈ Rn with vi ≥ 0 for 1 ≤ i ≤ n.

2.2 Some more Gröbner facts

We begin by introducing some more Gröbner facts. Recall that a Gröbner
basis, and hence the corresponding initial ideal, for an ideal is determined by
a term order on the monomials in the polynomial ring. Note that there are an
uncountable number of different term orders. One way to see this is to observe
that if w ∈ Rn≥0 is a vector with algebraically independent transcendental
entries, then the order defined by setting xu ≺ xv if w · u < w · v is a
total order that obeys the term order axioms. Different transcendental vectors
with norm one give different term orders, so we conclude that there are an
uncountable number of term orders. We will use these term orders extensively
in this chapter. The vector w is called a weight vector.

In light of this infinite number of term orders, it is somewhat surprising that
a fixed ideal has only a finite number of different initial ideals. The intuitive
explanation is that most of the term orders constructed above only differ in
very high degree, and so the Buchberger algorithm does not see the difference
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between them. We now present two proofs of this finiteness result.

Proposition 2.2.1. Let I be an ideal in S. Then there are only finitely many
distinct initial ideals of I.

Both proofs of this proposition rely on the following lemma.

Lemma 2.2.2. Let M be an initial ideal of an ideal I ⊆ S with respect to a
term order ≺. Then the monomials of S not in M form a vector space basis
for S/I.

Proof. To see that the monomials not in M are independent modulo I, note
that any dependency relation would give a nonzero polynomial f in I none of
whose terms lie in M . But this contradicts M being the initial ideal of I, as
we must have in≺(f) ∈ M . To see that they span, note that any polynomial
in S has a normal form g for which f − g ∈ I, and g is a linear combination of
monomials not in M .

Corollary 2.2.3. If J = in≺(I) and K = in≺′(I) are two initial ideals of an
ideal I ⊆ S, with J ⊆ K, then J = K.

Proof. Suppose that J ( K, and let xu ∈ K \ J . By Lemma 2.2.2 we know
that the monomials not in K form a basis for S/I, so there is some polynomial
g none of whose terms lie in K for which xu − g ∈ I. But none of the terms
of xu− g lies in J , so in particular its leading term with respect to ≺ does not
lie in J , contradicting the fact that J is the initial ideal of I with respect to
≺. From this contradiction we conclude that J = K.

First proof of Proposition 2.2.1. Suppose I has an infinite number of initial
ideals. Let Σ0 be the set of all initial ideals of I. Since Σ0 is infinite, I is not
the zero ideal, so we can choose an element f1 ∈ I. Since f1 has only a finite
number of terms, and each initial ideal M ∈ Σ0 contains a term of f1, there
must be one term m1 of f1 that is contained in an infinite number of ideals
in Σ0. Let Σ1 = {M ∈ Σ0 : m1 ∈ M}. Let J1 = 〈m1〉. Since infinitely many
initial ideals contain J1, there is some initial ideal that properly contains J1.
Thus Lemma 2.2.2 implies that the monomials of S outside J1 are linearly
dependent modulo I, so there is some polynomial f2 in I with no term lying
in J1. Again, there is a term m2 of f2 that is contained in an infinite number
of ideals in Σ1. Let Σ2 = {M ∈ Σ1 : m2 ∈ M}, and let J2 = J1 + 〈m2〉. This
procedure can now be iterated, at each stage finding a polynomial fk none
of whose terms are contained in Jk−1, and one of which, mk, lies in infinitely
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many initial ideals in Σk−1. The new ideal Jk = Jk−1 + 〈mk〉 will be properly
contained in some initial ideal, so the new fk+1 can be created.

In this fashion we get a properly increasing sequence of ideals

J1 ( J2 ( J3 ( . . . .

Since S is Noetherian, this is impossible. We thus conclude that I has only
finitely many initial ideals.

The other proof relies on the following theorem in addition to Lemma 2.2.2.

Theorem 2.2.4. [Mac01, Theorem 1.1] Let I be an infinite collection of
monomial ideals in S. Then there exist I, J ∈ I such that I ⊆ J .

Second proof of Proposition 2.2.1. Suppose there are an infinite number of ini-
tial ideals of I. Then by Theorem 2.2.4 there are two distinct initial ideals J
and K with J ⊆ K. This is impossible, by Corollary 2.2.3.

Corollary 2.2.5. Let I be an ideal in S. Then there is a finite generating set
for I that is a Gröbner basis for I with respect to any term order.

Proof. Note that if in≺1(I) = in≺2(I) = J , then the reduced Gröbner bases
for I with respect to the term orders ≺1 and ≺2 are identical. To see this
note that for each minimal generator xu of J , there is a unique polynomial
pu(x) = xu− q(x) in I where every monomial occurring in q(x) does not lie in
J . The existence of pu follows from Lemma 2.2.2, since xu ∈ J , while if pu were
not unique the difference of two such polynomials would yield a polynomial
in I whose leading term did not lie in J . The polynomial q(x) is the normal
form of xu with respect to ≺1 and ≺2. The union of all pu as xu varies over
all minimal generators of J is the reduced Gröbner basis of I for any term
order ≺ for which in≺(I) = J . We can now take the union over the finitely
many initial ideals of I of the corresponding reduced Gröbner bases to get the
desired finite generating set.

Remark 2.2.6. Corollary 2.2.5 shows that a universal Gröbner basis (see
Definition 1.4.3) for an ideal I always exists. When we refer to the universal
Gröbner basis of I, we will usually mean the union of the reduced Gröbner
bases corresponding to each initial ideal of I.
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2.3 Polytopal basics

In this section we review the basics of polytope theory.

Definition 2.3.1. A set U ⊆ Rd is convex if λv + (1 − λ)w ∈ U for any
v,w ∈ U , and 0 ≤ λ ≤ 1. The convex hull of a set V ⊆ Rd is the intersection of
all convex sets containing V , and is itself convex. A polytope is the convex hull
of a finite set of points in Rd. We write P = conv(v1, . . . ,vn) = {

∑n
i=1 λivi :

λi ≥ 0,
∑n

i=1 λi = 1}.

Example 2.3.2. Classic examples of polytopes in R3 include the cube, the
tetrahedron and the octahedron.

Definition 2.3.3. A face of a polytope P ⊆ Rd is a set of the form facec(P ) :=
{x ∈ P : c · x ≥ c · y ∀y ∈ P}, where c is any vector in Rd. The affine span
of a set V ⊆ Rd is the affine subspace v + H, where v ∈ V , and H is the
subspace of Rd spanned by {w− v : w ∈ V }. The dimension of a face F of P
is the dimension of its affine span.

Example 2.3.4. If P is the square conv((0, 0), (1, 0), (0, 1), (1, 1)), then P has
one two-dimensional face, four one-dimensional faces (edges), and four zero-
dimensional faces (vertices). The whole square is the unique two-dimensional
face face0(P ). Note that the vertex (1, 0) is face(1,−1)(P ). Similarly face(0,1)(P )
is the the edge conv((0, 1), (1, 1)). It is straightforward to find vectors c for
the other three vertices and three edges. Definition 2.3.10 will make it easier
to check that we have not omitted any faces from the above list.

The (d−1)-dimensional faces of a d-dimensional polytope are called facets.
A facet F is of the form F = {x : c · x = b} ∩ P for some c ∈ Rd,b ∈ R. The
vector c =: cF is called the facet normal, and the corresponding hyperplane is
a defining hyperplane. A normal vector to a facet is only defined up to sign.
We shall choose the sign that makes F = facec(P ). The facets determine the
polytope in the following way.

Proposition 2.3.5. Let P be a polytope with facet normals {cF : F facet of P}.
Then P = {x : cF · x ≤ bF}, where bF = maxy∈P{cF · y}.

A proof of this proposition can be found in [Zie95, Lecture 1].

Example 2.3.6. The square P of Example 2.3.4 has facets {x·cF = bF}∩P for
cF ,bF = {((0,−1), 0), ((−1, 0), 0), ((1, 0), 1), ((0, 1), 1)}. Thus P = {(x, y) :
0 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
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Figure 2.1: A polyhedral cone.

Definition 2.3.7. A cone is a set C ⊆ Rd that is closed under addition and
positive scalar multiplication, so if v,w ∈ C, then v + w ∈ C, and if v ∈ C
and λ > 0, then λv ∈ C. If V = {v1, . . . ,vn} ⊆ Rd then its positive hull is
pos(V) = {

∑
i λivi : λi ≥ 0}. We call pos(V) the cone spanned by V . A cone

C is polyhedral if C = pos(V) for a finite subset V of Rd. As for polytopes, we
define a face of a cone C to be facec(C) = {x ∈ C : c · x ≥ c · y ∀y ∈ C}.

Example 2.3.8. An example of a polyhedral cone in R2 is shown in Figure 2.1.

Polytopes and cones are special cases of polyhedra, which are the intersec-
tion of finitely many halfspaces. Polytopes are bounded polyhedra, while cones
are polyhedra for which the origin lies on every defining hyperplane. We are
interested in particular families of polyhedral cones that fit together nicely.

For a subset V of Rn, the relative interior is the interior of V inside the
affine span of V . A set is relatively open if it is its own relative interior.

Definition 2.3.9. A polyhedral fan is a collection of polyhedral cones in Rn
such that the intersection of any two cones is a face of each. The fan is called
complete if in addition the union of the cones covers Rn. A fan F is simplicial
if every i-dimensional cone in F is the positive hull of i vectors for all i. It
suffices to check this condition for the maximal cones in F (those not contained
in any larger cone in F).

We denote by V the closure (in the standard topology) of a set V ⊆ Rn.

Definition 2.3.10. The outer normal fan of a polytope P is a polyhedral
fan whose cones are indexed by the faces F of P . The cone corresponding
to the face F of P is the closure of the relatively open cone C[F ] = {c ∈
Rn such that facec(P ) = F}.
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Figure 2.2: The outer normal fan for a square

Example 2.3.11. For the face F = {(1, 0)} of the square from Example 2.3.4,
we have C[F ] = {v ∈ R2 : v1 > 0, v2 < 0}. Its closure is the polyhedral
cone C[F ] = {v ∈ R2 : v1 ≥ 0, v2 ≤ 0}. The face F = conv((0, 1), (1, 1))
has C[F ] = {λ(0, 1) : λ > 0}. The closure C[F ] is the polyhedral cone
pos({(0, 1)}). Check that in both cases we have that C[F ] is the relative
interior of C[F ].

Figure 2.2 shows the outer normal fan for the square. The first picture
shows the cones C[p] attached to each vertex p, while the second is the stan-
dard picture of the fan.

Definition 2.3.12. A polyhedral fan F is polytopal if there is a polytope P
for which F is the outer normal fan of P .

All complete fans in R2 are polytopal, but this is false in R3. See [Ful93,
§1.5] for an example. We next describe a notion of sum for polytopes.

Definition 2.3.13. The Minkowski sum of two polytopes P and Q in Rn is
the set {x + y : x ∈ P, y ∈ Q}. This is again a polytope.

Example 2.3.14. Figure 2.3 illustrates the Minkowski sum of a square and a
triangle in R2. Note that the picture of the sum can be obtained by marking
the points covered by the triangle as we slide it so its bottom vertex lies in the
square.

We finish this section with a fundamental theorem in linear programming
which we will use later.
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=

+

Figure 2.3: The Minkowski sum of a square and a triangle.

Theorem 2.3.15. Let A ∈ Rd×n and z ∈ Rd. Either there exists x ∈ Rn with
Ax ≤ z, where the inequality is term-wise, or there exists a vector c ∈ Rd with
c ≥ 0 such that cTA = 0 and c · z < 0, but not both.

This theorem is known as the Farkas Lemma. A proof can be found in
[Zie95, Section 1.4].

2.4 The Gröbner fan

In this section we associate a polyhedral fan to an ideal, each top-dimensional
cone of which corresponds to a different initial ideal of the given ideal. We
begin by noting that the term orders determined by weight vectors mentioned
at the beginning of this chapter are the only ones that need to be considered.

Definition 2.4.1. For w ∈ Rn≥0, and f =
∑

cux
u ∈ S, we define the leading

form inw(f) to be the sum of terms cux
u in f with w ·u maximized. The initial

ideal inw(I) := 〈inw(f) : f ∈ I〉. Note that inw(I) need not be a monomial
ideal. Given a term order ≺, we also define the term order ≺w, for which
xu ≺w xv if w · u < w · v or if w · u = w · v and xu ≺ xv. If no specific term
order is specified when referring to ≺w, we take ≺ to be the lexicographic term
order with x1 � x2 � · · · � xn.
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We note that the above definitions still make sense for a general w ∈ Rn,
possibly with negative coordinates. However for general w there may be no
relation between any invariants of inw(I) and those of I (such as the Hilbert
function, or dimension). This is because if w has negative coordinates ≺w is
not a term order, as 1 is no longer the smallest monomial.

Lemma 2.4.2. Let ≺ be a term order. If w ∈ Rn≥0 and G is a Gröbner basis
for I with respect to ≺w, then {inw(g) : g ∈ G} is a Gröbner basis for inw(I)
with respect to ≺.

Proof. For every polynomial f ∈ I we have in≺(inw(f)) = in≺w(f) by the
definition of ≺w. Since every monomial in the ideal in≺w(I) is of the form
in≺w(f) for some f ∈ I, this means that in≺w(I) ⊆ in≺(inw(I)).

To see the reverse inclusion, we first note that the vector w gives a R-
grading of S by deg(xi) = wi. Since the group generated by the wi is isomorphic
to Zk for some k ≤ n, this is a grading by a finitely-generated abelian group.
The ideal inw(I) is homogeneous with respect to this grading, and thus so is
the reduced Gröbner basis for inw(I) with respect to ≺. Let xu be a minimal
generator of in≺(inw(I)), so xu = in≺(g) for some w-homogeneous g ∈ inw(I).
We first show that g = inw(f) for some f ∈ I. Indeed, we can write g =∑

hi inw(gi), where gi ∈ I, hi is a monomial for all i, and the sum has as few
terms as possible. Since multiplying by a monomial multiplies the leading form
by that monomial, g =

∑
inw(higi). Since we have as few terms as possible,

the polynomials inw(higi) must be w-homogeneous of the same degree, since
g is w-homogeneous, so g = inw(

∑
higi). This proves the claim, since f =∑

higi ∈ I.
Now this means that in≺(g) = in≺(inw(f)) = in≺w(f), and therefore

in≺(inw(I)) ⊆ in≺w(I). Thus in≺(inw(I)) = in≺w(I), and so 〈in≺(inw(g)) :
g ∈ G〉 = 〈in≺w(g) : g ∈ G〉 = in≺(inw(I)), which completes the proof.

Example 2.4.3. For w = (10, 1, 11, 12), inw(a2c− b2) = a2c, and inw(a2b2 −
c2) = a2b2 − c2. Let I = 〈ad − bc, ac − b2, bd − c2〉 ⊆ k[a, b, c, d]. The initial
ideal inw(I) = 〈ad, ac, c2〉. The ideal inw(I) can computed using Lemma 2.4.2
and Macaulay 2.

Proposition 2.4.4. Let I be a fixed ideal contained in S. For every term
order ≺ there is a weight vector w ∈ Rn≥0 for which in≺(I) = inw(I).

Proof. Let G = {g1, . . . , gr} be the reduced Gröbner basis of I with respect
to ≺. Write gi =

∑
j cijx

uij , where in≺(gi) = ci1x
ui1 . Let C≺ = {w ∈ Rn≥0 :

w · ui1 > w · uij for all j ≥ 2, 1 ≤ i ≤ r}. For any weight vector w ∈ C≺ we
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have in≺(I) ⊆ in≺w(I), so since we cannot have a proper inclusion of initial
ideals by Corollary 2.2.3, we conclude that in≺(I) = inw(I). It thus remains
to show that C≺ is nonempty.

Suppose that C≺ = ∅. Form the matrix U with n columns whose s rows
are the vectors ui1 − uij for 1 ≤ i ≤ r, and j ≥ 2. The fact that C≺ = ∅
means that there is no vector w ∈ Rn≥0 with Uw > 0, where the inequality is
term-wise. It follows that there is no w′ ∈ Rn with U ′w′ ≤ (−1,0)T , where
U ′ is the (s + n)×n matrix with first s rows −U , and last n rows −I, 1 is the
vector of length s all of whose components are one, and 0 is the zero vector of
length n. The Farkas Lemma (Theorem 2.3.15) now implies that there is some
vector c ∈ Rs+n with c ≥ 0, c 6= 0, and cTU ′ = 0. Since U ′ has integral entries,
we can choose c ∈ Ns+n. Let ci,m ≥ 0 be the component of c corresponding to
the row uim−ui1 of U ′. Then we have

∑
i,m cim(uim−ui1) ≥ 0, because when

this sum is subtracted from cU ′ = 0 the result has all nonpositive coordinates.
Thus ∏

i,m

(xui1)cim divides
∏
i,m

(xuim)cim ,

so ∏
i,m

(xui1)cim �
∏
i,m

(xuim)cim .

But for all i,m we have xuim ≺ xui1 , so∏
i,m

(xuim)cim ≺
∏
i,m

(xui1)cim .

From this contradiction we conclude that C≺ is nonempty, so the proposition
follows.

Remark 2.4.5. A rational cone is the positive hull of vectors in Qn, or equiv-
alently one whose facet normals all lie in Qn. Note that C≺ is the interior of
an n-dimensional rational cone in Rn≥0, so it contains a nonnegative rational
vector, and thus a vector in Nn. Hence we can take w ∈ Nn. By interior we
mean here in the induced topology on Rn≥0.

Also, we emphasize that the weight vector w assigned to ≺ in Proposi-
tion 2.4.4 depends on I. For example there is no weight vector w for which
inw(I) = inlex(I) for every ideal I ⊆ S, where lex denotes the lexicographic
term order.

Proposition 2.4.6. Let I be a fixed ideal, let w ∈ Rn≥0 and let C[w] be the
set {w′ ∈ Rn≥0 : inw(I) = inw′(I)}. Then C[w] is the relative interior of a
polyhedral cone inside Rn≥0.
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Proof. For a given w ∈ Rn≥0, let J = inw(I), and let G = {g1, . . . , gr} be the
reduced Gröbner basis for I with respect to ≺w. We note that J need not
be a monomial ideal. For gi ∈ G, write gi =

∑
j cijx

aij +
∑

j c′ijx
bij where

inw(gi) =
∑

j cijx
aij . It suffices to show that

C[w] = {w′ ∈ Rn≥0 : inw′(g) = inw(g) for all g ∈ G} (2.1)

The proposition then follows because the set on the right in this equation is

{w′ ∈ Rn≥0 : w′ · aij = w′ · aik,w′ · aij > w′ · bik for i = 1, . . . , r and all j, k}.

This is the relative interior of a polyhedral cone by definition.
Let w′ lie in the set on the right-hand side of Equation 2.1. Then inw(I) ⊆

inw′(I). These ideals may not be monomial ideals, but the containment (and
whether it is proper) must be preserved by taking any initial ideal with respect
to an arbitrary order ≺. So we have in≺(inw(I)) ⊆ in≺(inw′(I)). By Corol-
lary 2.2.3 we know that this inclusion cannot be proper, so we conclude that
inw(I) = inw′(I). This shows that the set on the right is contained in C[w].

Now consider w′ ∈ C[w]. By Lemma 2.4.2 we know that inw(G) =
{inw(g) : g ∈ G} is a Gröbner basis for inw(I) = inw′(I) with respect to
≺. Fix g ∈ G. Then inw′(g) reduces to zero with respect to inw(G) using
≺. Now m := in≺w(g) is the only monomial occurring in g which is divisible
by the leading term with respect to ≺ of a polynomial in inw(G), so it must
occur in inw′(g) for the reduction to be possible. Write inw(g) = m + h, and
inw′(g) = m + h′. By the choice of m we know that h and h′ both are sums
of terms not in in≺w(I). However inw(g) − inw′(g) = h − h′ ∈ inw(I), so
in≺(h − h′) ∈ inw(in≺w(I)) = in≺w(I). This is only possible if h − h′ = 0, so
inw(g) = inw′(g), and thus w′ lies in the right-hand side of Equation 2.1. From
this we conclude that Equation 2.1 holds, and so the proposition follows.

Remark 2.4.7. If I is homogeneous with respect to some positive grading
deg(xi) = pi > 0, then we can define ≺w for all w ∈ Rn by setting xu ≺w xv

if deg(xu) < deg(xv) or if deg(xu) = deg(xv) and w · u < w · v, or finally if
deg(xu) = deg(xv), w · u = w · v and xu ≺ xv, where deg is with respect to
the grading by pi. While this definition differs from the previous one, the term
in≺w(f) is unchanged for homogeneous f . The same leading terms will also be
achieved if we use ≺w′ , where w′ = w + Np, where p = (pi), and N > 0 has
been chosen to be sufficiently large so w′ ∈ Rn≥0.

With this new definition the result of Lemma 2.4.2 still holds, and thus
we can define inw(I) for any w ∈ Rn. This means that the conclusion of
Proposition 2.4.6 holds for the cone Ch[w] = {w′ ∈ Rn : inw(I) = inw′(I)}.
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Note that Ch[w] ⊇ C[w] + span(p). In fact the lineality space of Ch[w] (the
largest subspace contained in Ch[w]) consists of all degree vectors p for which
I is homogeneous. We leave this fact as an exercise to the reader.

Example 2.4.8. Let S = k[a, b, c, d, e] and let I be the ideal 〈ac − b2, ae −
bd, be− cd〉. Let w be the weight-vector (0, 2, 0, 1, 0). The initial ideal in≺w(I)
is then 〈b2, bd, be, cd2〉. The reduced Gröbner basis for ≺w is {b2 − ac, bd −
ae, be − cd, cd2 − ae2}, so by Lemma 2.4.2 we see that inw(I) = in≺w(I).
Thus C[w] = {w′ ∈ R5

≥0 : 2w′2 > w′1 + w′3, w
′
2 + w′4 > w′1 + w′5, w

′
2 + w′5 >

w′3 + w′4, w
′
3 + 2w′4 > w′1 + 2w′5}. To obtain the closure C[w] we turn the strict

inequalities in the above set into non-strict inequalities.
Note that I is homogeneous with respect to the standard degree deg(a) =

deg(b) = deg(c) = deg(d) = deg(e) = 1, so we can also consider Ch[w].
The vectors {(1, 1, 1, 1, 1), (0, 0, 0, 1, 1), (0, 1, 2, 0, 1)} are all contained in the
lineality space of Ch[w], so we can project onto the orthogonal subspace
spanned by (1,−1, 0,−1, 1) and (1,−2, 1, 0, 0). In these coordinates we have
Ch[w] = {(s, t) : s > 3t, 0 > s}. To see this, note that only the last two
inequalities above are facet-defining for Ch[w]. The first of these then turns
into (−s− 2t) + s > t + (−s), which simplifies to s > 3t, and similarly for the
second inequality.

We next note that these cones fit together to form a polyhedral fan.

Proposition 2.4.9. The set {C[w] : w ∈ Rn≥0} forms a polyhedral fan.

Proof. We first show that if w′ lies in a face of C[w] with w′ 6∈ C[w], then
C[w′] is a face of C[w]. Fix a monomial term order ≺ and let G be the reduced
Gröbner basis for I with respect to ≺w. Let J = 〈inw′(g) : g ∈ G〉. Since w′ lies
in a face of C[w], we know that inw(g) = inw(inw′(g)) for all g ∈ G. This means
in≺(inw(I)) ⊆ in≺(inw(J)) By Lemma 2.4.2 we have in≺w(I) = in≺(inw(I)).
Suppose that J ( inw′(I). Then in≺w(J) ( in≺w(inw′(I)) = in≺w,w′ (I), where
≺w,w′ is the term order that first compares monomials using w′, and then
breaks ties with ≺w. But this means in≺w(I) ( in≺w,w′ (I) is a proper inclusion
of initial ideals, which is impossible by Corollary 2.2.3. Thus J = inw′(I).
Since in≺w(I) ⊆ in≺w(J) = in≺w,w′ (I), we conclude, again by Corollary 2.2.3,
that they are equal, and so G is the reduced Gröbner basis for ≺w,w′ . This
implies that C[w′] = {w′′ ∈ Rn≥0 : inw′′(g) = inw′(g) for all g ∈ G} is a face of
C[w].

Now suppose that C[w1] and C[w2] are two cones with neither closure
contained in the other. Then by the above argument we know that the in-
tersection, which at least contains 0, is a union of common faces of these two
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closed cones. Since this intersection is convex, it must in fact be one face, so
C[w1] ∩ C[w2] is a face of each.

Definition 2.4.10. The polyhedral fan {C[w] : w ∈ Rn≥0} is called the
Gröbner fan of the ideal I. If I is homogeneous with respect to some pos-
itive grading, as in Remark 2.4.7, then the homogeneous Gröbner fan is the
fan {Ch[w] : w ∈ Rn≥0}. This is a complete fan.

From now until the end of this section we assume that I is homogeneous
with respect to a positive grading, which allows us to use the forms of the
definitions in Remark 2.4.7.

Proposition 2.4.11. Suppose I is homogeneous with respect to some positive
grading deg(xi) = pi > 0. Then the homogeneous Gröbner fan of I is polytopal.

Proof. For a monomial ideal M , we define (
∑

M)d to be the vector
∑

u where
the sum is over all vectors u with xu ∈ M with

∑
i piui = d. The hypothesis

that the grading is positive is used here to guarantee that this sum is finite.
Define

Stated(I) = conv({(
∑

J)d : J is a monomial initial ideal of I}).

Set D to be the largest degree (using the weights pi) of any element of a
universal Gröbner basis for I. We then set

State(I) =
D∑
d=1

Stated(I),

where the sum is the Minkowski sum of polytopes.
To prove the proposition it suffices to prove that the outer normal fan to

State(I) is the Gröbner fan of I. To show that two polyhedral fans are the
same it suffices to show that their maximal open cones are the same. So we
need only prove the claim that for generic weight vectors w,w′ ∈ Rn we have
inw(I) = inw′(I) if and only if the vertices of State(I) maximizing w and w′

are the same. The notion of genericity we are using here is that w is generic if
both inw(I) is a monomial ideal, and facew(State(I)) is a vertex of State(I).

For the “only-if” direction, suppose that inw(I) = inw′(I). This means
that (inw(I))d = (inw′(I))d for d = 1 . . . D. Lemma 2.4.12, which follows this
proof, thus says that the faces of Stated(I) maximizing w and w′ are the same.
This direction now follows from the fact that the faces of State(I) maximizing
w and w′ are the Minkowski sums of the faces of Stated(I) maximizing w
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and w′ respectively. Indeed, if vd ∈ Stated(I) satisfies w · vd ≥ w · yd for all
yd ∈ Stated(I), for 1 ≤ d ≤ D, then w ·

∑D
d=1 vd ≥ w · y, where y =

∑D
d=1 yd

for yd ∈ Stated(I) is an arbitrary point of State(I).
For the “if” direction, suppose that the vertices of State(I) maximizing w

and w′ coincide. Properties of Minkowski sums now imply that the vertices
of each Stated(I) maximizing w must coincide. Since w,w′ were chosen to
be generic, inw(I) and inw′(I) are honest monomial initial ideals of I. Corol-
lary 2.4.13, which follows this proof, now implies that inw(I) = inw′(I), which
completes the proof.

Lemma 2.4.12. For all w ∈ Rn we have facew(Stated(I)) = Stated(inw(I)).

Proof. We first prove the lemma in the case where w is generic, so inw(I) is
a monomial ideal, and the face of Stated(I) is a vertex. We denote by Id the
vector space of homogeneous polynomials of degree d in I. Let xa1 , . . . ,xam

be the monomials of degree d in S, and let r = dimk(Id) ≤ m. Let ≺ be
a term order for which in≺(I) = inw(I). We may assume that xa1 , . . . ,xar

are the monomials in in≺(I). Since every initial ideal of a monomial ideal
is itself, we have Stated(inw(I)) = a1 + · · · + ar. Lemma 2.2.2 implies the
existence of polynomials xai −

∑m
j=r+1 cijx

aj ∈ Id for 1 ≤ i ≤ r. In each of
these polynomials xai is the leading term with respect to the weight vector w.

By the construction of Stated(I), we know that there is some term or-
der ≺′ for which the face of Stated(I) maximized by w is (

∑
in≺′(I))d. Let

xai1 , . . . ,xair be the monomials of degree d in in≺′(I).
If the lemma were not true we would have w · (ai1 + · · ·+ air) > w · (a1 +

· · · + ar). This would mean that w · (
∑

k 6=ij ak) < w · (
∑

k>r ak) for the two

bases B1 = {xak : xak 6∈ in≺′(I)} and B2 = {xak : k > r} of (S/I)d. We will
obtain a contradiction to this statement by constructing a path of bases for
this vector space from B1 to B2 each of which differs from the previous one
by one element, and consists of elements from B1 ∪ B2. These bases will have
the property that the dot product with w of their sum decreases at each step,
which will give the desired contradiction.

Suppose we have constructed a path from B1 to a basis B. Let xak be
an element of B \ B2 (so k ≤ r), and let f = xak −

∑m
j=r+1 ckjx

aj be the
corresponding element of Id. Let C = {xaj : ckj 6= 0}. The collection C is
linearly independent modulo I, since it is a subset of B2. Each element xaj of
C can be written as a linear combination of elements of B. If none of these
linear combinations involved the element xak , then C∪{xak} would be a linearly
independent set, which is not the case since f is a linear dependency relation.
Thus there is some xai that equals cxak +

∑
xj∈B,j 6=k bjx

j where c 6= 0. This
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means that B′ = B \ {xak} ∪ {xai} has the same span as B, and thus is also a
basis. Note that w · (

∑
xaj∈B′ aj) < w · (

∑
xaj∈B aj). Thus comparing along the

constructed path from B1 to B2 we see that w·(
∑

xak∈B1
ak) < w·(

∑
xak∈B2

ak).
From this contradiction we conclude that the two bases are the same, and so
the face of Stated(I) maximizing w is Stated(inw(I)) for generic w.

To complete the proof for nongeneric w it suffices to show that the face of
Stated(I) maximizing w has the same vertices as Stated(inw(I)). This follows
from the generic case by considering the face of each polytope with respect to
a generic weight vector w′.

Corollary 2.4.13. If ≺, ≺′ are two distinct term orders then in≺(I)d 6=
in≺′(I)d implies that (

∑
in≺(I))d 6= (

∑
in≺′(I))d.

Proof. Let the monomials of degree d in in≺(I) be {xa1 , . . . ,xar} and the
monomials of degree d in in≺′(I) be {xai1 , . . . ,xair}, and pick w ∈ Rn≥0 with
inw(I) = in≺(I). In the proof of Lemma 2.4.12 we showed that w · (a1 +
· · · + ar) < w · (ai1 + · · · + air). Since (

∑
in≺(I))d = a1 + · · · + ar and

(
∑

in≺′(I))d = ai1 + · · ·+ air , this shows that they are not the same.

Definition 2.4.14. A polytope P whose normal fan is the Gröbner fan of an
ideal I ⊆ S is called a state polytope of I.

Example 2.4.15. Let S = k[a, b, c, d, e], and let I be the ideal 〈ac− b2, ae−
bd, be− cd〉.

The ideal I has seven initial ideals:

1. 〈ac, ae, cd〉

2. 〈ac, bd, cd〉

3. 〈b2, bd, cd〉

4. 〈b2, bd, be, cd2〉

5. 〈ae2, b2, bd, be〉

6. 〈ae, b2, be〉

7. 〈ac, ae, be〉

A state polytope for I is shown in Figure 2.4. As in Example 2.4.8
the Gröbner fan has a three-dimensional lineality space, so we draw a two-
dimensional polytope.
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〈ac, ae, cd〉

〈ac, bd, cd〉

〈b2, bd, cd〉

〈b2, bd, be, cd2〉 〈ae2, b2, bd, be〉

〈ae, b2, be〉

〈ac, ae, be〉

Figure 2.4: A state polytope for the ideal of Example 2.4.15

Remark 2.4.16. We note that while the Gröbner fan is defined for any ideal
in the polynomial ring, the hypothesis in Proposition 2.4.11 that the ideal is
homogeneous with respect to some positive grading cannot be removed. In
[Jen05] Anders Jensen gives an example of an ideal with three generators in
the polynomial ring Q[a, b, c, d] whose Gröbner fan is not the normal fan of
any polyhedron. Positive grading is not strictly a necessary condition for the
Gröbner fan to be the normal fan of a polyhedron, as there are examples of
non-positively graded ideals with with this property.

2.5 Further reading

The material covered in this chapter is taken from Chapters 2 and 3 of [Stu96].
An excellent introduction to polytope theory is [Zie95]. Term orders in the
polynomial ring were first classified by Robbiano in [Rob86]. The existence of
the state polytope and the corresponding Gröbner fan was shown in two papers
by Bayer and Morrison [BM88] and Mora and Robbiano [MR88] which both
appeared in the same issue of the Journal of Symbolic Computation. Anders
Jensen has new code Gfan [Jenb] to compute the list of all reduced Gröbner
bases of a given ideal, and thus the Gröbner fan.
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2.6 Tutorial 2

2.6.1 Polytopes and cones

The exercises in this section are designed to provide practice working with
polytopes, polyhedral cones, and normal fans.

1. Consider the collection of points in R2:

S = {(0, 0), (−2, 1), (0, 2), (1, 2), (2, 4), (−1, 1), (0, 3), (1, 0)}.

a) Draw the convex hull of S. What are the vertices?

b) Find generators for all of the cones in the normal fan of the polygon
you drew in part a).

2. Consider the convex hull of the points

{(0, 0, 1), (1, 0, 0), (0, 1, 0), (0,−1, 0), (−1, 0, 0), (0, 0,−1)} ⊂ R3.

How many faces are there of dimension 0, 1, 2, and 3 respectively? De-
scribe the normal fan.

3. Prove that there is an inclusion reversing correspondence between the
faces of a polytope P ⊂ Rn and the cones in its normal fan. Specifically,
if F1 ⊂ F2 are two faces of P , then C[F1] ⊃ C[F2]. More generally for
any two faces F1 and F2 show that C[F1 ∩F2] is the smallest cone whose
closure contains both C[F1] and C[F2].

4. The lineality space of a cone C ⊂ Rn is the largest linear subspace con-
tained in C. Prove that if P is a polytope of dimension d in Rn, then
the closures of all the n-dimensional cones in the normal fan of P share
a lineality space of dimension n− d.

2.6.2 Gröbner fan and state polytope

5. Given a non-zero polynomial f =
∑m

i=1 cix
ai ∈ S, recall that supp(f) =

{ai | ci 6= 0}. We call New(f) := conv(supp(f)), the Newton polytope
of f . Let Vert(f) be the subset of supp(f) consisting of the vertices of
New(f).
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(a) Prove that if a ∈ supp(f) \ Vert(f), then there is no weight vector
w such that inw(f) = xa.

(b) Let f = 3x6y2 + 2x3y3 − xy + 5x3y5 ∈ k[x, y].

1) Find a weight vector w such that inw(f) = x6y2.

2) Find a weight vector w such that inw(f) = x3y5.

3) Show that in�(f) 6= xy for every term ordering �.

4) Show that in�(f) 6= x3y3 for every term ordering �.

(c) If f ∈ S is a homogeneous polynomial, then what is the state poly-
tope of the principal ideal 〈f〉?

In the next two exercises you will need to compute the cones of Gröbner fans.
Let G = {g1, . . . , gr} be a reduced Gröbner basis of an ideal I with respect to
some term order ≺. We can write gi = xai +

∑
cijx

bij where xai is the leading
term of gi and the various xbij are the other non-leading monomials in gi. In
the proof of Proposition 2.4.4 it is shown that these gi suffice to determine
the corresponding cone in the Gröbner fan. We can write the corresponding
inequalities in the homogeneous setting as:

C[≺] = {w ∈ Rn : inw(gi) = xai for i = 1, . . . , r}
= {w ∈ Rn : w · bij < w · ai for i = 1, . . . , r and all j}.

The set of inequalities above are called defining inequalities for the open poly-
hedral cone C[≺]. The non-redundant inequalities in this set define the facets
of the cone C[≺].

6. Let I be the ideal of Example 2.4.15.

a) For each of the seven given initial ideals find the corresponding Gröbner
basis.

b) What is the three dimensional lineality space of the Gröbner fan?
Write down a vector space basis.

c) Compute the defining inequalities for each of the cones in the Gröbner
fan.

d) Find weight vectors w ∈ N5 such that inw(I) is equal to each of the
seven initial ideals.
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7. Let I = 〈x2 + yz, xy + z2〉 ⊂ Q[x, y, z].

a) Compute the grevlex and lex Gröbner bases of I with x > y > z.

b) Find defining inequalities for the corresponding cones in the Gröbner
fan.

c) Some of these inequalities are redundant. For each cone find a non-
redundant set. (Hint: There is a one-dimensional lineality space and
each cone will have two non-redundant inequalities).

d) Find all of the remaining initial ideals and cones in the Gröbner fan.
One way to proceed is to compute lex and grevlex Gröbner bases with
respect to different variable orderings then check if the corresponding
cones cover. In section 2.6.3 of this tutorial we will see a more systematic
way to compute the Gröbner fan.

e) Draw the 2-dimensional state polytope of I with vertices labeled by
initial ideals, as in Figure 2.4.

2.6.3 The Gröbner walk

One of the most important applications of the Gröbner fan is the Gröbner walk
[Stu96, Chapter 3] , which is a general algorithm for converting a Gröbner
basis from one term order to another. The lexicographic order is very useful
when eliminating variables but its Gröbner bases are notoriously difficult to
compute. The Gröbner walk allows us to start with an easier order such as
graded reverse lex and transform the corresponding Gröbner basis.

Suppose we have a Gröbner basis G for I with respect to some starting
order ≺s. Let ws be a weight vector realizing this order. The goal will be to
compute a new Gröbner basis with respect to a target order ≺t represented
by wt. To that end we pick a path from ws to wt, which in sufficiently nice
situations can be taken to be a straight line. We will assume that our path
only passes through codimension-one cones of the Gröbner fan, and never
enters lower-dimensional cones.

The Gröbner walk has two basic steps.

• Cross from one open cone Ci in the Gröbner fan to another Ci+1 along
the chosen path.

• Modify the current Gröbner basis to respect the new cone.



2.6. TUTORIAL 2 43

For the first step, suppose we are in some open cone Ci for which we
know the Gröbner basis Gi. Let wnew be the last point in Ci along the path,
computed by intersecting the path with each facet of Ci.

For the second step consider the ideal 〈inwnew(Gi)〉 of initial forms of Gi
with respect to the new weight vector. Since wnew is on the boundary of Ci,
〈inwnew(Gi)〉 will not be a monomial ideal, but for nice cases there will be mostly
monomials with a couple of other polynomials (ideally just one binomial).

Define a new term order ≺i+1 using the weight vector wnew but breaking
ties with our target order ≺t. The remarkable fact is that to compute the
Gröbner basis Gi+1 of I with respect to ≺i+1 it is enough to compute the
Gröbner basis of the far simpler ideal 〈inwnew(Gi)〉 = inwnew(I).

Proposition 2.6.1. [Stu96, page 23] Let H = {h1, . . . , hs} be a Gröbner basis
of 〈inwnew(Gi)〉 with respect to ≺i+1. Write

hi =
∑
g∈Gi

pg inwnew(g),

then the set of all polynomials

hi =
∑
g∈Gi

pgg

is a Gröbner basis for I with respect to ≺i+1.

8. Use the Gröbner walk to convert the grevlex Gröbner basis to lex in
Exercise 7a).
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2.7 Solutions to Tutorial 2

2.7.1 Polytopes and cones

1. (a) The convex hull is the pentagon shown in Figure 2.5.

  

(−1, 1)

(0, 2) (1, 2)

(1, 0)(0, 0)

(0, 3)

(2, 4)

(−2, 1)

Figure 2.5:

The points (0, 0), (1, 0), (2, 4), (0, 3), and (−2, 1) are the vertices and
the remaining three points (0, 2), (1, 2), and (−1, 1) are in the inte-
rior.

(b) There are five one-dimensional cones (rays) in the normal fan. They
are spanned in counterclockwise order by (−1, 2), (−1, 1), (−1,−2),
(0,−1), and (4,−1). The five two-dimensional cones are generated
by consecutive pairs of rays. A picture of the normal fan is shown
in Figure 2.6

2. The convex hull of the given points is the octahedron shown in Fig-
ure 2.7. There are 6 vertices, 12 edges, 8 two-dimensional faces, and 1
three-dimensional face (the whole polytope). The normal fan has three-
dimensional cones the cones over the facets of the cube with vertices
(±1,±1,±1).

3. The cone C[F ] was defined as the set of c ∈ Rn such that c · x is maxi-
mized for exactly x ∈ F . To make this a closed set we must allow c · x
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(−1, 2)

(−1, 1)

(−1,−2)

(0,−1)
(4,−1)

Figure 2.6:

to achieve its maximum on a larger set. Thus the closure of C[F ] is the
set of c ∈ Rn such that facec(P ) ⊇ F .

It immediately follows that C[F1] ⊃ C[F2] if and only if F1 ⊂ F2. More
generally the closure of C[F1 ∩ F2] contains both C[F1] and C[F2], and
conversely any other C[F ] with this property has F ⊂ F1 and F ⊂ F2,
thus F ⊂ F1 ∩ F2 and C[F ] ⊃ C[F1 ∩ F2].

4. If P ⊂ Rn is of dimension d, it spans an affine space of dimension d.
Let V be the linear space of dimension n − d orthogonal to this affine
space. For any v ∈ V , v ·p is constant for p ∈ P . Hence, facev(P ) = P .
Therefore, V = C[P ]. By the previous exercise V ⊂ C[F ] for any smaller
face F .

2.7.2 Gröbner fan and state polytope

5. (a) Let V = {v1,v2, . . .vr} ⊂ Qn and P = conv(vi : 1 ≤ i ≤ r). We
use the fact that every element v of P ∩ Qn has a representation
v =

∑r
i=1 λivi with λ1, λ2, . . . , λr ∈ Q≥0 and λ1 +λ2 + . . . +λr = 1.

Let U = Vert (New (f)) and let a ∈ supp (f)\ U . Then we can
write a =

∑
v∈U λvv with λv ∈ Q≥0 and

∑
v∈U λv = 1. Let the

least common multiple of the denominators be L. Then we have
La =

∑
v∈U Ivv, where Iv ∈ N and

∑
v Iv = L. If xa is the leading

term then xa � xv for any v ∈ V . This implies xLa � x
∑

v∈V Ivv
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z

y

x

Figure 2.7:

(by the multiplicative axiom), which is a contradiction. Thus xa

cannot be the leading term under any term order.

(b) 1) This is true for the lex ordering with x > y, so we take w =
(10, 1).

2) This is true for the lex ordering with y > x, so we take w =
(1, 10).

3) For any order ≺ we must have 1 ≺ x2y2, so xy ≺ x3y3.

4) For any order ≺ we must have 1 ≺ y2, so x3y3 ≺ x3y5.

(c) Write f =
∑

cix
ai . We will show that if f is homogeneous of degree

d, the initial ideals of f correspond exactly to the vertices of the
Newton polytope. If that is the case then the Newton polytope
is equal to Stated(〈f〉) which is equal to State(〈f〉) since the set
consisting of the generator f of degree d is itself a universal Gröbner
basis.
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The vertices of the Newton polytope of f are those ai such that there
exists w ∈ Rn such that w · ai > w · aj for all j 6= i. That is to say
inw(f) = xai . Therefore, any leading monomial of f (corresponding
to w nonnegative) is a vertex of the Newton polytope. Conversely,
since f is homogeneous of degree d, (1, . . . , 1) · aj = d for all j.
Therefore, we can take w′ = w+(k, . . . , k) and still have inw′(f) =
xai . Taking k sufficiently large, w′ will be nonnegative. This results
fails if f is not homogeneous as can be seen by considering the above
nonhomogeneous polynomial.

6. a) The seven Gröbner bases, with leading terms underlined, are:

(a) {ac− b2, ae− bd, cd− be}
(b) {ac− b2, bd− ae, cd− be}
(c) {b2 − ac, bd− ae, cd− be}
(d) {b2 − ac, bd− ae, be− cd, cd2 − ae2}
(e) {ae2 − cd2, b2 − ac, bd− ae, be− cd}
(f) {b2 − ac, ae− bd, be− cd}
(g) {ac− b2, ae− bd, be− cd}

These can be computed using the software package Gfan [Jenb], or can be
done by hand by finding polynomials in I with the given leading terms.

b) The lineality space consists of those w such that inw(I) = I (do
you see why?). Thus, for each binomial generator of I, the two mono-
mials have equal weight. So, w1 + w3 = 2w2, w1 + w5 = w2 + w4,
and w3 + w4 = w2 + w5. The solution space is w3, w4, w5 arbitrary,
w1 = w3 + 2w4 − 2w5, and w2 = w3 + w4 − w5. A vector space basis is
{(1, 1, 1, 0, 0), (2, 1, 0, 1, 0), (−2,−1, 0, 0, 1)}.
c) To simplify computation we quotient out by the lineality space by
making the change of coordinates w′1 = w1 − w3 − 2w4 + 2w5 and w′2 =
w2 − w3 − w4 + w5. Therefore, any point (w1, w2, w3, w4, w5) can be
transformed into (w′1, w

′
2, 0, 0, 0) by adding something in the lineality

space.

The defining inequalities for the first initial ideal 〈ac, ae, cd〉 are

w′1 > 2w′2, w
′
1 > w′2, and 0 > w′2.
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The first inequality is redundant (the sum of the second and third) so
the cone is defined by w′1 > w′2 and w′2 < 0. Similarly, for each of the
other 6 initial ideals, removing redundant inequalities, we get

(b) w′1 > 2w′2, w′2 > w′1

(c) 2w′2 > w′1, w′2 < 0

(d) w′1 < 0, w′2 > 0

(e) w′1 > 0, w′2 > w′1

(f) w′1 < 2w′2, w′1 > w′2

(g) w′1 > 2w′2, w′2 > 0.

A picture of the Gröbner fan in the plane with coordinates w′1 and w′2 is
shown in Figure 2.8

6
4

5

7

13

2

Figure 2.8:

d) Using the inequalities found above we can find weight vectors of the
form (w′1, w

′
2, 0, 0, 0) in each region. These may not be nonnegative so we

can add an appropriate multiple of (1, 1, 1, 1, 1) to get the following w:

(a) (2, 0, 1, 1, 1)

(b) (0, 1, 3, 3, 3)

(c) (0, 2, 3, 3, 3)

(d) (0, 2, 1, 1, 1)

(e) (1, 2, 0, 0, 0)
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(f) (3, 2, 0, 0, 0)

(g) (3, 1, 0, 0, 0)

7. a) The grevlex basis is 〈x2 + yz, xy + z2, y2z − xz2〉. The lex basis is
〈x2+yz, xy+z2, xz2−y2z, y3z+z4〉. These are computed by the following
Macaulay 2 code:

i1 : R = QQ[x,y,z];

i2 : I = ideal(x^2 + y*z, x*y + z^2);

o2 : Ideal of R

i3 : gb(I)

o3 = | xy+z2 x2+yz y2z-xz2 |

i4 : R1 = QQ[x,y,z, MonomialOrder=>Lex];

i5 : I1 = substitute(I, R1);

i6 : gb(I1)

o6 = | xy+z2 x2+yz xz2-y2z y3z+z4 |

b) For the grevlex basis the defining inequalities are:

w1 + w2 > 2w3, 2w1 > w2 + w3, 2w2 > w1 + w3

For the lex basis the inequalities are:

w1 + w2 > 2w3, 2w1 > w2 + w3, w1 + w3 > 2w2, w2 > w3

c) Make a change of variables w′1 = w1−w3, and w′2 = w2−w3 to account
for the one-dimensional lineality space arising from the homogeneity. The
inequalities for the grevlex cone become

w′1 + w′2 > 0, 2w′1 > w′2, 2w′2 > w′1,

and the first one is redundant as it is the sum of the second and third.
The corresponding cone is generated by the vectors (1, 2) and (2, 1).

For the lex cone we get:
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Gröbner basis Initial ideal
1) x2 + yz, xy + z2, y2z − xz2 x2, xy, y2z
2) x2 + yz, xy + z2, xz2 − y2x, y3z + z4 x2, xy, xz2, y3z
3) x2 + yz, xy + z2, xz2 − y2x, z4 + y3z x2, xy, xz2, z4

4) x2 + yz, z2 + xy x2, z2

5) yz + x2, z2 + xy, x2z − xy2, x4 + xy3 yz, z2, x2z, x4

6) yz + x2, z2 + xy, x2z − xy2, xy3 + x4 yz, z2, x2z, xy3

7) yz + x2, z2 + xy, xy2 − x2z yz, z2, xy2

8) yz + x2, xy + z2, z3 − x3 yz, xy, z3

9) yz + x2, xy + z2, x3 − z3 yz, xy, x3

w′1 + w′2 > 0, 2w′1 > w′2, w′1 > 2w′2, w′2 > 0

A little thought gives that the last two are nonredundant and the corre-
sponding cone is generated by (2, 1) and (1, 0).

d) and e) There are 9 total reduced Gröbner bases all of which can be
found as grevlex or lex orders with respect to some variable ordering.
We list the 9 Gröbner bases and corresponding initial ideals. We leave
it up to the reader to determine which ideals are determined by which
orders.

Computing all the cones yields the Gröbner fan in Figure 2.9. The state
polytope is also shown with vertices labeled by the corresponding initial
ideals.

2.7.3 The Gröbner walk

8. Weight vectors realizing the grevlex and lex term orders are (1, 1, 0) and
(3, 1, 0) respectively. Computing the grevlex cone as before, we find that
we hit the boundary of the grevlex cone at wnew = (2, 1, 0). Our starting
Gröbner basis is G = {x2 − yz, xy − z2, y2z − xz2}. The ideal of initial
forms with respect to wnew is 〈x2, xy, y2z − xz2〉. We next compute a
Gröbner basis of this ideal of initial forms with respect to the new lex
order, so the leading term of the binomial y2z − xz2 is now xz2. There
is one non-trivial S-pair:

z2(xy) + y(−xz2 + y2z) = y3z.
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(x2, xy, xz2, z4)

(x2, z2)

(yz, xy, x3) (yz, xy, z3)

(yz, z2, xy2)

(yz, z2, x2z, xy3)

(yz, z2, x2z, x4)
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(x2, xy, xz2, y3z)

(x2, xy, y2z)

Figure 2.9: Gröbner fan and state polytope

Lifting this up to the original ideal yields

z2(xy − z2) + y(−xz2 + y2z) = y3z − z4.

It is not difficult to check that all other S-pairs reduce to zero.

So, our new Gröbner basis is

{x2 + yz, xy − z2, xz2 − y2z, y3z − z4}

which is already the desired reduced lex basis.
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Chapter 3

Toric Ideals

3.1 Introduction

In this chapter we focus on a special class of polynomial ideals called toric ideals
which allow interactions among algebra, geometry and combinatorics. They
are the defining ideals of toric varieties which are a rich but fairly accessible
class of varieties in algebraic geometry. See Chapter 6 for the connection
to algebraic geometry. They also encode the combinatorics of polytopes and
vector configurations, and have several applications. This chapter is based on
Chapters 4, 5 and 12 of [Stu96].

To motivate the definition of a toric ideal, consider the following problem.
Suppose you had an unlimited supply of coins in a certain currency, of denom-
inations 5, 10, 25 and 50, and you would like to answer the following questions
for any positive number b.

1. Is there a combination of coins that adds up to b?

2. How many coins of each type would you have to use if you wanted to
make the combination in Problem 1 with as few coins as possible?

Problem 2 is the following integer program:

minimize x1 + x2 + x3 + x4

subject to 5x1 + 10x2 + 25x3 + 50x4 = b
x1, x2, x3, x4 ∈ N

while Problem 1 is asking whether this program has a feasible solution, i.e., is
{(x1, x2, x3, x4) ∈ N4 : 5x1 + 10x2 + 25x3 + 50x4 = b} nonempty ?

53
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Let us examine the possible ways of making change for b = 100 using the
four types of coins, or equivalently all the feasible solutions to the above integer
program with b = 100. There are 40 feasible solutions:
(0, 0, 0, 2) (0, 0, 2, 1) (0, 0, 4, 0) (1, 2, 1, 1) (1, 2, 3, 0) (0, 5, 0, 1)
(0, 5, 2, 0) (3, 1, 1, 1) (3, 1, 3, 0) (2, 4, 0, 1) (2, 4, 2, 0) (1, 7, 1, 0)
(0, 10, 0, 0) (5, 0, 1, 1) (5, 0, 3, 0) (4, 3, 0, 1) (4, 3, 2, 0) (3, 6, 1, 0)
(2, 9, 0, 0) (6, 2, 0, 1) (6, 2, 2, 0) (5, 5, 1, 0) (4, 8, 0, 0) (8, 1, 0, 1)
(8, 1, 2, 0) (7, 4, 1, 0) (6, 7, 0, 0) (10, 0, 0, 1) (10, 0, 2, 0) (9, 3, 1, 0)
(8, 6, 0, 0) (11, 2, 1, 0) (10, 5, 0, 0) (13, 1, 1, 0) (12, 4, 0, 0) (15, 0, 1, 0)
(14, 3, 0, 0) (16, 2, 0, 0) (18, 1, 0, 0) (20, 0, 0, 0)

In this example, it is easy to see that (0, 0, 0, 2) is the combination that
minimizes the number of coins used. This chapter lays the foundation for a
general strategy to solve integer programs which will be explained in detail
in the tutorial. The method uses toric ideals which is the main topic of this
chapter.

Continuing the example, we record each combination as a monomial in
the polynomial ring k[x1, x2, x3, x4]. For instance, (6, 2, 0, 1) is recorded as
x6

1x
2
2x4. Letting A = {5, 10, 25, 50}, we define the A-degree of a monomial

xm1
1 xm2

2 xm3
3 xm4

4 to be 5m1+10m2+25m3+50m4. Thus the 40 monomials gotten
from the above vectors are precisely all the monomials in k[x1, x2, x3, x4] of A-
degree 100 = b. In general, Problem 1 is asking whether the bth graded part of
k[x1, x2, x3, x4] is nontrivial. Theoretically, the answer is “yes” if and only if b
lies in the semigroup NA = {5x1+10x2+25x3+50x4 : x1, x2, x3, x4 ∈ N}. How
do we check this in practice? More ambitiously, one could ask to enumerate
all monomials in k[x1, x2, x3, x4] of A-degree b. We have listed the exponents
of all such monomials for b = 100. How can we do this in practice?

We will see in the exercises that toric ideals and their Gröbner bases give
algorithms to answer both Problem 1 and 2.

3.2 Toric ideals

Fix a subset A = {a1, a2, . . . , an} ⊂ Zd\{0}. We assume that the matrix
A = [a1 a2 . . . an] ∈ Zd×n has rank d. Consider the following semigroup ho-
momorphism:

π : Nn → Zd, u = (u1, . . . , un) 7→
n∑
i=1

aiui = Au.
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Then π(Nn) = {Au : u ∈ Nn} =: NA is called the monoid (semigroup)
generated by A. The semigroup ring of Nn is k[x] = k[x1, . . . , xn], and that of
Zd is the Laurent polynomial ring k[t±1] := k[t±1

1 , . . . , t±1
d ]. The map π lifts to

the ring homomorphism:

π̂ : k[x]→ k[t±1], xj 7→ taj := t
a1j

1 t
a2j

2 · · · t
adj
d .

Definition 3.2.1. The toric ideal of A, denoted as IA, is the kernel of the
map π̂.

In this situation it is natural to grade the polynomial ring k[x] by setting
deg(xi) = ai for i = 1, . . . , n. Then the set of all degrees of polynomials in k[x]
is NA. A polynomial in k[x] is A-homogeneous if it is homogeneous under this
multigrading.

Proposition 3.2.2. 1. The toric ideal IA is a prime ideal in k[x].

2. [Stu96, Lemma 4.1, Corollary 4.3] The ideal IA is generated as a k-vector
space by the infinitely-many binomials {xu − xv : π(u) = π(v), u,v ∈
Nn}, and hence IA = 〈xu − xv : π(u) = π(v)〉.

3. [Stu96, Lemma 4.2] The ring k[x]/IA has Krull dimension d.

4. [Stu96, Corollary 4.4] For every term order � the reduced Gröbner basis
of IA with respect to � consists of a finite set of binomials of the form
xu − xv ∈ IA.

Proof. 1. Since k[x]/IA ∼= π̂(k[x]) = k[ta1 , . . . , tan ], which is an integral
domain, IA is a prime ideal.

2. First note that a binomial xu−xv ∈ IA if and only if it isA-homogeneous,
so π(u) = π(v). It therefore suffices to show that each polynomial f ∈ IA
is a k-linear combination of these binomials. Fix a term order � on
k[x], and suppose f cannot be written as a k-linear combination of A-
homogeneous binomials. Choose such an f for which in�(f) = xu is
minimal with respect to �, which we call a “minimal criminal”. Since
f ∈ IA = ker(π̂), f(ta1 , . . . , tan) = 0. In particular, π̂(xu) = tπ(u) must
cancel in this expansion. Hence there is a monomial xv ≺ xu in f such
that π(u) = π(v). Then the polynomial f ′ = f − xu + xv cannot be
written as a k-linear combination of binomials in IA. However since
in�(f ′) ≺ in�(f), this contradicts the assumption. Minimal criminal
arguments are a staple of Gröbner bases proofs.
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3. Theorem A in Chapter 8 of [Eis94] states that if R is an affine domain
over a field k then the Krull dimension of R is the transcendence degree
of R over k. Thus the Krull dimension of k[x]/IA ∼= k[ta1 , . . . , tan ] is the
maximum number of algebraically independent monomials tai which in
turn is equal to the maximum number of linearly independent vectors in
A which is d by assumption.

4. By the Hilbert basis theorem and part 2 there exists a finite list of bi-
nomials from the list {xu − xv : π(u) = π(v)} that generate IA. We
use this generating set as the input for Buchberger’s algorithm. It can
be checked that the S-pair of two binomials is again a binomial, and
that the normal form of a homogeneous binomial with respect to a set
of homogeneous binomials with marked leading terms is also a homoge-
neous binomial. Thus each reduced Gröbner basis of IA computed from
the binomial generating set mentioned above consists of a finite set of
A-homogeneous binomials.

Example 3.2.3. ForA = {5, 10, 25, 50}, IA = 〈x2
3−x4, x1x

2
2−x3, x

2
1−x2〉. This

toric ideal has 12 distinct reduced Gröbner bases that one can compute using
the software package CaTS [Jena]. Each reduced Gröbner basis is numbered
as a vertex of the state polytope of IA. In each case, the first list of binomials
give the facets of the Gröbner cone and the second list is the reduced Gröbner
basis. CaTS uses a, b, c, . . . for variables in a ring. The following computation
requires that the matrix A be stored in a file. See the CaTS homepage for
various acceptable formats. The command needed to obtain the following
output is cats -p1 -i filename.

Vtx: 0 (3 facets/4 binomials/degree 3)

{# c^2-d, # b^3-a*c, # a^2-b}

{c^2-d, b^3-a*c, a*b^2-c, a^2-b}

Vtx: 1 (3 facets/4 binomials/degree 3)

{# a^2-b, # b^3-a*c, # d-c^2}

{a^2-b, a*b^2-c, b^3-a*c, d-c^2}

Vtx: 2 (3 facets/3 binomials/degree 5)

{# a^5-c, # b-a^2, # d-c^2}

{a^5-c, b-a^2, d-c^2}

Vtx: 3 (3 facets/5 binomials/degree 5)

{# b^5-c^2, # a*c-b^3, # d-c^2}

{a^2-b, a*b^2-c, b^5-c^2, a*c-b^3, d-c^2}
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Vtx: 4 (3 facets/5 binomials/degree 3)

{# a*b^2-c, # c^2-b^5, # d-b^5}

{a^2-b, a*b^2-c, a*c-b^3, c^2-b^5, d-b^5}

Vtx: 5 (3 facets/3 binomials/degree 2)

{# a^2-b, # c-a*b^2, # d-b^5}

{a^2-b, c-a*b^2, d-b^5}

Vtx: 6 (3 facets/3 binomials/degree 1)

{# b-a^2, # c-a^5, # d-a^10}

{b-a^2, c-a^5, d-a^10}

Vtx: 7 (3 facets/6 binomials/degree 5)

{# a*b^2-c, # a*c-b^3, # b^3*c-a*d}

{a^2-b, a*b^2-c, b^5-d, a*c-b^3, b^3*c-a*d, c^2-d}

Vtx: 8 (3 facets/3 binomials/degree 5)

{# a^2-b, # b^5-d, # c-a*b^2}

{a^2-b, b^5-d, c-a*b^2}

Vtx: 9 (3 facets/3 binomials/degree 10)

{# a^10-d, # b-a^2, # c-a^5}

{a^10-d, b-a^2, c-a^5}

Vtx: 10 (3 facets/6 binomials/degree 5)

{# b^5-d, # c^2-d, # a*d-b^3*c}

{a^2-b, a*b^2-c, b^5-d, a*c-b^3, c^2-d, a*d-b^3*c}

Vtx: 11 (3 facets/3 binomials/degree 5)

{# a^5-c, # b-a^2, # c^2-d}

{a^5-c, b-a^2, c^2-d}

3.3 Algorithms for toric ideals

Since IA is a prime ideal that does not contain any monomials, if xw(xu −
xv) ∈ IA then xu − xv ∈ IA. Thus every minimal generating set and re-
duced Gröbner basis of IA consists of A-homogeneous binomials xu− xv with
supp(u) ∩ supp(v) = ∅. We may record xu − xv as the vector u− v. Con-
versely, given any vector p = (p1, . . . , pn) ∈ Zn, write p = p+ − p− where
p+,p− ∈ Nn are the unique vectors obtained as follows: (p+)i = pi when
pi > 0 and (p+)i = 0 otherwise while (p−)i = −pi when pi < 0 and (p−)i = 0
otherwise. For example, if p = (3,−4, 0, 5, 1), then p+ = (3, 0, 0, 5, 1) and
p− = (0, 4, 0, 0, 0). If p ∈ Zn such that Ap = 0, then the binomial xp+ − xp−

is A-homogeneous and lies in IA.

We now outline algorithms for computing reduced Gröbner bases of the



58 CHAPTER 3. TORIC IDEALS

toric ideal IA starting with the configuration A. We compute reduced Gröbner
bases with respect to a weight vector w which, as we saw in Chapter 2, is more
general than computing reduced Gröbner bases with respect to term orders.

The Conti-Traverso algorithm [CT91]
Input: A vector configuration A ⊂ Zd and a term order given by the weight
vector w.
Output: The reduced Gröbner basis of IA with respect to w.
1. Introduce n + d + 1 indeterminates t0, t1, . . . , td, x1, . . . , xn. Let � be any
elimination order such that {ti} � {xj} and the x variables are ordered by w.
2. Compute the reduced Gröbner basis G�(J) of the ideal

J = 〈t0t1 · · · td − 1, xjt
a−j − ta+

j , j = 1, . . . , n〉.

3. Output the set G�(J)∩ k[x] which is the reduced Gröbner basis of IA with
respect to w.

Proof. The correctness of this algorithm follows from Theorem 2 in Section
3.3 of [CLO97] on computing equations of the smallest variety containing a
rationally parameterized set of points. Note that IA is such a variety given by
the rational parameterization π̂.

Buchberger’s algorithm is very sensitive to the number of variables used,
and in that light the above algorithm is not ideal as it requires d + 1 extra
variables beyond the variables x1, . . . , xn of IA. However, it has the advantage
that a generating set for IA is not needed to begin the algorithm. There are
examples of toric ideals for which a minimal generating set is also a minimal
universal Gröbner basis, and hence the problem of finding a minimal generat-
ing set is not an easy task. Several fast algorithms for computing a generating
set for IA that do not require additional variables are known. Many of these
are implemented in CoCoA [COC] and 4ti2 [Hem] which currently have the
fastest codes for computing toric ideals and their Gröbner bases. We describe
one of these algorithms here. See [Stu96, Chapter 12] for more details.

The Hoşten-Sturmfels algorithm [Stu96, Algorithm 12.3]
Input: A and a term order w.
Output: The reduced Gröbner basis of IA with respect to w.
1. Find a lattice basis B for the lattice kerZ(A) := {u ∈ Zn : Au = 0}.
2. (optional) Replace B by a reduced basis in the sense of Lenstra, Lenstra
and Lovász [Sch86, Chapter 6.2]. Call it B as well.
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3. Let J0 = 〈xu+ − xu− : u ∈ B〉.
4. For i = 1, 2, . . . , n: Compute Ji := (Ji−1 : x∞i ).
5. Compute the reduced Gröbner basis of Jn = IA with respect to w.

Proof. The proof of the correctness of this algorithm follows from Lemma 3.3.1
which was proved originally in [HS95].

Lemma 3.3.1. [Stu96, Lemma 12.2] A set B is a lattice basis for kerZ(A) if
and only if (JB : (x1 · · · xn)∞) = IA, where JB := 〈xb+ − xb− : b ∈ B〉.

Proof. Clearly JB ⊆ IA. Suppose B = {b1, . . . ,br} is a basis for kerZ(A). Let
u ∈ kerZ(A). Then u =

∑r
i=1 λibi for some λi ∈ Z. This implies that

xu+

xu−
− 1 =

r∏
i=1

(xb+
i

xb−i

)λi
− 1.

Clearing denominators we get that

r∏
i=1

(xb−i )λi(xu+ − xu−) = xu−
( r∏
i=1

(xb+
i )λi −

r∏
i=1

(xb−i )λi
)
.

If we show that the right hand side lies in JB then we will get that a monomial
multiple of xu+ − xu− lies in JB which will finish the “only-if” direction of
the argument. Note that if xp+ − xp− and xq+ − xq− lie in an ideal then
xq+

(xp+ − xp−) + xp−(xq+ − xq−) = xq+
xp+ − xp−xq− also lies in the ideal.

Applying this argument to {xb+
i − xb−i : i = 1, . . . , r} ⊂ JB we get that∏r

i=1(x
b+
i )λi −

∏r
i=1(x

b−i )λi lies in JB.

To argue the “if” direction, we have to show that if u ∈ kerZ(A), then
u =

∑r
i=1 λibi for some integers λi. Now u ∈ kerZ(A) implies that xu+−xu− ∈

IA = (JB : (x1 · · · xn)∞). Hence xa(xu+ − xu−) ∈ JB. Hence, we can connect
the lattice points a + u+ and a + u− by a sequence of vectors in B which shows
that u = a + u+ − a + u− is an integer combination of vectors in B.

In Tutorial 1 we saw how to compute (I : x∞i ) for a homogeneous ideal I
and hence we can compute (JB : (x1 · · · xn)∞). Lattice bases can be computed
using a computer algebra package such as Maple or Macaulay 2.
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3.4 Universal Gröbner bases for toric ideals

In the rest of this chapter we construct a universal Gröbner basis for IA called
the Graver basis of IA, and derive a bound on the maximum degree of elements
in this universal Gröbner basis. This basis plays a fundamental role in the
study and applications of toric ideals.

Recall from Chapter 2 that a particular choice of universal Gröbner basis
of IA is the union (up to sign) of all the reduced Gröbner bases of IA. We
denote this set by UA.

Example 3.4.1. Taking the union over all reduced Gröbner bases of I{5,10,25,50}
from Example 3.2.3, we get UA = {x2

3 − x4, x
3
2 − x1x3, x1x

2
2 − x3, x

2
1 − x2, x

5
1 −

x3, x
5
2 − x2

3, x4 − x5
2, x4 − x10

1 , x3
2x3 − x1x4}. This is computed easily from the

CaTS output from earlier.

From Chapter 2 and Proposition 3.2.2(4) we know that UA is finite and
consists of A-homogeneous binomials. A binomial xu+ −xu− ∈ IA is primitive
if there is no binomial xv+ −xv− ∈ IA such that xv+

properly divides xu+
and

xv− properly divides xu− . The following is an easy fact.

Lemma 3.4.2. (Lemma 4.6 [Stu96]) Every binomial in UA is primitive.

Definition 3.4.3. The Graver basis of IA, denoted by GrA, is the set of all
primitive binomials in IA.

There are many examples of A for which GrA is a proper superset of UA.
This is the case for our running example where GrA = {x2

1−x2, x1x
2
2−x3, x

3
1x2−

x3, x
5
1− x3, x

3
2− x1x3, x

2
3− x4, x1x

2
2x3−x4, x

3
1x2x3− x4, x

5
1x3− x4, x

5
2− x2

3, x
5
2−

x4, x
2
1x

4
2 − x4, x

4
1x

3
2 − x4, x

6
1x

2
2 − x4, x

8
1x2 − x4, x

10
1 − x4, x

3
2x3 − x1x4}. Graver

bases can be computed using the software package 4ti2.
For a collection of vectors P = {p1, . . . ,pn} ⊂ Zd, recall that pos(P) is the

cone generated by P.

Definition 3.4.4. Let D denote the semigroup pos(P) ∩ Zd for P ⊂ Zd. A
Hilbert basis of pos(P) is a finite generating set for the semigroup D.

Example 3.4.5. The Hilbert basis of pos({(1, 0), (1, 3), (1, 4), (1, 6)}) is

{(1, 0), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)}.

The following lemma shows that Definition 3.4.4 makes sense.

Lemma 3.4.6. Every rational polyhedral cone has a Hilbert basis.
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Proof. Assume that p1, . . . ,pk are primitive vectors generating the cone pos(P).
Consider the finite set D′ = {x ∈ Zd : x =

∑
i λipi with 0 ≤ λi < 1}.

Note that if y ∈ D, then y =
∑

j µjpj for some µj ∈ R≥0. Write this as
y =

∑
ibµicpi +

∑
i(µi − bµic)pi. The second sum belongs to D′, so, since y

was arbitrary, this shows that {p1, . . . ,pk} ∪ D′ generate D. We may delete
redundant elements in this set to minimalize the generating set and obtain a
Hilbert basis for pos(P).

When pos(P) is pointed, which means that there is no line in the cone, then
pos(P) has a unique minimal Hilbert basis.

We use Hilbert bases to give an explicit (theoretical) construction of GrA.
For each sign pattern σ ∈ {+,−}n, consider the pointed polyhedral cone Cσ :=
ker(A)∩Rnσ, where ker(A) is the vector space {u ∈ Rn : Au = 0}. Here Rnσ is
the orthant of Rn with sign pattern σ. Let Hσ be the Hilbert basis of Cσ which
is a pointed cone. The Graver basis GrA = {xu+ − xu− : u ∈

⋃
σHσ\{0}}.

Lemma 3.4.7. The above construction yields the Graver basis GrA. By con-
struction it is finite.

Proof. If u ∈ Cσ, then u is a N-linear combination of elements of Hσ all
of which are sign-compatible to u. If u 6∈ Hσ, then every element v ∈ Hσ

involved in the combination has the property that v+ ≤ u+ and v− ≤ u−

which implies that xu+ − xu− is not primitive. Thus if xu+ − xu− ∈ IA is
primitive then u ∈ ∪σHσ\{0}. On the other hand, if xu+ − xu− is such that
u ∈ Hσ, then it is primitive by construction.

Algorithm 7.2 in [Stu96] is a more practical method for constructing GrA.
See Tutorial 4 for an example.

Our next goal is to provide bounds for the maximum degree of an element
in the Graver basis. In order to do this, we isolate a special subset of the
Graver basis known as the set of circuits of IA. A bound on the maximum
degree of a circuit can be derived from linear algebra. This in turn yields a
bound on the maximum degree of an element in GrA.

Definition 3.4.8. A primitive binomial xu+ − xu− ∈ IA is called a circuit if
its support is minimal among all binomials in IA. The set of circuits of IA is
denoted as CA.

We refer to the set of vectors {u : xu+ − xu− ∈ CA} as the circuits of A.
This set will also be denoted as CA. Recall that circuits of a matrix were also
defined in Chapter 1 in the context of linear ideals. The same notion is being
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used here. We now state a few facts about circuits. See [Stu96, Lemmas 4.8,
4.9, 4.10 and 4.11] for details.

Lemma 3.4.9. 1. The circuits CA are precisely the generators of the pointed
rational polyhedral cones Cσ in the construction of the Graver basis.

2. Every vector v ∈ ker(A) can be written as a non-negative rational com-
bination of n− d circuits, each of which is sign-compatible to v.

3. The support of a circuit has cardinality at most d + 1.

4. Every circuit xu+ − xu− of IA appears in some reduced Gröbner basis of
IA. Thus CA ⊆ UA ⊆ GrA.

5. Let D(A) := max{| det[ai1 . . . aid ]| : 1 ≤ i1 < i2 < · · · < id ≤ n}. If
u ∈ CA then ‖u‖1 ≤ (d + 1)D(A).

Proof. (Sketch of the main ideas.)

1. Recall that circuits of A are vectors in kerZ(A) of minimal support. Thus
they lie at the intersection of as many coordinate hyperplanes as possible.
The extreme rays of the cones Cσ are cut out by a maximal number of
coordinate hyperplanes.

2. Caratheodory’s Theorem for polyhedral cones says that every vector in
a d-dimensional rational polyhedral cone is a non-negative rational com-
bination of d generators of the cone [Zie95].

3. The circuits of A are the minimal dependencies among the columns of
A. Recall that rank(A) = d.

4. This fact follows from an argument very similar to the minimality argu-
ment in Proposition 4.3 (2) of Chapter 1.

5. By part 3 it suffices to show that |ui| ≤ D(A) for each i = 1, . . . , n. Let
supp(u) = {i1, . . . , ir}. Then the d×r matrix (ai1 . . . air) has rank r−1
since u is a minimal dependency on the columns of A. Choose columns
air+1 , . . . , aid+1

of A such that B = (ai1 . . . aid+1
) has rank d. Hence the

kernel of B is one-dimensional, and by Cramer’s rule is spanned by the
vector

d+1∑
j=1

(−1)j det(ai1 . . . aij−1
aij+1

. . . aid+1
)eij (∗).
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Thus u is a rational multiple of (∗) (extended by zeros to be a vector in
Rn). However, since u is a circuit and (∗) is integral, (∗) is in fact an
integer multiple of u which proves the claim.

Using Lemma 3.4.9 we obtain a bound on the maximum degree of a Graver
basis element.

Theorem 3.4.10. Let D(A) := max{| det[ai1 . . . aid ]| : 1 ≤ i1 < i2 < · · · <
id ≤ n}. The total degree of any element of GrA is less than (d+1)(n−d)D(A).

Proof. Note that the ideal IA need not be homogeneous in the total de-
gree grading. The “total degree” of an element xu+ − xu− is taken to be
max{‖u+‖1, ‖u−‖1}.

If xv+−xv− ∈ GrA, then apply Lemma 3.4.9 (2) to find n−d circuits sign-
compatible to v and non-negative rational numbers λ1, . . . , λn−d such that

v = λ1u1 + · · ·+ λn−dun−d.

The sign-compatibility implies that v+ = λ1u
+
1 + · · · + λn−du

+
n−d and v− =

λ1u
−
1 +· · ·+λn−du

−
n−d. Further, since v is primitive, λi < 1 for each i. Assuming

that the total degree of xv+ −xv− equals ‖v+‖1, we get from Lemma 3.4.9 (5)
that

‖v+‖1 ≤
n−d∑
j=1

λj‖uj+‖1 < (n− d)(d + 1)D(A).

It has been conjectured by Sturmfels that the factor (n− d) in the bound
proved above is unnecessary.

Conjecture 3.4.11. The total degree of any element of GrA is less than or
equal to (d + 1)D(A).

Apart from intrinsic mathematical interest, tighter bounds on the degree of
Graver basis elements have important consequences in integer programming.
Several bounds in this field appear as functions of this maximum degree. The
maximum degree of elements in a universal Gröbner basis of an ideal is a
measure of the complexity of the ideal and the complexity of Buchberger’s
algorithm working on this ideal. The single-exponential upper bound on the
degree of elements in GrA should be contrasted with the double-exponential
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lower bounds on the elements in a universal Gröbner basis of a class of binomial
ideals found by Mayr and Meyer [MM82]. These ideals have been used in the
literature to show that Gröbner bases calculations can be difficult from the
view of computational complexity.
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3.5 Tutorial 3

In Tutorial 1 the program Macaulay 2 was introduced. In this tutorial we
will create our own functions in Macaulay 2 to implement the algorithms in
Lecture 3. A function in Macaulay 2 has the syntax

function-name = (names for input(s) separated by commas) ->
(computations to execute separated by semi-colons)

Below are two examples. The first function toBinomial creates a binomial
from an integer vector. The second function HSAlg encodes the Hoşten-
Sturmfels algorithm described in Lecture 3. The package “LLL.m2” allows
us to do the optional reduction of the basis in the sense of Lenstra, Lenstra
and Lovász from step two of the Hoşten-Sturmfels algorithm.

load "LLL.m2" -- load a package for doing LLL reduction

toBinomial = (b,R) -> (
-- take a vector b of the form {*,*,...,*}, and
-- a ring R having length of b number of variables
-- return binomial x^(b-) - x^(b+)
pos := 1_R;
neg := 1_R;
scan(#b, i-> if b_i > 0 then pos = pos * R_i^(b_i)

else if b_i < 0 then neg = neg * R_i^(-b_i));
pos - neg);

HSAlg = (A,w) -> (
-- take list of rows of A written {{*},{*},...,{*}}
-- and take a weight vector w
-- return a reduced GB for I_A with respect to w
n := #(A_0); -- NOTE: A is not a matrix
R = QQ[x_1..x_n,Degrees=>transpose A,MonomialSize=>16,

Weights=>w];
B := transpose LLL syz matrix A;
J := ideal apply(entries B, b -> toBinomial(b,R));
scan(gens ring J, f -> J = saturate(J,f));
gens gb J)

Notice that the prefix ‘--’ is used to denote the start of a comment;
the entire rest of the line is ignored by the program. A list in Macaulay 2
is denoted by curly braces and its elements are separated by commas. In
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the function HSAlg instead of using one of the predefined orders and the
command MonomialOrder=>name-of-order, we use Weights=>w which tells
Macaulay 2 to use a weight order determined by the vector w. The com-
mand saturate(J,f) computes (J : f∞). The command #L returns the size
of the list L. More help with commands is available by typing help name-of-
command in Macaulay 2, or better, by using the html-based help either locally
or at http://www.math.uiuc.edu/Macaulay2/Manual.

In one of the functions above, we used a monomial order defined by a weight
vector. Another useful order is an elimination order. For an ideal I ⊂ k[t,x],
generators for the ideal I ∩ k[x] are found by calculating a Gröbner basis of
I with respect to an elimination order for the ti variables and then throwing
out any generators which contain ti’s. In Macaulay 2 including the setting
MonomialOrder => Eliminate n in the definition of a ring will force the use
of an elimination order eliminating the first n variables. Note that an elim-
ination order need not be a total order, just one where the variables to be
eliminated are bigger than those that are not to be eliminated. Macaulay 2
refines this partial order by using the graded reverse lexicographic order when-
ever necessary to attain a total order on the monomials.

1. (a) Working by hand, use the Conti-Traverso algorithm to find a re-
duced Gröbner basis G(3,2,1) of IA for A = [1 2 3]. Use grevlex as a
tiebreaking term order.

(b) Now, using Macaulay 2, implement the Conti-Traverso algorithm
by replacing the question marks in the following function by your
own code to complete the algorithm.

CTAlg = (A,w) -> (
-- take a list of rows of matrix A of the form
-- {{*},{*},...,{*}}
-- and a weight vector w
-- return a reduced GB of I_A
n := #(A_0);
d := #A;
R := QQ[t_0..t_d,x_1..x_n, MonomialSize=>16,

MonomialOrder=> ??? ];
J := ideal ( ??? );
I := selectInSubring(1, gens gb J); -- select entries
-- without vars from 1st ‘part’ of mon. order

S := ??? ; -- the ring I should end up in
gens gb substitute(I, S))
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2. Recall that while defining the toric ideal, we defined the map π : Nn → Zd
by u 7→ Au, and its image was NA. For any b ∈ NA, we define the fiber
of π over b to be the set π−1(b) = {u ∈ Nn : π(u) = b}. We also
sometimes use the term fiber to refer to the set of monomials having the
same A-degree, that is, {xu : π(u) = b} which is also a basis for the
vector space k[x]b.

For any subset H ⊂ ker(π), we may define a graph on the fiber π−1(b)
by taking the vertices to be the vectors in the fiber, and connecting two
vertices u and v when u−v ∈ H. Furthermore, given a term order � on
Nn, we can create a directed graph from the undirected one by orienting
an edge from u to v when u � v.

(a) Let H ⊂ ker(π). Prove that {xu+ − xu− : u ∈ H} is a generating
set of IA if and only if for every b ∈ NA the graph on the fiber
π−1(b) defined by H is connected.

(b) Let H ⊂ ker(π), and let � be a term order on Nn. Prove that
G = {xu+ − xu− : u ∈ H} is a Gröbner basis of IA with respect to
� if and only if for every b ∈ NA the directed graph on the fiber
π−1(b) defined by H and � is connected as an undirected graph
and has a unique sink (a vertex with only incoming edges) at the
unique minimal vector in the fiber under the ordering by �. Note
that a term order � on Nn also defines a term order on monomials
where xu � xv if u � v.

3. (a) Describe an algorithm using toric ideals to solve the integer program
min{c · x : Ax = b, x ∈ Zn, x ≥ 0} where c is the cost (weight)
vector and b ∈ NA = {Au : u ∈ Zn, u ≥ 0}. That is, find a vector
or set of vectors x that minimize c · x subject to the constraints
above.

(b) In order to do the calculations from your algorithm in part a us-
ing Macaulay 2 it may be helpful to know that you can reduce a
monomial m modulo an ideal I using the command m % I.

Use your algorithm to solve the integer program about currency
from the introduction to Lecture 3.

4. The programs 4ti2 [Hem] and CoCoA [COC] both have specialized pack-
ages for toric computations. To use the program 4ti2, create a file matrix-
file for each A matrix with the following lines in the file:
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line 1: number-of-rows-in-A number-of-columns-in-A
remaining lines: entries of row of A, each separated by spaces

A Gröbner basis may be calculated by running groebner matrix-file.
This process will return a file matrix-file.gro in the same format as the
input. The output file can be formatted with the command output.
To list the output as binomials, for example, type output bin matrix-
file.gro. Caution: you must include the extension .gro, or else you will
get binomials from the input matrix A. For further information, see the
web site http://www.4ti2.de.

In CoCoA, Toric(matrix) returns the toric ideal corresponding to the
matrix. CoCoA also has an integer programming package. Details on
using CoCoA may be found at http://cocoa.dima.unige.it.

(a) Use one or both of the above programs to find a Gröbner basis for
the toric ideal generated by the matrix3 2 2 1 1 0 0 0 0

0 1 0 2 0 3 2 1 0
0 0 1 0 2 0 1 2 3

 .

(b) For more practice, check your previous calculations using these pro-
grams.

5. (a) Show that the result in Exercise 2b can be used to enumerate all
the elements of a fiber.

(b) The program CaTS will enumerate all lattice points in a fiber using
the command cats fiber. The input file is a list of the columns of
A in the form {(col 1)(col2) · · · (col n)} followed by a vector of the
fiber in the form (d1, d2, . . . , dn). For more information see
http://www.soopadoopa.dk/anders/cats/cats.html.

Use CaTS to find all the lattice points in the fiber necessary to solve
the currency problem in the introduction to Lecture 3.

6. [From [CLO98], p. 359] Suppose a small local trucking firm has two
customers, A and B, that generate shipments to the same location. Each
shipment from A is a pallet weighing exactly 400 kilos and taking up 2
cubic meters of volume. Each pallet from B weighs 500 kilos and takes
up 3 cubic meters of volume. The shipping firm uses small trucks that
can carry any load up to 3700 kilos, and up to 20 cubic meters. B’s
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product is more perishable, though, and they are willing to pay a higher
price for on-time delivery: $15 per pallet verses $11 per pallet from A.
How many pallets from each of the two companies should be included in
each truckload to maximize the revenues generated?

7. For each of the following matrices, calculate, by hand, a Hilbert basis of
the cone spanned by the columns of A.

(a) A =

(
1 1 1 1
0 1 3 4

)
(b) A =

(
1 2 2 3
0 1 3 4

)
8. As we saw in Exercise 4, the program 4ti2 can compute a generating set

and Gröbner basis for IA. It can also calculate Graver bases by running
graver matrix-file.

(a) For each of the following matrices, use 4ti2 to calculate the Graver
basis for the lattice ideal defined by A.

i. A =

(
1 1 1 1
0 1 3 4

)
ii. A =

(
1 2 2 3
0 1 3 4

)
(b) For the above matrices, check, by hand or using Macaulay 2, that

the conjectured bound on the total degree of any element of the
Graver basis (Conjecture 3.4.11) holds, that is, the total degree is
always less than (d + 1)D(A) where

D(A) = max{| det[ai1 · · · aid ]| : 1 ≤ i1 ≤ i2 ≤ . . . ≤ id ≤ n}.
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3.6 Solutions to Tutorial 3

1. (a) A reduced Gröbner basis of IA is {x2
1 − x2, x1x2 − x3, x2

2 − x1x3}.
(b) Here is one way to fill in the gaps to create a program which imple-

ments the Conti-Traverso algorithm.

CTAlg = (A,w) -> (
-- take a list of rows of matrix A of the form
-- {{*},{*},...,{*}}
-- and a weight vector w
-- return a reduced GB of I_A
n := # (A_0);
d := #A;
R := QQ[t_0..t_d,x_1..x_n, MonomialSize=>16,

MonomialOrder=>Eliminate(d+1)];
J := ideal (append(

apply(n, j -> (
firstmon = x_(j+1);
secondmon = 1_R;
scan(d, i-> (

if A_i_j < 0
then firstmon = firstmon*(t_(i+1))^(-A_i_j)
else secondmon = secondmon*(t_(i+1))^(A_i_j)));

firstmon - secondmon)),
product(toList (t_0..t_d))-1));

I := selectInSubring(1, gens gb J);
S := QQ[x_1..x_n, Degrees => transpose A, Weights=>w];
gens gb substitute(I, S))

2. (a) Assume {xu+ − xu− : u ∈ H} generates IA. Fix a vector b. Then
we want to show the graph on π−1(b) defined by H is connected.
Consider any two vertices p, and q in the graph π−1(b). We want to
show that p−q ∈ H. Proposition 3.2.2 gives us that xp−xq ∈ IA,
so we can write this binomial in terms of our generating set for IA
as xp − xq =

∑m
i=1 xwi(xui

+ − xui
−
), where the vectors ui are not

necessarily unique. We proceed by induction. If m = 1 then up to
relabeling p = w1 + u1

+ and q = w1 + u1
−. So p − q = u ∈ H,

and hence there is an edge between p and q. If m > 1, then by
relabeling, we may assume xp = xw1xu1

+
. Since u ∈ H, this means

that p and (w1 + u1
−) are connected by an edge in the graph. So

we have reduced the problem to showing that (w1 +u1
−) and q are
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connected. However, xw1xu1
− − xq =

∑m
i=2 xwi(xui

+ − xui
−
) is a

smaller sum, so by induction w1 + u1
− and q are connected.

For the other direction, assume that H defines a connected graph on
π−1(b) for every b ∈ NA. Take any xp − xq ∈ IA. Set b = π(p) =
π(q). By the hypothesis, the graph on π−1(b), the vertices p and q
must have a path connecting them, say p,v1,v2, . . . ,vm,q. So the
vectors p−v1,v1−v2, . . . ,vm−q are elements of H. But then we
can write xp − xq = (xp − xv1) + (xv1 − xv2) + · · · + (xvm − xq),
hence H generates IA.

(b) Assume that G is a Gröbner basis of IA with respect to some or-
dering �. We can think of this as an ordering on the monomials
or the exponent vectors. By part a, each fiber graph is connected.
So we want to show there is a unique sink when � is used to orient
the graph. Suppose there are two sinks p and q. Since they are in
the same fiber, the binomial xp−xq ∈ IA by Proposition 3.2.2. We
may assume in(xp − xq) = xp. Since G is a reduced Gröbner basis
of IA, xp = xw in(g) for some g = xu+ − xu− ∈ G. Without loss of
generality in(g) = xu+

so p − (w + u−) ∈ H and p � (w + u−).
Therefore there an edge from p to (w + u−), and hence p cannot
be a sink.

For the other direction, assume that the directed graph on each
fiber defined by H and � has a unique sink at the minimal vector
in that fiber. We want to show that G is a Gröbner basis of IA
with respect to �. By part a, the connectedness of each fiber graph
implies that G generates IA, so 〈in(g) : g ∈ G〉 ⊂ in(IA). To verify
equality, take a monomial xp ∈ in(IA). Either p is the unique sink
of the graph on π−1(π(p)) or there is an edge leaving p and going
to some other vertex q. If it is the sink, then it is minimal in the
term order and hence cannot have been the initial term of some
polynomial in IA. If it is not the sink, then we have p−q ∈ H and
xp � xq. So there is some element of g = {xu+ − xu− ∈ G such
that u+ − u− = p − q, hence in(g) divides xp. This proves that
xp ∈ 〈{in(g) : g ∈ G}〉.

3. (a) First calculate IA in the polynomial ring using a term order defined
by the weight vector c. Using the grading defined by deg(xi) = ai,
find some monomial of degree b. Now reduce the monomial modulo
IA using the weight vector term order, and take the exponent vector
to get the x which minimizes the integer program.
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(b) For this problem c = (1, 1, 1, 1), A = [5 10 25 50], and b = 100. To
find IA in Macaulay 2 using the Hoşten-Sturmfels algorithm type
I = ideal HSAlg({{5,10,25,50}},{1,1,1,1}). A monomial of
degree 100 in IA is x20

1 . If you didn’t know this, you could find such
a monomial in Macaulay 2 by typing basis(100, ring I) and
taking any entry of the resulting matrix. To reduce the monomial
modulo IA in Macaulay 2, type x 1^(20)= % I. The result is x2

4, so
the solution to the integer program is the vector x = (0, 0, 0, 2). In
terms of coins, this solution vector means that the smallest number
of coins adding up to a value of 100 is two coins each of value 50.

4. Using 4ti2, the output of the command output bin exercise.gro,
where exercise is the file containing the matrix and exercise.gro is the
result of running groebner exercise, is

[

x[5]*x[6]-x[4]*x[8],

x[7]^2-x[6]*x[8],

x[3]*x[6]-x[2]*x[7],

x[4]^2-x[2]*x[6],

x[8]^2-x[7]*x[9],

x[2]*x[4]-x[1]*x[6],

x[2]*x[5]-x[1]*x[8],

x[3]*x[7]-x[2]*x[8],

x[3]*x[4]-x[1]*x[7],

x[2]^2-x[1]*x[4],

x[5]^2-x[3]*x[9],

x[5]*x[7]-x[4]*x[9],

x[3]*x[5]-x[1]*x[9],

x[4]*x[5]-x[2]*x[8],

x[7]*x[8]-x[6]*x[9],

x[3]*x[8]-x[2]*x[9],

x[3]^2-x[1]*x[5],

x[2]*x[3]*x[9]-x[1]*x[5]*x[8]

]

5. (a) Given a reduced Gröbner basis G� of IA, Exercise 2b shows that the
exponent vectors form connected directed graphs on the elements
of each fiber. The idea is to start with some element of the fiber
and then wander around the graph to find all the other elements of
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the fiber. Computationally, start with a fiber element u ∈ π−1(b).
Reduce xu modulo G� to get a monomial whose exponent is the
unique minimal element of the fiber. Now the elements of G� can
be used to move backward from the unique sink to find all vertices
of the graph.

One method for effectively finding all the vertices in a graph without
using large amounts of memory to keep track of which vertices have
already been visited is the reverse search algorithm by Avis and
Fukuda [AF92]. This reverse search has been implemented in CaTS.

(b) Create a file containing the following line:

{(5)(10)(25)(50)} (20,0,0,0)

Then run the program cats fiber on it to get the elements of the
fiber. The output should be the same as the fiber elements listed in
the beginning of Lecture 3.

6. Let a be the number of pallets of A’s product shipped and b be the
number of pallets of B’s product shipped. We must have a, b ≥ 0 and
they both must be integers. We want to maximize 15b + 11a subject
to the constraints 400a + 500b ≤ 3700 and 2a + 3b ≤ 20. Solving this
integer program using the method of Exercise 4 or Exercise 5, you should
find the revenues will be maximized with 4 pallets of each. Note that it
is helpful to add “slack variables” in order to change the inequalities to
equalities before solving.

7. To find the Hilbert basis for a set of vectors P, we draw the cone pos(P)
and the lattice ZP. Then we find a minimal set of vectors whose N-linear
combinations give the vectors of pos(P) ∩ Z2.

(a) P = {(1, 0), (1, 1), (1, 3), (1, 4)} can be drawn as the black dots in
Figure 3.1. The cone pos(P) is the gray shaded region.

The intersection of the cone with Z2 is the semigroup of all inte-
ger lattice points within the cone. Therefore the Hilbert basis is
{(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)}.

(b) P = {(1, 0), (2, 1), (2, 3), (3, 4)} can be drawn as the black dots in
Figure 3.2. The cone pos(P) is the gray shaded region.
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Figure 3.1: The cone pos(P) for P in 7a.

Figure 3.2: The cone pos(P) for P in 7b.

Again the intersection of the cone with Z2 is the semigroup of
all integer lattice points within the cone, so the Hilbert basis is
{(1, 0), (1, 1), (2, 3)}.

8. (a) i. Run the command graver filename from 4ti2 on the matrix A
and use output bin filename.gra to format the output file. The
result is that the Graver basis is {x3

2 − x2
1x3, x4

2 − x3
1x4, x2x3 −

x1x4, x2
2x4 − x1x

2
3, x2x

2
4 − x3

3, x4
3 − x1x

3
4}.

ii. Again, using 4ti2, we find that the Graver basis is {x3
2−x4

1x3, x4
2−

x5
1x4, x2x3−x1x4, x2

2x4−x3
1x

2
3, x2x

2
4−x2

1x
3
3, x1x

4
3−x3

4, x2x
5
3−x4

4}.

(b) i. First we calculate the total degrees of the elements of the Graver
basis.
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element total degree
x3

2 − x2
1x3 3

x4
2 − x3

1x4 4
x2x3 − x1x4 2
x2

2x4 − x1x
2
3 3

x2x
2
4 − x3

3 3
x4

3 − x1x
3
4 4

Now we calculate the determinants of the two by two minors
of A. This can be done by hand, or using Macaulay 2 with the
command minors(2,matrix {{1,1,1,1},{0,1,3,4}}). Either
way, we find that D(A) = 4. So now we check that indeed
4 ≤ (3)(4).

ii. First we calculate the total degrees of the elements of the Graver
basis.

element total degree
x3

2 − x4
1x3 5

x4
2 − x5

1x4 6
x2x3 − x1x4 2
x2

2x4 − x3
1x

2
3 5

x2x
2
4 − x2

1x
3
3 5

x1x
4
3 − x3

4 5
x2x

5
3 − x4

4 6

Now we calculate the determinants of the two by two minors
of A and find that D(A) = 5. So now we check that indeed
6 ≤ (3)(5).
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Chapter 4

Triangulations

The main point of this chapter is to discuss the relationship between initial
ideals of toric ideals and triangulations of the vector configurations.

4.1 Background on triangulations

Let A = {a1, . . . , an} be a collection of nonzero integral vectors in Zd. We
use the polyhedral language defined in Chapter 2. We will always assume that
pos(ai : 1 ≤ i ≤ n) is d-dimensional. We denote by [n] the set {1, . . . , n}. A
simplicial complex is a collection {σ ⊆ [n]} that is closed under taking subsets.

A triangulation of A is a simplicial complex ∆ of subsets of [n] such that
the cones {pos(ai : i ∈ σ) : σ ∈ ∆} form a simplicial fan whose support is
pos(ai : 1 ≤ i ≤ n). A geometric realization of a triangulation has vertices at
some of the points of A.

Example 4.1.1. Let A ⊂ Z3 be the collection {(1, 0, 0), (1, 1, 0), (1, 2, 0),
(1, 0, 1), (1, 1, 1)}. These five vectors all have first coordinate one, so a cross-
section of pos(ai : 1 ≤ i ≤ 5) is obtained by taking the convex hull of the points
{(0, 0), (1, 0), (2, 0), (0, 1), (1, 1)}. Two triangulations of A are shown in cross-
section in Figure 4.1, where the points are labeled 1, . . . , 5 is the order listed
here. The first consists of all subsets of sets in {{1, 2, 4}, {2, 4, 5}, {2, 3, 5}},
while the second is all subsets of sets in {{1, 2, 4}, {2, 3, 4}, {3, 4, 5}}.

We focus on a subclass of triangulations known as regular or coherent
triangulations. These subclasses were first introduced by Gelfand, Kapranov,
and Zelevinsky [GKZ94].

77
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Figure 4.1: Triangulations of the configuration in Example 4.1.1

Definition 4.1.2. A triangulation ∆ of A = {a1, . . . , an} is regular or coherent
if there is a weight vector w ∈ Rn for which the following condition holds: a
subset {i1, . . . , ik} is a face of ∆ if and only if there exists a vector c ∈ Rd
with aj · c = wj for j ∈ {i1, . . . , ik}, and aj · c < wj otherwise. In this case we
denote by ∆w the triangulation ∆.

An alternative description of ∆w is that it is the triangulation of A in-
duced by the lower faces of the cone in Rd+1 formed by taking the polyhedral
cone generated by the vectors (aj, wj). A lower face of a cone in Rd+1 is one
visible from the point −Ned+1 for N � 0. To see the equivalence, note that
pos((aj, wj) : j ∈ σ) is a lower face of this cone if and only if there is a vector
c ∈ Rd with (c,−1) · (aj, wj) = 0 for j ∈ σ and (c,−1) · (aj, wj) < 0 for j 6∈ σ.
But this means c · aj = wj for j ∈ σ and c · aj < wj for j 6∈ σ, so pos(aj, wj)
is a face of ∆w.

Note that for some w the lower faces will not be simplicial cones, so we will
not get a triangulation of A, but rather a subdivision. The requirement that
∆w be a triangulation of A places some conditions on w, which are satisfied
for most w ∈ Rn.

Example 4.1.3. The two triangulations shown in Figure 4.1 are both regular.
The triangulation on the left is ∆w for w = (1, 0, 1, 0, 0). To check this, note
that a vector c corresponding to the face {1, 2, 4} is (1,−1,−1), a c for {2, 4, 5}
is (0, 0, 0), and a c for {2, 3, 5} is (−1, 1, 0). The triangulation on the left is
∆w for w = (1, 0, 0, 0, 1).

A non-regular triangulation is shown in Figure 4.2. This is the smallest such
example in terms of dimension d, number of vectors n, and codimension n−d.
Checking that this triangulation is not regular involves writing down a list of
inequalities on the components of a vector w that would satisfy the conditions
of Definition 4.1.2, and observing that no solution to these inequalities exists.
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Figure 4.2: The smallest non-regular triangulation.

Simplicial complexes have an intimate connection to commutative algebra
via the Stanley-Reisner ideal.

Definition 4.1.4. Let ∆ be a simplicial complex of subsets of [n]. The Stanley-
Reisner ideal I(∆) is the squarefree monomial ideal

I(∆) =
〈∏
i∈σ

xi : σ 6∈ ∆
〉

=
⋂
σ∈∆

〈xi : i 6∈ σ〉.

Example 4.1.5. Let ∆ be the first triangulation of Example 4.1.1. Then ∆
consists of all subsets of the sets {{1, 2, 4}, {2, 4, 5}, {2, 3, 5}}, and the Stanley-
Reisner ideal I(∆) = 〈x1x3, x1x5, x3x4〉.

The map from simplicial complexes to squarefree monomial ideals given
by taking the Stanley-Reisner ideal is a bijection. It associates a simplicial
complex, the Stanley-Reisner complex ∆(I), to any squarefree monomial ideal
I. Specifically, ∆(I) = {σ ⊆ [n] :

∏
i∈σ xi 6∈ I}.

4.2 The connection with initial ideals of IA

The main result of this lecture is a natural map from initial ideals of the toric
ideal IA to regular triangulations of the configuration A = {a1, . . . , an}. We
denote by supp(u) the set {i : ui 6= 0} of a vector u ∈ Rn, which we call
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the support of u. Recall the radical of an ideal J is the ideal rad(J) = 〈f :
fn ∈ J for some n ∈ N〉. We say w is a generic weight vector if inw(IA) is a
monomial ideal.

Theorem 4.2.1. Let A be a d × n integer-valued matrix with ker(A) ∩ Nn =
{0}, and let A = {a1, . . . , an} be the columns of A. Let J = inw(IA) for
some generic weight vector w. Then rad(J) is the Stanley-Reisner ideal of the
simplicial complex ∆w.

Proof. Let F ⊆ [n]. Then F is a face of the simplicial complex associated to
∆w if and only if there is a c ∈ Rd with ai ·c ≤ wi for 1 ≤ i ≤ n, with equality
exactly when i ∈ F . Let P be the polyhedron {c : ai · c ≤ wi}. Candidates
for F thus correspond to faces of P . Choose a cost vector b ∈ Rd that is
maximized at the face of P corresponding to F . Then we can find an optimal
solution c to the linear program

maximize c · b subject to c ∈ Rd, ai · c ≤ wi for 1 ≤ i ≤ n,

with ai · c = wi exactly when i ∈ F .
Now linear programming duality and complementary slackness imply that

this c exists if and only there is an optimal solution u ∈ Rn to the dual program

minimize u ·w subject to u ∈ Rn, u ≥ 0,
n∑
i=1

uiai = b

with supp(u) = F . Details and definitions of linear programming duality and
complementary slackness may be found in any text on linear programming,
such as in Corollary 7.1g and Section 7.9 of [Sch86]. In general the solution
u ∈ Rn to the dual program will have rational entries (since the vectors ai are
integral), but we can replace b by a suitably large multiple to ensure that u lies
in Nn. But this means that the monomial xu has supp(u) = F , and xu 6∈ J ,
since the solution to this integer program is the unique standard monomial of
J of degree b (see Exercise 3 of Tutorial 3). In fact, no power of xu lies in J ,
since if u is an integral solution to this dual program then lu is a solution to
the dual program with b replaced by lb. This condition on xu is exactly the
condition that xu 6∈ rad(J). Thus any monomial xv in S with supp(v) = F
does not lie in rad(J). Each of these implications is reversible, so we conclude
that rad(J) is the Stanley-Reisner ideal of the simplicial complex ∆w.

Example 4.2.2. LetA = {(1, 0, 0), (1, 1, 0), (1, 2, 0), (1, 0, 1), (1, 1, 1), (1, 0, 2)}.
Then IA = 〈cf −e2, de− bf, af −d2, ae− bd, cd− be, ac− b2〉 ⊆ k[a, b, c, d, e, f ].



4.3. THE SECONDARY FAN AND THE GRÖBNER FAN 81
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Figure 4.3: The triangulations of Example 4.2.2

For w = (10, 1, 10, 5, 1, 1), we have inw(IA) = 〈cf, de, af, ae, cd, ac〉. This is
already a radical ideal, and it is the Stanley-Reisner ideal of the triangulation
shown in cross-section on the left in Figure 4.3.

When w = (1, 10, 1, 10, 10, 1), inw(IA) = 〈e2, de, be, d2, bd, b2〉. The rad-
ical of this ideal is 〈b, d, e〉. This is the Stanley-Reisner ideal of the second
triangulation in Figure 4.3.

We leave it to the reader to check that each of the triangulations in Fig-
ure 4.3 is ∆w for the corresponding w.

4.3 The secondary fan and the Gröbner fan

In the same way that initial ideals of an ideal correspond to vertices of the
state polytope, regular triangulations of a vector configuration correspond to
vertices of a polytope known as the secondary polytope. Its normal fan is
called the secondary fan of A.

Definition 4.3.1. Let A be a collection of integral vectors in Zd. The sec-
ondary fan of A is the polyhedral fan SA whose top-dimensional open cones
consist of all w′ for which ∆w′ = ∆w, as ∆w varies over the finitely-many
regular triangulations of A.

Remark 4.3.2. In giving Definition 4.3.1 we are omitting a proof that the
secondary fan is actually a polyhedral fan. In principle a proof can be given
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Figure 4.4: The secondary polytope of the configuration of Example 4.1.1.

like the one given for the Gröbner fan in Chapter 2, where we define sets of
weight vectors for each triangulation, check that their closures are polyhedral
cones, and finally check that these cones fit together to form a polyhedral fan.

For example, to check that the closure of these sets are at least convex,
note that if ∆w = ∆w′ , and c · ai ≤ wi, and c′ · ai ≤ w′i with equality for
the same values of i, then (λc + (1 − λ)c′) · ai ≤ (λw + (1 − λ)w′)i, for any
0 ≤ λ ≤ 1, with equality for the same values of i.

Example 4.3.3. For the configuration in Example 4.1.1 the secondary fan
has five cones. The corresponding secondary polytope (a pentagon) appears
in Figure 4.4, with each vertex replaced by the corresponding triangulation.

Note that although the secondary fan lives in R5 we have drawn a two-
dimensional polytope. This is because the secondary fan has a three dimen-
sional lineality space. In general, if A is a configuration of n vectors in Zd
not lying in any hyperplane, then lineality space of the secondary fan is the
row space of the corresponding matrix A with columns the vectors of A, so
the secondary polytope of A will be (n − d)-dimensional. Our example con-
sists of five vectors in R3 (which we draw as five points in R2), so we have a
two-dimensional secondary polytope.
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〈ac, ae, cd〉

〈ac, bd, cd〉

〈b2, bd, cd〉

〈b2, bd, be, cd2〉 〈ae2, b2, bd, be〉

〈ae, b2, be〉

〈ac, ae, be〉

Figure 4.5: The relation between the state and secondary polytope of the
configuration of Example 4.1.1.

A polyhedral fan F ′ refines a polyhedral fan F if every cone of F ′ is con-
tained inside some cone of F .

Proposition 4.3.4. The Gröbner fan of IA refines the secondary fan of A.

Proof. If inw(IA) = inw′(IA), then Theorem 4.2.1 implies that ∆w = ∆w′ .

Example 4.3.5. Let A be the configuration of Example 4.1.1. The relation-
ship between the state and secondary polytopes of this configuration is shown
in Figure 4.5. Here the outer heptagon is the state polytope, with the corre-
sponding initial ideal of IA written next to the vertex, and the inner pentagon
is the secondary polytope. A dotted line connecting an inner vertex to an
outer vertex means that the corresponding cone in the secondary fan contains
the corresponding cone in the Gröbner fan.

In general this refinement is proper. However there are some special cases
where a cone in the secondary fan is not subdivided in the Gröbner cone.
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Definition 4.3.6. A triangulation ∆ of a collection A = {a1, . . . , an} of in-
tegral vectors is unimodular if every simplex σ ∈ ∆ satisfies N{ai : i ∈ σ} =
pos(ai : i ∈ σ) ∩ Z{ai : 1 ≤ i ≤ n}.

The configuration A is called unimodular if every triangulation of A is
unimodular.

Proposition 4.3.7. If ∆ is a regular unimodular triangulation of A, then the
cone of the secondary fan corresponding to ∆ is not subdivided in the Gröbner
fan.

Proof. Let J be an initial ideal of IA corresponding to ∆. It suffices to show
that J is squarefree, so x2

i does not divide any generator for 1 ≤ i ≤ n. This
suffices because then J is the Stanley-Reisner ideal of a triangulation ∆ of A.
Since every initial ideal of IA corresponding to ∆ must be contained in the
Stanley-Reisner ideal of ∆, and we cannot have proper containment of initial
ideals by Corollary 2.2.3, this proves the proposition.

We now show that J is squarefree. Let xu be a monomial not in J . Let b =∑
i uiai. Let σ ∈ ∆ be a top-dimensional simplex with b ∈ pos(ai : i ∈ σ), so

b =
∑

i∈σ λiai for some λi ≥ 0. The fact that ∆ is a unimodular triangulation
of A means that since b ∈ ZA we have λi ∈ N.

By construction we have xu − xλ ∈ IA. We cannot have xλ ∈ J , since
supp(λ) ⊆ σ ∈ ∆, and by assumption xu 6∈ J . Since J is an initial ideal of IA
the only way this is possible is if xu = xλ. This means that supp(u) ∈ ∆, so
we conclude that xlu 6∈ J for any l ∈ N. Thus xu 6∈ rad(J). Since xu was an
arbitrary monomial not in J , this shows that any monomial not in J is not in
rad(J), so we must have J = rad(J). Since J is monomial, we conclude that
J is squarefree.

The converse, however, is not true because there is a configuration with a
nonunimodular triangulation whose secondary cone is not subdivided in the
Gröbner fan. In fact, the following is an open problem.

Problem 4.3.8. How does the Gröbner fan refine a given cone in the sec-
ondary fan?

When n−d = 2, so the state and secondary polytopes are two-dimensional,
a two-dimensional cone in the secondary fan is subdivided by adding the rays
corresponding to the Hilbert basis of the cone. No such answer is known when
n− d ≥ 3.

Problem 4.3.9. Characterize the top-dimensional open cones in the secondary
fan that are not subdivided in the Gröbner fan.
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Proposition 4.3.7 says that the cones corresponding to unimodular trian-
gulations are not subdivided, and when n − d = 2 these are the only non-
subdivided cones. When n− d ≥ 3 more complicated cones can fail to subdi-
vide.

4.4 Further reading

This lecture covers Chapter 8 of [Stu96].
The Stanley-Reisner ideal was introduced in the work of Stanley and Reis-

ner. A notable early application was Stanley’s proof of the Upper Bound Theo-
rem for simplicial spheres, which bounds the number of faces of each dimension
a d-dimensional simplicial sphere can have in terms of the number of vertices.
Much more information about Stanley-Reisner ideals can be found in [Sta96].
Stanley calls the quotient of the polynomial ring by the Stanley-Reisner ideal
the face ring of the simplicial complex. Other aspects of squarefree monomial
ideals in combinatorics and commutative algebra can be found in [MS05].

The original motivation for regular triangulations can be found in [GKZ94].
A good reference for general information about triangulations will be the forth-
coming book [LRS]. The program TOPCOM by Jörg Rambau is the current
best method to compute all regular triangulations, and thus the secondary
fan. When A is unimodular, the program CaTS [Jena] computes the Stanley-
Reisner ideals of all regular triangulations. CaTS can also be used for arbitrary
A by applying Theorem 4.2.1, though there may be much redundancy in this
case. The secondary polytope is a special case of a fiber polytope [BS92].
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4.5 Tutorial 4

1. Let I = 〈x2y, y2z, u3〉 be a monomial ideal in a polynomial ring k[x, y, z, u].

(a) Find the radical
√

I of I.

(b) Find the primary decomposition of
√

I.

(c) Draw the Stanley-Reisner complex of
√

I.

2. Let A = {(2, 0, 0), (1, 1, 0), (0, 2, 0), (1, 0, 1), (0, 1, 1), (0, 0, 2)}. The ideals
I1, I2 and I3 described below are three initial ideals of the toric ideal IA
in the polynomial ring k[a, b, c, d, e, f ], where the variable a corresponds
to the first point (2, 0, 0) and so on. Find the triangulation corresponding
to each of these initial ideals.

I1 = 〈e2, de, d2, cd, bd, b2〉
I2 = 〈b2, bd, be, ae2, af, bf, cf〉
I3 = 〈ac, cd, ae, de, af, cf〉

Algorithm 4.5.1 ([Stu96, Algorithm 7.2]). Computing the Graver basis
of a toric ideal using Lawrence liftings.

Consider a matrix A in Zd×n and construct the enlarged matrix called the
Lawrence lifting of A

Λ(A) =

(
A 0
1 1

)
where 0 and 1 are the d × n zero and n × n identity matrices, respectively.
The matrices A and Λ(A) have isomorphic kernels, and so the toric ideal is a
homogeneous prime ideal

IΛ(A) = 〈xu+

yu− − xu−yu+

: u ∈ ker(A)〉

in the polynomial ring k[x1, . . . , xn, y1, . . . , yn].
For a Lawrence type matrix Λ(A), the Graver basis and universal Gröbner

basis are the same, and they are equal to any reduced Gröbner basis for the
ideal IΛ(A) [Stu96, Theorem 7.1]. This fact gives us the following algorithm for
computing the Graver basis of a given matrix.

Step 1. Choose any term order on k[x1, . . . , xn, y1, . . . , yn], and compute the re-
duced Gröbner basis G of IΛ(A).

Step 2. Substitute 1 for y1, . . . , yn in G. The resulting subset of k[x1, . . . , xn] is
the Graver basis GrA.
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In the following exercises, letA be a set of vectors {(3, 0), (2, 1), (1, 2), (0, 3)}
in Z2. The toric ideal IA = 〈xz − y2, xw− yz, yw− z2〉 in the polynomial ring
k[x, y, z, w] corresponds to the projective twisted cubic.

3. Use Algorithm 4.5.1 and the Hoşten-Sturmfels Algorithm described in
Tutorial 3 to compute the Graver basis of IA.

4. Show that the universal Gröbner basis UA for IA is the same as the
Graver basis found in Exercise 3. To argue that each element of GrA is
in UA you may use the fact that CA ⊆ UA ⊆ GrA (where CA is the set
of circuits of IA; see Definition 3.4.8), and in the case of a non-circuit
compute some initial ideal to show that the presence of that element in
UA is necessary. Hint: Try initial ideals with respect to some term orders
or simple weight vectors.

5. Use the program CaTS [Jena], which was introduced in Chapter 3, to
compute all initial ideals of IA.

6. Suppose A = {a1, . . . , an} ⊂ Nd and π : Nn −→ Zd as defined in Sec-
tion 3.2 is a semigroup homomorphism such that π(u) = u1a1 + . . . +
unan. A vector b ∈ NA is called a Gröbner degree if for some binomial
xu+ − xu− ∈ UA, π(u+) = π(u−) = b. If b is a Gröbner degree, the
polytope conv(π−1(b)) is called a Gröbner fiber .

The inner normal fan of a polytope P is defined similarly to the outer
normal fan, but this time the cones consist of minimizing vectors. In
other words, for each face F of P , the inner normal cone is the set
{c ∈ Rn : face−c P = F}.

(a) ([Stu96, Theorem 7.15]) For A = {a1, . . . , an} ⊂ Nd, let P be the
Minkowski sum of all Gröbner fibers conv(π−1(b)). Show that the
inner normal fan of P is the Gröbner fan of IA.

Now let A correspond to the projective twisted cubic as above.

(b) Find the Gröbner fibers of A.

(c) Compute the Minkowski sum of the Gröbner fibers that you found
and compare your answer with the combinatorial description of the
state polytope given by CaTS in Exercise 5.
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7. (a) Find the initial complexes of IA (an initial complex of IA is the
Stanley-Reisner complex corresponding to the radical of an initial
ideal of IA).

(b) Find all triangulations of A.

(c) Show that all triangulations of A are regular, and find a vector
corresponding to each triangulation.

(d) Examine your findings above to see how they fit with Theorem 4.2.1.

(e) Find the secondary polytope of A.
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4.6 Solutions to Tutorial 4

1. (a)
√

I = 〈xy, yz, u〉. In general, if an ideal in a polynomial ring is
generated by monomials M1, . . . ,Mn, then its radical is generated
by M ′

1, . . . ,M
′
n, where each M ′

i is obtained by replacing every power
greater than 1 on the variables in Mi by 1 (prove this!).

(b)
√

I = 〈x, z, u〉 ∩ 〈y, u〉. There are several algorithms for finding
primary decomposition of monomial ideals; see [Eis94, Chapter 3]
and [Vil01, Corollary 5.1.13]. In Macaulay 2 the relevant code would
be

i1 : R = QQ[x,y,z,u];

i2 : I = monomialIdeal(x*y,y*z,u);

o2 : MonomialIdeal of R

i3 : ass I

o3 = {monomialIdeal (y, u), monomialIdeal (x, z, u)}

o3 : List

i4 : primaryDecomposition I

o4 = {monomialIdeal (y, u), monomialIdeal (x, z, u)}

o4 : List

The associated primes of I are the radicals of the primary ideals
appearing in a primary decomposition of I; these are given by ass I

in the code above.

(c)

y z

x

2. The radicals of these ideals are:
√

I1 = 〈e, b, d〉,
√

I2 = 〈b, ae, af, cf〉 and√
I3 = 〈ac, cd, ae, de, af, cf〉, which are respectively from left to right the

Stanley-Reisner ideals of the following three simplicial complexes:

c f

a
d

fa

c e f

ed

ca

b
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These simplicial complexes correspond, respectively, to the three follow-
ing triangulations of A:

b
a

cd

e

f

b
a

cd

e

f

b
a

cd

e

f

3.

Λ(A) =


3 2 1 0 0 0 0 0
0 1 2 3 0 0 0 0
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1


Pick a weight vector w and apply HSAlg from Tutorial 3 to the list LA
that contains the rows of the Lawrence matrix as follows. In the following
code we add a row of 1’s to the matrix, as Macaulay 2 will not accept
multidegrees that start with 0. This does not affect the toric ideal, since
the vector (1, 1, 1, 1, 1, 1, 1, 1) is in the row span of Λ(A), and hence the
kernel of the matrix will remain the same.

i1 : LA = {{1,1,1,1,1,1,1,1}, {3,2,1,0,0,0,0,0},

{0,1,2,3,0,0,0,0}, {1,0,0,0,1,0,0,0},

{0,1,0,0,0,1,0,0}, {0,0,1,0,0,0,1,0},

{0,0,0,1,0,0,0,1}};

i2 : w={1,1,1,1,1,1,1,1};

i3 : HSAlg(LA,w)

o3 = | x_2x_4x_7^2-x_3^2x_6x_8 x_1x_4x_6x_7-x_2x_3x_5x_8

x_1x_3x_6^2-x_2^2x_5x_7 x_1x_4^2x_7^3-x_3^3x_5x_8^2

x_1^2x_4x_6^3-x_2^3x_5^2x_8 |
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1 5

o3 : Matrix R <--- R

The output is the set

{x1x3x
2
6−x2

2x5x7, x1x4x6x7−x2x3x5x8, x2
3x6x8−x2x4x

2
7, x2

1x4x
3
6−x3

2x
2
5x8,

x1x
2
4x

3
7 − x3

3x5x
2
8}.

After setting x5 = x6 = x7 = x8 = 1, and x1 = x, x2 = y, x3 = z,
x4 = w, we have the Graver basis

GrA = {xz − y2 , xw − yz , z 2 − yw , x 2w − y3 , xw2 − z 3}.

4. The four elements z2 − yw, xz − y2, xw2 − z3 and x2w− y3 are circuits,
and so they belong to the universal Gröbner basis UA.

To show the remaining element xw − yz is in UA, we need to find an
initial ideal of IA for which one of the terms of this binomial is a minimal
generator. If we use the reverse lexicographic order x � y � w � z, we
get in�(IA) = 〈yw, xw, y2〉, and so we need the basis element xw− yz to
obtain the generator xw for the initial ideal.

Alternatively, one could use a weight vector, say w = (1, 1, 0, 1). Then
by Lemma 2.4.2, since GrA contains a universal Gröbner basis, inw(IA)
is generated by inw(g) where g ∈ GrA. So

inw(IA) = 〈yw, xw, y2, xw2, x2w − y3〉 = 〈yw, xw, y2〉,

so the binomial xw − yz must be in UA.

5. To use the program CaTS, put A into a file called “twisted.dat” (so the
content of twisted.dat is simply: {(3,0) (2,1) (1,2) (0,3)}). Then run the
command:

cats -p2 -e -i twisted.dat

CaTS will read the input file twisted.dat, and write the output in a
file, which in this case is called “twisted.list”. This file will contain the
following data (the term Vtx refers to a vertex of the state polytope):
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Vtx: 0 (2 facets/3 binomials/degree 2)

Initial ideal:{z^2, y*z, y^2}

Facet Binomials:{# z^2-y*w,# y^2-x*z}

Vtx: 1 (2 facets/4 binomials/degree 3)

Initial ideal:{y^2, y*z, z^3, y*w}

Facet Binomials:{# z^3-x*w^2,# y*w-z^2}

Vtx: 2 (2 facets/4 binomials/degree 3)

Initial ideal:{y^2, y*z, y*w, x*w^2}

Facet Binomials:{# y*z-x*w,# x*w^2-z^3}

Vtx: 3 (2 facets/3 binomials/degree 2)

Initial ideal:{y^2, x*w, y*w}

Facet Binomials:{# y^2-x*z,# x*w-y*z}

Vtx: 4 (2 facets/3 binomials/degree 2)

Initial ideal:{x*z, x*w, y*w}

Facet Binomials:{# x*z-y^2,# y*w-z^2}

Vtx: 5 (2 facets/4 binomials/degree 3)

Initial ideal:{y^3, x*z, y*z, z^2}

Facet Binomials:{# y^3-x^2*w,# x*z-y^2}

Vtx: 6 (2 facets/4 binomials/degree 3)

Initial ideal:{x*z, y*z, z^2, x^2*w}

Facet Binomials:{# y*z-x*w,# x^2*w-y^3}

Vtx: 7 (2 facets/3 binomials/degree 2)

Initial ideal:{x*z, z^2, x*w}

Facet Binomials:{# z^2-y*w,# x*w-y*z}

6. (a) It is enough to show that the two fans have the same maximal cones.
Suppose w and w′ are two vectors in the interior of a maximal cone
of the inner normal fan of P . We have

face−w(P ) = face−w′(P ).

This equality transfers to each summand of the Minkowski sum, so
that we have, equivalently, for each Gröbner degree b

face−w(conv(π−1(b))) = face−w′(conv(π−1(b))) = u ∈ conv(π−1(b)).

In other words

w · u < w · v, w′ · u < w′ · v for all v ∈ conv(π−1(b))

which is equivalent to saying that w and w′ pick exactly the same
(unique) standard monomial xu in Gröbner degree b. This means
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that that inw(IA) and inw′(IA) have the same generating set in
Gröbner degree b. By varying the choice of b among all Gröbner
degrees, we get, equivalently, inw(IA) = inw′(IA). This means that
w and w′ belong to the same maximal cone of the Gröbner fan,
which proves our claim.

(b) We find the Gröbner degrees:

yw − z2 u+ = (0, 1, 0, 1) π(u+) = (2, 4)
xw − yz u+ = (1, 0, 0, 1) π(u+) = (3, 3)
xz − y2 u− = (0, 2, 0, 0) π(u−) = (4, 2)
xw2 − z3 u− = (0, 0, 3, 0) π(u−) = (3, 6)
x2w − y3 u− = (0, 3, 0, 0) π(u−) = (6, 3)

We can easily compute each of the fibers:

(1) π−1((2, 4)) = {(0, 0, 2, 0), (0, 1, 0, 1)}
(2) π−1((3, 3)) = {(0, 1, 1, 0), (1, 0, 0, 1)}
(3) π−1((4, 2)) = {(0, 2, 0, 0), (1, 0, 1, 0)}
(4) π−1((3, 6)) = {(0, 1, 1, 1), (0, 0, 3, 0), (1, 0, 0, 2)}
(5) π−1((4, 2)) = {(1, 1, 1, 0), (0, 3, 0, 0), (2, 0, 0, 1)}

(c) We are looking at the Minkowski sum:

conv(π−1((2, 4))) + conv(π−1((3, 3))) + conv(π−1((4, 2)))+

conv(π−1((3, 6))) + conv(π−1((6, 3))).

To draw this polytope, first note that it is enough to consider a
projection onto R2. This is because the last two coordinates of the
vectors in each fiber determine that particular vector. To see this,
suppose u and v are two vectors in the fiber π−1(b) with u3 = v3

and u4 = v4. This means that Au = Av, where

A =

(
3 2 1 0
0 1 2 3

)
is the matrix of the twisted cubic. It follows that, as the last two
coordinates of u and v are equal,(

3 2
0 1

)[
u1

u2

]
=

(
3 2
0 1

)[
v1

v2

]
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2

1

1+2

1+2+3+4+5

1+2+3

5

3

4

1+2+3+4

Figure 4.6: The Minkowski sum of the Gröbner fibers

and since the matrix

(
3 2
0 1

)
is nonsingular, we conclude that

u1 = v1 and u2 = v2, and therefore u = v.

In Figure 4.6 all the fibers as well as the Minkowski sum are drawn
in R2.

The following explanation clarifies the correspondence between the
polytope P and the state polytope. Consider the first initial ideal
〈z2, yz, y2〉 that CaTS gave us in Exercise 5. The Gröbner cone
corresponding to this initial ideal, is the closure of the cone

C = {w ∈ Rn≥0 : inw(I) = 〈z2, yz, y2〉}.

By Lemma 2.4.2, we can use the Graver basis we found in Exercise 3
to describe C as

C = {w ∈ Rn≥0 : 2w3 > w2 + w4, 2w2 > w1 + w3, 3w3 > w1 + 2w4,

3w2 > 2w1 + w4, w2 + w3 > w1 + w4}.
Every vertex of P is a sum of vertices of each Gröbner fiber. The
inequalities appearing in the description of C tell us which vertex
of each Gröbner fiber we should take:
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v1 = (0, 0, 2, 0), v2 = (0, 2, 0, 0), v3 = (0, 0, 3, 0),

v4 = (0, 3, 0, 0), v5 = (0, 1, 1, 0).

The vertex v1 + . . . +v5 of P corresponds to the vertex of the state
polytope corresponding to the initial ideal 〈z2, y2, yz〉. Similarly,
one can match the remaining 7 initial ideals with the remaining 7
vertices of P .

7. (a) We have already found the initial ideals in Exercise 5. It is also
possible to get a list of the initial ideals without any information
about the state polytope by using the file “twisted.dat” created
earlier and running the command cats -p2+ < twisted.dat. The
output will be the following.

{{z^2, y*z, y^2},

{y^2, y*z, z^3, y*w},

{y^2, y*z, y*w, x*w^2},

{y^2, x*w, y*w},

{x*z, x*w, y*w},

{y^3, x*z, y*z, z^2},

{x*z, y*z, z^2, x^2*w},

{x*z, z^2, x*w}}

So the initial ideals, up to radicals, are:

〈y, z〉, 〈xw, y〉, 〈xz, xw, yw〉, 〈z, xw〉,

which are the Stanley-Reisner ideals of the (initial) complexes (from
left to right)

y

x w

x

w

z

yx

z

w

x

w

(b) Let the numbers 1, . . . , 4 represent the points a1 = (3, 0), a2 =
(2, 1), a3 = (1, 2) and a4 = (0, 3) of A, respectively. Then the four
triangulations are T1 = {{1, 2}, {2, 3}, {3, 4}}, T2 = {{1, 3}, {3, 4}},
T3 = {{1, 2}, {2, 4}} and T4 = {{1, 4}}. These are shown below
respectively, from left to right:
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(c) The four triangulations in part (7a) correspond respectively to the
following weight vectors: w1 = (1, 0, 0, 1), w2 = (1, 1, 0, 1), w3 =
(1, 0, 1, 1) and w4 = (0, 1, 1, 0). These choices for the wi are not
unique; in fact, there are infinitely many options.

We show that, for example, w2 = (1, 1, 0, 1) is the appropriate
weight vector for T2 = {{1, 3}, {3, 4}}; i.e. T2 = ∆w2 . A similar
method works for T1, T3 and T4.

Consider the face {1, 3}. We would like to find c = (c1, c2) ∈ R
such that
a1 · c = 3c1 = (w2)1 = 1
a2 · c = 2c1 + c2 < (w2)2 = 1
a3 · c = c1 + 2c2 = (w2)3 = 0
a4 · c = 3c2 < (w2)4 = 1

Solving this system, we arrive at c = (1/3,−1/6).

Now we need to show that {1} , {3}, {3, 4} and {4} are also faces by
showing that for each one of them there exists such a c satisfying a
similar set of equations above (the only thing that changes in each
case is that the (in)equality signs move around depending which face
you are looking at). For these four faces, we see that, respectively,
the pairs c = (1/3,−1/3), c = (−1/3, 1/6), c = (−2/3, 1/3) and
c = (−1, 1/3) work.

(d)

x

z

w

x

w

y

x w

x

w

z

y



Chapter 5

Resolutions

5.1 Basics of minimal free resolutions

An important object in commutative algebra is the (minimal) free resolution of
an R-module where R is a commutative ring with identity. In this chapter we
will study minimal free resolutions of toric ideals in S = k[x1, . . . , xn]. For a
detailed treatment of the material we touch upon here, see the book by Miller
and Sturmfels [MS05]. See Chapters 5 and 6 of [CLO98] for a thorough intro-
duction to free resolutions of polynomial ideals and quotients of polynomial
rings, algorithms for their computation, and applications.

Given an ideal I of S, a free resolution F of the S-module S/I is an exact
sequence of the form

F : 0←− S/I ←− F0
φ1←− F1

φ2←− F2
φ3←− · · · φr←− Fr · · ·

where each Fi is a free S-module (hence of the form Sβi for some βi ∈ N). If
Fl 6= 0 and 0 = Fl+1 = Fl+2 = · · · , then F is finite of length l:

F : 0←− S/I ←− F0
φ1←− F1

φ2←− F2
φ3←− · · · φl←− Fl ←− 0.

In this chapter we will consider only minimal free resolutions of ideals.
Before we define this precisely, let us see an example using Macaulay 2.

i1 : S = QQ[x,y];

i2 : I = ideal(x^2-x, y^2-y, x*y)

i3 : F = res coker gens I

1 3 2

o3 = S <-- S <-- S <-- 0

97
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0 1 2 3

o3 : ChainComplex

i4 : F.dd

1 3

o4 = 0 : S <-------------------- S : 1

| x2-x xy y2-y |

3 2

1 : S <-------------------- S : 2

{2} | -y 0 |

{2} | x-1 -y+1 |

{2} | 0 x |

2

2 : S <----- 0 : 3

0

o4 : ChainComplexMap

This computation produces a minimal free resolution of length two of S/I
where I = 〈x2 − x, y2 − y, xy〉 with F0 = S, F1 = S3, F2 = S2. The rank of
Fi in this minimal resolution is called the ith Betti number of S/I. We can
choose bases for the S-modules Fi allowing the maps φ1 and φ2 to be given by
matrices. The entries in φ1 are the three minimal generators of I and thus,
image(φ1) = I = kernel(S −→ S/I). Each column in the matrix φ2 is called
a syzygy (relation) of I. For instance, the first column gives a relation on the
generators of I:

(−y)(x2 − x) + (x− 1)(xy) + 0(y2 − y) = 0.

The computation shows that the module of (first) syzygies of I, which is
kernel(φ1) = image(φ2), is generated by the two columns of φ2. However,
kernel(φ2) = 0 since if −y

x− 1
0

h1 +

 0
−y + 1

x

h2 = 0

then h1 = h2 = 0. Thus the resolution stops after two steps. The degrees of
the entries (columns) in the maps φ1 and φ2 are recorded in the Betti diagram
of F :
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i5 : betti F

o5 = total: 1 3 2

0: 1 . .

1: . 3 2

The Betti diagram is to be thought of as a matrix with rows and columns
indexed by 0, 1, 2, . . .. The column index i denotes the step of the resolution.
The top row “o5 = total: 1 3 2” indicates the Betti numbers of the steps
of the resolution. The row index j is used as follows: the entry in position
{j, i} of the Betti diagram is the number of entries (columns) of degree j + i in
the map φi. Thus the bottom right entry “2” indicates that φ2 has two degree
(3 = 1 + 2) entries (columns). The degree of the syzygy (−y, x− 1, 0) is three
since in the syzygy relation

(−y)(x2 − x) + (x− 1)(xy) + 0(y2 − y) = 0,

the highest degree of a term is three. In Macaulay 2 display format, the degrees
of the syzygies in φ1 are recorded on the left side of the matrix giving φ2.

In the 1890s Hilbert proved that every ideal in the polynomial ring has a
finite free resolution which is known as Hilbert’s Syzygy Theorem.

Theorem 5.1.1. (Hilbert’s Syzygy Theorem) Let S = k[x1, . . . , xn]. Then
every finitely generated S-module has a free resolution of length at most n.

This theorem implies that every ideal I in S has a resolution with at most
n + 1 free S-modules in it. The length of a shortest finite free resolution of
S/I is called the projective dimension of S/I. This is an important invariant
of S/I and can be computed in Macaulay 2 using the command pdim.

i6 : pdim coker gens I

o6 = 2

In this chapter, we are interested in graded minimal free resolutions of
ideals. If the polynomial ring S is graded by an abelian group A, then we
can write S = ⊕a∈ASa where Sa is the k-vector space of all homogeneous
polynomials of degree a. In the usual total degree grading where deg(xi) = 1
for i = 1, . . . , n, the group A = Z and S = ⊕t∈ZSt where St = 0 for all
t < 0 and S0 = k. An S-module M is graded by A if there exists subgroups
Ma, a ∈ A such that (i) M = ⊕a∈AMa and (ii) SaMb ⊂ Ma+b. When A = Z,
graded ideals are just homogeneous ideals under the usual total degree grading.
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In this chapter we only consider gradings of S by abelian groups of the form
Zn/L where L is a sublattice of Zn such that L∩Nn = {0}. See Chapter 8 in
[MS05] for a discussion of valid multigradings in the context of resolutions.

The module M twisted by d ∈ A is defined to be

M(d) = ⊕a∈AM(d)a where M(d)a := Md+a.

Example 5.1.2. For a simple example, consider S(−2) = ⊕t∈ZS−2+t. This
twisted ring is generated (as an S-module) by 1 which lies in S0 = S−2+2 and
hence has degree two in S(−2).

The twisted free modules we will see are of the form S(−d1) ⊕ S(−d2) ⊕
· · · ⊕ S(−dm) generated by the standard basis elements e1, . . . , em of degrees
d1, . . . , dm respectively.

Definition 5.1.3. Let M and N be S-modules graded by A. A homomorphism
φ : M → N is a graded homomorphism of degree d if φ(Ma) ⊂ Na+d.

Example 5.1.4. If M is a graded S-module generated by homogeneous el-
ements f1, . . . , fm of degrees d1, . . . , dm respectively, then we get the graded
homomorphism φ : S(−d1) ⊕ S(−d2) ⊕ · · · ⊕ S(−dm) −→ M of degree zero
which sends ei 7→ fi.

We saw earlier that homomorphisms in free resolutions are given by matri-
ces. A graded homomorphism of degree zero

S(−d1)⊕ · · · ⊕ S(−dp) −→ S(−c1)⊕ · · · ⊕ S(−cm)

is defined by an m×p matrix U whose ijth entry uij is a homogeneous element
of S of degree dj− ci for all i, j. We call such a matrix a graded matrix over S.

Definition 5.1.5. If M is a graded S-module, then a graded resolution of M
is a resolution of the form

0←−M ←− F0
φ1←− F1

φ2←− F2 · · ·←−

where each Fi is a twisted free graded module S(−d1)⊕· · ·⊕S(−dpi) and each
map φi is a graded homomorphism of degree zero (given by graded matrices).

Remark 5.1.6. In the Macaulay 2 display format, maps in resolutions always
go from right to left as in Definition 5.1.5. However, it is more usual in the
literature to have maps between modules go from left to right. We use the
Macaulay 2 format in this chapter when talking about a full resolution to
match the Macaulay 2 outputs on examples.
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The Hilbert Syzygy Theorem holds also for graded resolutions which guar-
antees finite graded free resolutions of length at most n for every S-module.
Among these the most useful are the minimal graded resolutions defined as
follows.

Definition 5.1.7. Let F be a graded resolution

0←−M ←− F0
φ1←− F1

φ2←− F2←−· · ·

of a graded S-module M .

1. The resolution F is minimal if the non-zero entries in the graded matrices
φl have positive degree for every l ≥ 1.

2. If F is a minimal graded resolution of M , then the number of copies of
S(−d) in Fi is the graded Betti number βi,d.

Theorem 3.13 in [CLO98, Chapter 6] proves that any two minimal resolu-
tions of M are isomorphic. The above examples and explanations are taken
from Chapter 6 of [CLO98]. We refer the reader to that chapter for more
details.

The ideal I{5,10,25,50} from Chapter 3 is homogeneous under the grading
deg(a) = 5, deg(b) = 10, deg(c) = 25, and deg(d) = 50. Computing the
minimal graded free resolution of this homogeneous ideal using Macaulay 2,
we get the following.

i1 : S = QQ[a..d, Degrees => {5,10,25,50}, MonomialSize => 16]

i2 : I = ideal(c^2-d, a*b^2-c, a^2-b)

i3 : G = res coker gens I

i4 : G.dd

1 3

o4 = 0 : S <----------------------- S : 1

| a2-b ab2-c c2-d |

3 3

1 : S <------------------------------- S : 2

{10} | -ab2+c -c2+d 0 |

{25} | a2-b 0 -c2+d |

{50} | 0 a2-b ab2-c |
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3 1

2 : S <------------------- S : 3

{35} | c2-d |

{60} | -ab2+c |

{75} | a2-b |

1

3 : S <----- 0 : 4

0

i5 : betti G

o5 = total: 1 3 3 1

0: 1 . . .

9: . 1 . .

24: . 1 . .

33: . . 1 .

49: . 1 . .

58: . . 1 .

73: . . 1 .

82: . . . 1

Note that in line i1 we prescribe the grading on S. Here F0 = S, F1 =
S(−10) ⊕ S(−25) ⊕ S(−50), F2 = S(−35) ⊕ S(−60) ⊕ S(−75) and F3 =
S(−85). Check that each of the matrices displayed above is a graded matrix
with respect to the above degrees. The Betti diagram has been truncated to
remove all rows with no non-zero entries. The projective dimension of S/I is
three and regularity (which is the index of the last row in the Betti diagram)
is 82. The values of all the non-zero Betti numbers are one. The above is a
graded resolution where S has been graded by the semigroup N{5, 10, 25, 50}
or alternately by the group Z4/L where L = kerZ([5 10 25 50]).

5.2 Free resolutions of toric ideals

Our goal in the rest of this chapter is to see what can be said about minimal free
graded resolutions of toric ideals using the rich polyhedral and combinatorial
information they carry. If IA is a toric ideal, we assume that the lattice L =
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kerZ(A) has the property that L ∩Nn = {0}. The abelian group Zn/L grades
both the polynomial ring S and the S-module S/IA via deg(xi) := ei+L where
ei is the ith unit vector in Zn. Note that this implies that the set of degrees of
polynomials in S is the monoid Nn/L. This monoid is isomorphic to NA via
the map

π : Zn/L → ZA, u + L 7→ Au.

Thus deg(xi) = ai, and IA and S/IA are graded by NA. A monomial xu is
said to be of A-degree Au.

We first show that the graded Betti numbers of IA can be calculated from
homology groups of certain simplicial complexes that come from polyhedra
associated to L. For each b ∈ NA (∼= Nn/L) define a simplicial complex ∆b

as follows:

∆b := {σ ⊆ [n] : σ ⊆ supp(u) for someu ∈ π−1(b)}
= {σ ⊆ [n] : b−

∑
i∈σ ai ∈ NA}.

Consider the minimal multigraded free resolution of S/IA where deg(xi) =
ai for i = 1, . . . , n. Then the Betti numbers are of the form βi,b which denotes
the size of a basis for the ith syzygy module of degree b or equivalently, the
rank of S(−b) in Fi.

Theorem 5.2.1. [Stu96, Theorem 12.12] The multigraded Betti number βi,b
equals the rank of the (i − 1)th reduced homology group H̃i−1(∆b,k) of the
simplicial complex ∆b.

This theorem was proved originally in [CM91, CP93].

Corollary 5.2.2. The toric ideal IA has a minimal generator of degree b if
and only if β1,b = rank(H̃0(∆b,k)) > 0. The latter condition is equivalent to
the simplicial complex ∆b being disconnected.

Example 5.2.3. Consider the ideal IA where A = {5, 10, 25, 50} graded by
NA. We saw that a2 − b, ab2 − c, c2 − d are minimal generators of IA. The
monomials of the same A-degree as the generators can be computed either via
CaTS or via Macaulay 2 when the A-degree is small.

i1 : S = QQ[a..d, Degrees => {5, 10,25,50}, MonomialSize => 16]

i2 : basis({10},S)

o2 = | a2 b |

i3 : basis({25},S)
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o3 = | a5 a3b ab2 c |

i4 : basis({50},S)

o4 = | a10 a8b a6b2 a5c a4b3 a3bc a2b4 ab2c b5 c2 d |

Listing just the maximal cells in the simplicial complexes, we get: ∆10 =
{{1}, {2}}, ∆25 = {{1, 2}, {3}} and ∆50 = {{1, 2, 3}, {4}}, all of which are
disconnected.

From the Betti diagram we see that there is a syzygy of degree 85 in the
third step of the resolution. Thus we expect that rank(H̃2(∆85,k)) > 0.

i5 : basis({85},S)

o5 = | a17 a15b a13b2 a12c a11b3 a10bc a9b4 a8b2c a7b5 a7c2 a7d

a6b3c a5b6 a5bc2 a5bd a4b4c a3b7 a3b2c2 a3b2d a2b5c a2c3 a2cd

ab8 ab3c2 ab3d b6c bc3 bcd |

Then ∆85 = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} which is an empty tetra-

hedron and hence H̃2(∆85,k) 6= 0.

Peeva and Sturmfels extend Theorem 5.2.1 to lattice ideals graded by Nn/L.
Toric ideals are special examples of lattice ideals. As a corollary they obtain
the following theorem.

Theorem 5.2.4. [PS98b, Theorem 2.3] The projective dimension of S/IA as
an S-module is at most 2n−d − 1.

Note that n − d = codim(IA) = rank(L). In order to prove the above
theorem and for the rest of our discussion, it is worthwhile to look at the fiber
Pb := π−1(b) = {x ∈ Nn : Ax = b}. Choose a matrix B ∈ Zn×(n−d) such that
L = {Bz : z ∈ Zn−d}. Let u0 ∈ Pb. Then

Pb = {u ∈ Nn : u + L = u0 + L} = {u ∈ Nn : u0 − u ∈ L}
= {u ∈ Nn : u0 − u = Bz for some z ∈ Zn−d}
∼= {z ∈ Zn−d : u = u0 −Bz ≥ 0}
= {z ∈ Zn−d : Bz ≤ u0} =: P ′b

Thus we have created P ′b ⊂ Zn−d, a bijective copy of Pb in Nn, via the affine
linear transformation that takes u ∈ Pb 7→ z ∈ Zn−d such that u = u0 −
Bz. It can be checked that a different choice of u0 ∈ Pb will lead to the
same isomorphic copy P ′b up to translation. So we can pick any u0 in this
construction.
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The set P ′b = Qb ∩ Zn−d where Qb is the polyhedron

Qb := {z ∈ Rn−d : Bz ≤ u0}.

This implies that

∆b = {σ ⊆ [n] : σ ⊆ supp(u0 −Bz), z ∈ P ′b}.

Thus z ∈ P ′b contributes σ = {j ∈ [n] : Bj · z < (u0)j} which is the index set
of all inequalities in Bz ≤ u0 that do not hold at equality at z.

Sketch of proof of Theorem 5.2.4. The projective dimension of IA is the max-
imum integer l such that βl,b 6= 0 for some b ∈ NA. By Theorem 5.2.1,

βl,b = rank(H̃l−1(∆b,k)). If Qb has a lattice point z in its interior, then
[n] ∈ ∆b which implies that ∆b has the same homology groups as the n-ball

and H̃l−1(∆b,k) = 0 for all l. Thus if βl,b 6= 0 then all lattice points in P ′b lie
on the boundary of Qb. Such polyhedra are said to be empty or lattice point
free.

Let F1, . . . , Fs be the facets of ∆b. Then by definition there exists z1, . . . , zs
in P ′b such that Fi = supp(u0 − Bzi). Suppose s > 2n−d. Then there exists
two vectors, say z1 and z2, that have the same odd-even parity for their com-
ponents. This implies that z = 1

2
(z1 + z2) ∈ Zn−d. Further, Bz1 ≤ u0,

Bz2 ≤ u0 implies that Bz = B(1
2
(z1 + z2)) ≤ u0. Thus z ∈ P ′b which cor-

responds to 1
2
(u1 + u2) ∈ Pb where u1 = u0 − Bz1 and u2 = u0 − Bz2.

Therefore, supp(1
2
(u1 + u2)) = supp(u1) ∪ supp(u2) ∈ ∆b which contradicts

that F1 = supp(u1), F2 = supp(u2) are facets in ∆b. Thus s ≤ 2n−d. Now
computing homology of ∆b we see that homology of ∆b vanishes above di-
mension 2n−d. 2

The above discussions show that lattice point free polytopes of the form Qb

play a fundamental role in the resolution of the toric ideal IA. Such polytopes
have been studied extensively in discrete geometry and optimization. They
play a central role in the work on integer programming due to the mathematical
economist Scarf at Yale University [BSS95, Sca81, Sca86]. Using Scarf’s work,
Bayer, Peeva and Sturmfels gave explicit resolutions of generic monomial and
lattice ideals in [BPS98, BS98, PS98a, PS98b]. The complete material in these
papers is beyond the scope of this chapter. However, we will conclude with the
main results in [PS98a] which deals with minimal free resolutions of generic
lattice ideals. A lattice ideal is generic if it is generated by binomials of full
support.
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Example 5.2.5. [PS98a, Example 4.5] The toric ideal I{20,24,25,31} is generic.
It is minimally generated by {a4 − bcd, a3c2 − b2d2, a2b3 − c2d2, ab2c− d3,
b4 − a2cd, b3c2 − a3d2, c3 − abd}.

Definition 5.2.6. For a b ∈ NA, let gcd(b) denote the greatest common
divisor of {xu, u ∈ Pb}. Then Pb is called basic if gcd(b) = 1 and gcd({xu :
u ∈ Pb}\{xa}) 6= 1 for any xa such that a ∈ Pb.

Example 5.2.7. Resolving S/I{20,24,25,31} when S is graded byN{20, 24, 25, 31},
we get the following.

i7 : F = res coker gens I
1 7 12 6

o7 = S <-- S <-- S <-- S <-- 0

0 1 2 3 4
1 7

0:S <----------------------------------------------------------- S
|c3-abd a4-bcd ab2c-d3 b4-a2cd a3c2-b2d2 a2b3-c2d2 b3c2-a3d2|

7 12
1:S <---------------------------------------------------------- S

{75} | -bd -a3 0 d2 0 0 -ab2 -a2d -b3 0 0 0 |
{80} | -c2 -bd -cd 0 0 d2 0 0 0 -b3 -b2c 0 |
{93} | 0 0 0 -ab -b2 -bc c2 0 0 0 a3 -a2c |
{96} | 0 0 -a2 0 ac 0 0 -c2 -ad -cd 0 d2 |
{110}| a c 0 0 d 0 0 0 0 0 0 b2 |
{112}| 0 0 b c 0 0 -d 0 0 a2 0 0 |
{122}| 0 0 0 0 0 a 0 b c 0 -d 0 |

12 6
2 : S <---------------------------------- S : 3

{130} | d 0 0 0 -b2 0 |
{135} | 0 -d 0 0 0 -b2 |
{136} | -c 0 -d 0 0 0 |
{137} | b 0 0 -a2 0 0 |
{141} | -a c 0 0 0 0 |
{142} | 0 -b -c 0 0 0 |
{143} | 0 0 -b 0 0 a2 |
{146} | 0 a 0 -d 0 0 |
{147} | 0 0 a 0 d 0 |
{152} | 0 0 0 c 0 d |
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{153} | 0 0 0 -b c 0 |
{158} | 0 0 0 0 a c |

6
3 : S <----- 0 : 4

0

The truncated Betti diagram of this graded minimal free resolution is:

i9 : betti F

total: 1 7 12 6

0: 1 . . .

74: . 1 . .

79: . 1 . .

92: . 1 . .

95: . 1 . .

109: . 1 . .

111: . 1 . .

121: . 1 . .

128: . . 1 .

133: . . 1 .

134: . . 1 .

135: . . 1 .

139: . . 1 .

140: . . 1 .

141: . . 1 .

144: . . 1 .

145: . . 1 .

150: . . 1 .

151: . . 1 .

156: . . 1 .

158: . . . 1

163: . . . 1

164: . . . 1

174: . . . 1

175: . . . 1

180: . . . 1

From the Betti diagram we see that β3,178 = 1. The monomials of degree
178 are a4b2c2, a3cd3, ab4d2, b3c3d. Check that P178 is basic and

∆178 = {{1, 2, 3}, {1, 3, 4}, {1, 2, 4}, {2, 3, 4}}
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by computing the monomials of A-degree 178 in the multigraded ring S. See
Example 5.2.9. This simplicial complex has spherical homology in degree two.

We will see that all homology fibers of generic toric ideals are basic.

Lemma 5.2.8. [PS98a, Lemma 2.4] Let Pb be basic and a ∈ Pb. Then Pb\{a}
is again a basic fiber after min{v ∈ Pb\{a}} has been subtracted from all the
elements in Pb\{a}.

Example 5.2.9. By abuse of notation we let P178 = {a4b2c2, a3cd3, ab4d2, b3c3d}.
P178\{a4b2c2} gives the basic fiber P147 = {a3cd2, ab4d, b3c3},
P178\{a3cd3} gives the basic fiber P130 = {a4c2, ab2d2, bc3d},
P178\{ab4d2} gives the basic fiber P153 = {a4b2c, a3d3, b3c2d},
P178\{b3c3d} gives the basic fiber P158 = {a3b2c2, a2cd3, b4d2}.
Note that the fifth column in the map φ3 corresponds to the second syzygy of
degree 178 and it is a combination of first syzygies of degrees 130, 147, 153, 158.
Hence the basic fibers gotten from P178 are again homology fibers.

This observation is, in fact, the main theorem of [PS98a].

Definition 5.2.10. [PS98a, Definition 3.1] The algebraic Scarf complex of IA
is the complex of free S-modules

FL =
⊕

Pb basic

SEb

where Eb is a basis vector in homological degree |b| − 1. The basis degrees
considered are modulo the action of L by translation.

The differential is

δ(Eb) =
∑
m∈Pb

sign(m,Pb) gcd(Pb\{m})EPb\{m}.

Here we have abused notation by identifying monomials with their exponent
vectors. The number sign(m,Pb) is (−1)l+1 if m is in the lth position in the
lexicographic ordering of monomials in Pb.

Theorem 5.2.11. [PS98a, Theorem 4.2] If the toric ideal IA is generic then
the algebraic Scarf complex FL is the minimal free resolution of S/IA.

Example 5.2.12. Continuing our example of the generic toric ideal I{20,24,25,31},
δ(E178) = (−1)1+1dE147 + (−1)2+1b2E130 + (−1)3+1cE153 + (−1)4+1aE158 =
− b2E130 + dE147 + cE153− aE158 which is the syzygy in the fifth column of φ3.
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If the toric ideal is not generic, then the Scarf complex is contained in
a minimal free resolution of the ideal [PS98a, Theorem 3.2]. The results by
Peeva and Sturmfels hold for all lattice ideals although we have stated them
here only for toric ideals.
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5.3 Tutorial 5

As we saw in Lecture 5 Macaulay 2 can calculate minimal free resolutions of
S/I using the command F = res I (or equivalently F = res coker gens I).
You can also display the maps using F.dd or the Betti diagram using betti

F. Sometimes Macaulay 2 does not keep track of the entire calculation when
you run the command res I. If you are having trouble viewing the maps, try
finding the resolution using the command complete res I which will force
the Macaulay 2 to keep track of all relevant information required in order to
display the maps. Also you might want the command S = ring I which sets
the name of the ring in which I is defined to be S. It is useful whenever your
ring was defined inside a function and hence does not have a short name.

1. Using Macaulay 2 find a minimal free resolution and Betti diagram of
S/IA for each of the following matrices. You may use either of the
algorithms of Tutorial 3 to compute IA.

(a) A =
(
1 2 3

)
(b) A =

(
1 1 1 1
0 1 3 4

)
(c) A =

(
1 2 2 3
0 1 3 4

)
2. Let R = k[x]/〈x2〉 and let I = 〈x〉 ⊂ R. What should a minimal free

resolution of R/I look like? Now use Macaulay 2 to calculate a minimal
resolution of R/I. Is the answer what you expected?

3. Let S = k[x1, x2, . . . , xn] and let I ⊂ S be an ideal. Suppose G� =
{g1, g2, . . . , gs} is a Gröbner basis of I with respect to any monomial
order �. Define

sij =
lcm(in�(gi), in�(gj))

in�(gi)
ei −

lcm(in�(gi), in�(gj))

in�(gj)
ej − aij

where aij is the vector of coefficients of the gk’s in the expansion of the
S-polynomial S-pair(gi, gj) in terms of G� and ei is the standard basis
vector in Rs.
For example, consider the ideal I generated by G = {x2 − x, xz − x, y −
z} ⊂ Q[x, y, z]. Call the polynomials g1, g2, and g3 in the order listed.
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The set G is a Gröbner basis for I with respect to the lexicographic
ordering. The S-pair of g1 and g2 is

z g1 − x g2 = z(x2 − x)− x(xz − x) = x2 − xz

In order to find a12, we rewrite x2 − zx in terms of the Gröbner basis
elements. We find that x2 − zx = g1 − g2, so a12 = e1 − e2. Therefore
s12 is the vector

lcm(x2, xz)

x2
e1 −

lcm(x2, xz)

xz
e2 − (e1 − e2) = (z − 1)e1 + (−x + 1)e2.

These vectors are very useful because of the following theorem.

Schreyer’s Theorem [CLO98, Theorem 3.3] With S, I, and
G� as above, the set {sij : 1 ≤ i, k ≤ s} generates Syz(I), the
syzygies on I, as an S-module.

[CLO98, p. 238] Consider the following matrices:

M =
(
x2 − x xy y2 − y

)
N =

 y 0
−x + 1 y − 1

0 −x


Let I be the ideal generated by the entries of M .

(a) Verify that the matrix product MN equals the 1 × 2 matrix of all
zeros. Explain why this shows that the module generated by the
columns of the matrix N is contained in Syz(I).

To show that Syz(I) is, in fact, generated by the columns of N , we can
use Schreyer’s Theorem.

(b) Check that the generators for I form a Gröbner basis for I with
respect to the lexicographic order.

(c) Compute the syzygies s12, s13, s23 obtained from the S-polynomials
on the generators of I. By Schreyer’s Theorem, these three syzygies
generate Syz(I).

(d) How are the the columns of N related to the generators s12, s13, s23

of S? Why does N only have two columns?
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4. The ideal of the twisted cubic is the toric ideal of A =

(
1 1 1 1
0 1 2 3

)
.

(a) Compute the minimal graded free resolution of S/IA using the
weight vector {1, 1, 1, 1}.

(b) For each degree in which there is a nonzero Betti number, calculate
the fiber and then the simplicial complex ∆b. A helpful Macaulay 2
command is basis(b,S) which gives the monomials of S corre-
sponding to the vectors in the fiber π−1(b). Do these complexes
have the homology of a simplicial sphere?

Corollary 5.2.2 says that the toric ideal IA has a minimal generator
in degree b if and only if ∆b is disconnected. Verify this statement
for the three generators of the twisted cubic.

(c) Check that all the fibers from part b are basic. Using these basic
fibers, write out the algebraic Scarf complex. How is it related to
the minimal free resolution?



5.4. SOLUTIONS TO TUTORIAL 5 113

5.4 Solutions to Tutorial 5

1. Using the Hoşten-Sturmfels algorithm function from Tutorial 3 and a
weight vector of all ones, we get the following resolutions and Betti dia-
grams. The Conti-Traverso algorithm may also be used to get the same
result by changing “HSAlg” to “CTAlg” and using the same input. The
remainder of the problem is identical.

(a) We display the differentials in the resolution below.

i2 : Ia = ideal HSAlg({{1,2,3}},{1,1,1});

i3 : S = ring Ia;

i4 : (complete res Ia).dd

1 2

o4 = 0 : S <---------------------------- S : 1

| x_1^2-x_2 x_1x_2-x_3 |

2 1

1 : S <----------------------- S : 2

{2} | -x_1x_2+x_3 |

{3} | x_1^2-x_2 |

1

2 : S <----- 0 : 3

0

o4 : ChainComplexMap

i5 : betti res Ia

o5 = total: 1 2 1

0: 1 . .

1: . 1 .

2: . 1 .

3: . . 1

(b) In this example the differential matrices are large, and the entire
resolution does not fit easily on the page when they are included,
so only the modules and arrows are displayed (to achieve this, we
used res Ib here rather than (complete res Ib).dd).
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i6 : Ib = ideal HSAlg({{1,1,1,1},{0,1,3,4}},{1,1,1,1});

i7 : S = ring Ib;

i8 : res Ib

1 4 4 1

o8 = S <-- S <-- S <-- S <-- 0

0 1 2 3 4

o8 : ChainComplex

i9 : betti res Ib

o9 = total: 1 4 4 1

0: 1 . . .

1: . 1 . .

2: . 3 4 1

(c) Again the differentials have not been displayed.

i10 : Ic=ideal HSAlg({{1,2,2,3},{0,1,3,4}},{1,1,1,1});

i11 : S = ring Ic;

i12 : res Ic

1 5 6 2

o12 = S <-- S <-- S <-- S <-- 0

0 1 2 3 4

o12 : ChainComplex

i13 : betti res Ic

o13 = total: 1 5 6 2

0: 1 . . .

3: . 1 . .

5: . 1 . .

6: . 1 1 .

7: . 1 2 .

8: . 1 2 1

9: . . 1 1

2. In a polynomial ring an ideal with one generator has no syzygies, however,
over R = k[x]/〈x2〉, multiplication by x sends the element x to x2 which is
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zero in R. Now for the syzygies on the syzygies, we again want syzygies
on x, so again we get x. Repeating this process we get the infinite
repeating resolution:

0←− R/I ←− R
(x)←− R

(x)←− R
(x)←− R←− · · · .

Putting this ring and ideal into Macaulay 2, we find that the resolution
stops after two steps. The computer cannot handle the infinite resolution.

i14 : R=(QQ[x])/ideal(x^2);

i15 : res ideal(x)

1 1 1

o15 = R <-- R <-- R

0 1 2

o15 : ChainComplex

3. (a) Since the generators of I are the three entries of the matrix M , any
column vector v such that Mv = 0 is a syzygy on the generators
of I. The matrix MN contains only zeros, so each column of N is
a syzygy on the generators of I, and hence the module the columns
generate must be contained in the syzygy module Syz(I).

(b) To check that these polynomials form a Gröbner basis, we calculate
the S-pairs. Let g1 = x2 − x, g2 = xy and g3 = y2 − y and G =
{g1, g2, g3}. We will use the notation h ≡ 0 mod G to mean that
the remainder obtained by dividing the polynomial h by the ordered
list of polynomials of G is 0.

S-pair(g1, g2) =
x2y

x2
(x2 − x)− x2y

xy
(xy) = −xy = −g2

≡ 0 mod G

S-pair(g1, g3) =
x2y2

x2
(x2 − x)− x2y2

y2
(y2 − y) = −xy2 + x2y

= (xy)(x− y) = g2(x− y) ≡ 0 mod G

S-pair(g2, g3) =
xy2

xy
(xy)− xy2

y2
(y2 − y) = xy = g2

≡ 0 mod G

Since all three S-pairs reduce to 0, G is a Gröbner basis for I.
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(c) From our calculations above, we see

s12 =
x2y

x2
e1 −

x2y

xy
e2 − (−e2) = ye1 + (−x + 1)e2

s13 =
x2y2

x2
e1 −

x2y2

y2
e3 − (x− y)e2 = y2e1 − (x− y)e2 − x2e3

s23 =
xy2

xy
e2 −

xy2

y2
e3 − e2 = (y − 1)e2 − xe3

(d) The syzygies s12 and s23 are the columns of N . The remaining
syzygy s13 = (y2,−(x−y),−x2) = ys12 +xs23 so it is in the module
generated by s12 and s23. Hence it is unnecessary to include it in a
minimal generating set for Syz(I).

4. (a) Use Macaulay 2 and the Hoşten-Sturmfels algorithm to find the
ideal I and the resolution of S/I.

i16 : I = ideal HSAlg({{1,1,1,1},{0,1,2,3}},{1,1,1,1});

i18 : (complete res I).dd

1
o18 = 0 : S <---

3
------------------------------------------- S : 1
| x_2^2-x_1x_3 x_2x_3-x_1x_4 x_3^2-x_2x_4 |

3 2
1 : S <------------------------ S : 2

{2,2} | -x_3 x_4 |
{2,3} | x_2 -x_3 |
{2,4} | -x_1 x_2 |

2
2 : S <----- 0 : 3

0

o18 : ChainComplexMap

(b) Looking at the resolution, we see that there are generators in mul-
tidegrees (2, 2), (2, 3), and (2, 4). We add the multidegree of any
monomial from the first column of the differential map from S2 to
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S3 to the multidegree of its row, and we find (3, 4) is the multide-
gree of one of the first syzygies. Similarly, using the second column,
we find the other first syzygy has multidegree (3, 5).

The fiber in multidegree b can be calculated in Macaulay 2 by
finding a basis for Sb using the command basis. For example if
b = (2, 2):

i19 : basis({2,2},S)

o19 = | x_1x_3 x_2^2 |

1 2

o19 : Matrix S <--- S

So the maximal faces of the simplicial complex ∆(2,2) are {1, 3}
and {2}, which means ∆(2,2) consists of three vertices and one edge
connecting two of the vertices. In other words, ∆(2,2) is contractible
to a 0-sphere (see Figure 5.1), and hence has the same homology as
a simplicial sphere.

For b = (2, 3), the fiber is {x1x4, x2x3}, and for b = (2, 4), the
fiber is {x2x4, x

2
3}. The simplicial complexes ∆(2,3) and ∆(2,4) are

both contractible to 0-spheres (see Figure 5.1) which we expected
because they are generators of the ideal.

3

2

1

4 3

1 2

4

3

2

∆(2,3) ∆(2,4)∆(2,2)

Figure 5.1: Some simplicial complexes

Now we check the statement for the first syzygies. For b = (3, 4),
the fiber is {x1x2x4, x1x

2
3, x

2
2x3}. The maximal faces of the simpli-

cial complex are {1, 2, 4}, {1, 3}, and {2, 3} which contracts to a
simplicial 1-sphere (see Figure 5.2).

Similarly for b = (3, 5), the fiber is {x1x3x4, x
2
2x4, x2x

2
3}. Again we
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4

1

2

3

3

4

21

∆(3,4) ∆(3,5)

Figure 5.2: Some simplicial complexes

see that the associated simplicial complex contracts to a simplicial
1-sphere (see Figure 5.2).

Looking back at the simplicial complexes associated to the minimal
generators, it is clear that each is indeed disconnected, while the
simplicial complexes associated to higher syzygies are connected.
This verifies Corollary 5.2.2.

(c) The fiber for b = (2, 2) is basic since the greatest common divisor
of x1x3 and x2

2 is 1. Similarly for b = (2, 3) and b = (2, 4) it is clear
that the fiber is basic since the gcd of each pair of generators is 1.

For b = (3, 4) we can see that gcd(x1x2x4, x1x
2
3, x

2
2x3) = 1. Re-

moving one element at a time, we see that gcd(x1x
2
3, x

2
2x3) = x3,

gcd(x1x2x4, x
2
2x3) = x2, and gcd(x1x2x4, x1x

2
3) = x1. Hence this

fiber is basic. Similarly for b = (3, 5) calculations show the fiber is
basic.

All five fibers are basic so the Scarf complex will be exactly the
same as the minimal free resolution. Notice that even though for
generic toric ideals all fibers are basic, the reverse is not true since
the twisted cubic is not generic.



Chapter 6

Connections to Algebraic
Geometry

6.1 Introduction

In this chapter we will explain the connections between the theory we have
covered in the first five lectures and toric varieties as they occur in algebraic
geometry. We also make additional connections between commutative algebra
and toric geometry. More familiarity with the basics of modern algebraic
geometry is assumed here. For simplicity we will always work over the field C.

6.2 A brief introduction to toric varieties

To an algebraic geometer, a toric variety is a variety defined by the combina-
torial data of a polyhedral fan. The name “toric” comes from the fact that
a toric variety is precisely a d-dimensional normal variety X that contains a
dense copy of the algebraic torus (C∗)d and with an action of (C∗)d on X ex-
tending the action of (C∗)d on itself by multiplication. For example, Cd is a
toric variety, with (t · v)i = tivi for t ∈ (C∗)d, v ∈ Cd.

We begin by defining an affine toric variety. Let C ⊆ Rd be a rational poly-
hedral cone. The word rational here means that every one-dimensional ray of
C contains a lattice point (a point with all integer coordinates). Equivalently,
it means that all the facet inequalities for C can be written using rational
numbers. We will also assume that C is pointed, which means that there is
a vector v with v · x ≥ 0 for all x ∈ C. Let D = C ∩ Zd be the semigroup
of lattice points inside C, and let R = C[D] be the corresponding semigroup

119
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Figure 6.1:

algebra. The algebra R has as a vector-space basis the elements tv for all
v ∈ D, with multiplication given by tvtv′ = tv+v′ . The affine toric variety XC

is defined to be Spec(R).

Example 6.2.1. Let C be the cone in R2 generated by (1, 0) and (2, 3). This
is illustrated in Figure 6.1. The semigroup D is generated by (1, 0), (1, 1), and
(2, 3), so R = C[x, xy, x2y3].

Recall from Definition 3.4.4 of Chapter 3 that a Hilbert basis of the cone C is
a finite generating set for C∩Zd. Since C is pointed, its Hilbert basis is unique.
Let A = {a1, . . . , an} be the Hilbert basis for C, and let S = C[x1, . . . , xn].
Then R = S/IA, where IA is a toric ideal in the sense of Lecture 3.

Example 6.2.2. Let C be the cone of Example 6.2.1. Then R = C[x, y, z]/IA,
where A = {(1, 0, ), (1, 1), (2, 3)}.

A general toric variety is defined by a polyhedral fan Σ. For each cone
σ ∈ Σ, we assign the affine chart Aσ = Xσ∨ , where σ∨ = {x ∈ Rn : x · y ≥
0 for all y ∈ σ} is the polar cone of σ. If σ and σ′ share a face τ ∈ Σ, then Aτ is
an open subvariety of Aσ and of Aσ′ . We then glue together Aσ and Aσ′ along
the subvariety Aτ . The resulting variety XΣ is the toric variety corresponding
to the fan ∆.

Example 6.2.3. Let Σ be the fan in Figure 6.2, and let σ1 = pos((1, 0), (0, 1)),
σ2 = pos((0, 1), (−1,−1)), and σ3 = pos((−1,−1), (1, 0)) be its three maximal
cones. The dual cones are σ∨1 = pos((1, 0), (0, 1)), σ∨2 = pos((−1, 0), (−1, 1)),
and σ∨3 = pos((0,−1), (1,−1)). These are shown in Figure 6.3.
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Figure 6.2:

Figure 6.3:
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Our three coordinate patches are now Ai = Spec(Ri), i = 1, 2, 3, where
R1 = C[x, y], R2 = C[x−1, y/x], R3 = C[x/y, y−1]. These correspond, in order,
to the three coordinate patches z 6= 0, x 6= 0, and y 6= 0 of P2 = Proj(C[x, y, z]).
Since the overlaps are also consistent, we conclude that XΣ = P2.

The construction of Pn as a toric variety is similar, with the rays of the fan
Σ in Rn generated by e1, . . . , en and −

∑n
i=1 ei. The n-dimensional cones in Σ

are the positive hull of all but one of the above rays. There are thus n + 1 of
these cones. Each cone gives one of the standard affine patches for Pn.

If our fan Σ is the normal fan of an integral polytope P , then XΣ is a
projective toric variety. A map of XΣ into some projective space is obtained
by placing P at height one in Rd+1 and letting A be the Hilbert basis for
pos(P × {1}). If P is sufficiently large we then have Proj(S/IA) ∼= XΣ. There
are many different choices of a polytope P with normal fan Σ. Each choice
corresponds to the choice of an ample divisor on XΣ. Demanding that P be
sufficiently large is ensuring that this ample divisor is very ample.

6.3 The Cox homogeneous coordinate ring

One of the most important themes in algebraic geometry and commutative
algebra is that algebro-geometric questions about projective space Pn can be
translated into commutative algebra questions about the graded polynomial
ring in n + 1 variables. This section introduces an analogous object for toric
varieties, the Cox homogeneous coordinate ring. We shall see that much of
what is “nice” about projective space carries over to this setting.

6.3.1 Projective space

We will start by reviewing well-known facts about projective space and graded
polynomial rings.

1. The homogeneous coordinate ring of Pn is the graded polynomial ring
S = C[x0, . . . , xn]. There is a distinguished ideal in S, m = 〈x0, . . . , xn〉,
which is called the irrelevant ideal. The degree of a monomial in S is the
total degree in the variables xi.

2. The variety Pn is the quotient of Cn+1− (0, . . . , 0) by the diagonal action
of C∗ on the coordinates. This construction is just the identification of
Pn with the set of lines through the origin in Cn+1. It justifies the names
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“coordinate ring” and “irrelevant ideal”; a point in projective space has
coordinates (x0 : · · · : xn) except that the vanishing locus of m, namely
the origin (0, . . . , 0), is disallowed.

3. (Nullstellensatz) A graded ideal I ⊂ S gives rise to a subvariety V (I) of
Pn. The variety V (I) is empty if and only if mk ⊂ I for some integer k.

4. (Ideal variety correspondence) The map I → V (I) is a 1-1 correspon-
dence from graded radical ideals I contained in m to subvarieties of Pn.

More generally in algebraic geometry, subschemes (possibly not reduced)
are given by ideal sheaves. The correspondence above generalizes when
we consider general saturated ideals I.

5. A finitely generated graded module M over S gives rise to a coherent
sheaf M̃ . Moreover, every coherent sheaf comes this way from some M .

6.3.2 Construction of homogeneous coordinate ring

Our goal will be to generalize all of the properties of the last section to general
toric varieties. Recall that a toric variety XΣ was defined as a variety arising
from a rational polyhedral fan Σ ⊂ Rn. Let Σ(1) denote the set of one-
dimensional cones (rays) of Σ. Given a ray ρ ∈ Σ(1), let nρ be the first lattice
point on ρ.

The various ρ correspond exactly to the (n − 1)-dimensional orbits of the
torus action on XΣ. Their closures Dρ are the codimension-one irreducible
subvarieties of XΣ. We will consider the group, isomorphic to ZΣ(1), of formal
integer linear combinations of the Dρ. This is the group of torus invariant
(Weil) divisors. Following this terminology we will call a linear combination
D =

∑
aρDρ a divisor, where the sum is over all ρ ∈ Σ(1).

There is a natural map Zn → Z|Σ(1)| sending m ∈ Zn to
∑

(m ·nρ)Dρ. Two
divisors are said to be linearly equivalent if their difference is in the image of
this map. The cokernel of this map is a group Cl(X), called the divisor class
group of X. Given a divisor D, let [D] denote its image in Cl(X).

With all of this terminology straight we can finally define the homogeneous
coordinate ring SX of a toric variety X.

Definition 6.3.1. Let SX = C[xρ : ρ ∈ Σ(1)]. A monomial xD :=
∏

x
aρ
ρ

corresponds to a divisor D =
∑

aρDρ. The degree of xD is defined to be
[D] ∈ Cl(X).
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Thus SX is multigraded by Cl(X), which can be any abelian group. We
shall see that this SX satisfies many of the properties of the coordinate ring for
projective space. The next step is to find the appropriate notion of irrelevant
ideal. Up until now we have only used the one-dimensional cones. For each
cone σ ∈ Σ let xσ̂ =

∏
ρ/∈σ(1) xρ. Here σ(1) is the set of one-dimensional

generators of σ.

Definition 6.3.2. The irrelevant ideal B ⊂ SX is

B = 〈xσ̂ : σ ∈ Σ〉.

It is easy to see that B is generated by the xσ̂ for the maximal cones σ ∈ Σ.

Example 6.3.3. (Affine space)
Affine space Cn is a toric variety generated by one maximal cone spanned by

the standard basis vectors ei = (0, . . . , 1, . . . , 0) with a 1 in the ith coordinate.
The coordinate ring is now C[x1, . . . , xn]. In this case the map Zn → Z|Σ(1)| is
an isomorphism and Cl(X) = {0}. Hence the ring is entirely in degree 0 and
can be considered ungraded.

Example 6.3.4. (Projective space)
Projective space Pn is a toric variety with Σ(1) = {e1, . . . , en,−e1 − · · · −

en}. Here we recover the homogeneous coordinate ring in n + 1 variables with
the usual grading, since Cl(Pn) = Z. Every set of n rays span a maximal cone,
hence the irrelevant ideal is 〈x0, . . . , xn〉 as expected.

Example 6.3.5. (Weighted projective space)
Consider the complete fan in R2 with one-dimensional generators the set

{(1, 0), (0, 1), (−a,−b)}. The coordinate ring is C[x0, x1, x2], is graded by
Cl(X) = Z, and the irrelevant ideal is 〈x0, x1, x2〉 just as in the case of P2.
However, the variables x0 and x1 have degrees a and b respectively while x2

has degree 1. This is called the weighted projective space of type (a, b, 1).

Example 6.3.6. (Pr × Ps)
One can realize the product of two projective spaces as a toric variety by

taking the product of the associated complete fans. There are now r + s + 2
one-dimensional cones. The coordinate ring is C[x0, . . . , xr, y0, . . . , ys]. The
irrelevant ideal is generated by the monomials xiyj, and the grading is by
Cl(X) = Z2 where the x variables have degree (1, 0) while the y variables have
degree (0, 1).



6.3. THE COX HOMOGENEOUS COORDINATE RING 125

6.3.3 Quotient construction

We now emulate the quotient construction of projective space. Consider

Z = V (B) = {t ∈ CΣ(1) :
∏
ρ 6∈σ

tρ = 0 for all σ ∈ Σ}

We will construct X as a quotient of C|Σ(1)| − Z. For any toric vari-
ety X of dimension n, the group Cl(X) is finitely generated of rank s − n
where s = |Σ(1)|. The corresponding complex multiplicative group G =
Hom(Cl(X),C∗) is the product of (C∗)s−n and a finite group. G acts on C|Σ(1)|

by g · t = (g([Dρ])tρ). Recall from Definition 2.3.9 that the n-dimensional fan
Σ is simplicial if every maximal cone of Σ has n generators.

Theorem 6.3.7. Let X be the toric variety determined by the fan Σ, and let
Z = V (B) ⊂ C|Σ(1)| be as above.

(i) The set C|Σ(1)| − Z is invariant under the action of the group G.

(ii) X is naturally isomorphic to the categorical quotient of C|Σ(1)|−Z by G.

(iii) If Σ is simplicial then X is called a simplicial toric variety. If X is
simplicial then X is the actual geometric quotient.

This theorem implies that a point in X is always an equivalence class of
points in C|Σ(1)|. If X is simplicial then the only disallowed points are those in
the irrelevant set Z. In the nonsimplicial case we have to disallow more points,
namely those for which the G orbits are not closed.

Proof. The basic idea behind the proof is to notice that if we set Sσ to be
the localization of S at xσ̂, then C|Σ(1)| − Z is covered by the affine open sets
Uσ = Spec(Sσ). The connection with the affine cover of the toric variety is
that C[σ∨ ∩ Zn] = (Sσ)0 = SGσ . A standard result in invariant theory tells us
that the quotient Uσ/G is equal to Spec(SGσ ). It remains to check the gluing.
Showing that this is actually a geometric quotient in the simplicial case is
harder.

6.3.4 Homogeneous coordinate ring and algebraic ge-
ometry

Our next result generalizes Conditions 3 and 4 of Section 6.3.1 when X is a
simplicial toric variety. For any graded ideal I ⊂ S the set V (I)−Z determines
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a closed subset of X, VX(I) via the above quotient. By abuse of notation we
can write

VX(I) = {t ∈ X : f(t) = 0 for all f ∈ I},
where t is taken in homogeneous coordinates on X.

Theorem 6.3.8. Let X be a simplicial toric variety and B = 〈xσ̂ : σ ∈ Σ〉
the irrelevant ideal.

(i) (The Toric Nullstellensatz) For any graded ideal I ⊂ S, VX(I) = 0 if
and only if Bk ⊂ I for some integer k.

(ii) (The Toric Ideal-Variety Correspondence) The map I → VX(I) induces
a one to one correspondence between radical graded ideals of S contained
in B and subvarieties of X.

Finally we can consider more general graded modules over S. A module
M is said to be Cl(X)-graded if there is a direct sum decomposition:

M =
∑

α∈Cl(X)

Mα

which respects the multiplication, so SαMβ ⊆Mα+β.

As in the projective space case, we can construct a sheaf M̃ on X from a
graded module M .

Theorem 6.3.9. For any toric variety X, every (quasi)-coherent sheaf on X

is of the form M̃ for some graded S-module M .

6.4 Open questions on normality

The toric ideals for which A is the Hilbert basis of a rational cone are an
important subclass of all toric ideals. We saw in this chapter that geometrically
they are the defining ideals of affine toric varieties. Algebraically, they are the
set of normal toric ideals, which are the toric ideals IA such that S/IA is
integrally closed. If A = {a1, . . . , an} ⊆ Zd then A is called normal if IA is
normal. This is the case if the semigroup NA = {

∑
i λiai : λi ∈ N} is normal,

in the sense that if b ∈ Zd with lb ∈ NA for some l ∈ N, l > 0, then b ∈ NA.
We list here some open questions about normal toric ideals.

A configuration A is called graded if there is a c ∈ Zd with ai · c = 1 for all
ai ∈ A.
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6.4.1 Degrees of Gröbner bases

It is well-known (Sturmfels refers to it as a “folklore result” [Stu96, Theorem
13.14]) that if A ⊆ Zd is graded, and NA is normal, then IA is generated in
degree at most d. The following question, however, is still open.

Question 6.4.1. Let A ⊆ Zd be a graded configuration for which NA is nor-
mal. Is there a Gröbner basis for IA consisting of binomials of degree at most
d?

There are some results on this topic due to Hoşten, O’Shea, and Thomas
[HT03], [OT05]. In [OT05] it is shown that such a Gröbner basis exists for the
∆-normal configurations defined in [HT03].

Definition 6.4.2. A configuration A ⊆ Zd is ∆-normal if there is a triangu-
lation ∆ of A for which if σ is a maximal cone of ∆ then the Hilbert basis of
Cσ = pos(ai : i ∈ σ) is A ∩ Cσ.

We note that the term order inducing such a Gröbner basis cannot always
be chosen to be a lexicographic or reverse-lexicographic order.

6.4.2 Projective normality

In the next two sections we consider the case where Xσ is a smooth projective
variety.

Let XΣ be the projective toric variety determined by a polytope P ⊆ Rd.
The variety Xσ is smooth if every cone in Σ is simplicial and unimodular (the
first lattice points on the extreme rays generate the semigroup of lattice points
in the cone). In this case we also call the corresponding polytope P smooth.

For a general P if we take the embedding of XΣ into projective space as
Proj(S/IA) where A is the configuration of lattice points inside the polytope,
the resulting ideal IA will not be normal. However there is some evidence that
this is never the case when XΣ is smooth.

Question 6.4.3. If XΣ is a smooth projective toric variety, defined by a
polytope P , and A is the configuration of lattice points inside the polytope
P × {1} ⊆ Rd+1, is NA a normal semigroup?

This question is asking whether the corresponding embedding into projec-
tive space is projectively normal. When P is two-dimensional, the answer to
the question is yes for any polytope (smooth or not). This follows from the
fact that every polygon in the plane has a unimodular triangulation.
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This is a special case of a question raised by Oda [Oda97]. In polytope
language Oda’s question is the following.

Question 6.4.4. Let P be a smooth lattice polytope in Rd, and let Q be a
lattice polytope whose normal fan is a coarsening of that of P . Is every lattice
point in P + Q the sum of a lattice point in P and a lattice point in Q?

Question 6.4.3 asks this question for Q = kP . In algebro-geometric lan-
guage Question 6.4.4 asks whether the map

H0(XΣ, P )×H0(XΣ, Q)→ H0(XΣ, P + Q)

is surjective, where P,Q, P +Q in this statement denote the corresponding am-
ple or nef divisors. Question 6.4.4 has been answered affirmatively by Fakhrud-
din [Fak02] when P and Q are two-dimensional.

6.4.3 Quadratic generation

Another question one can ask about smooth projective toric varieties is about
the degrees of generators of their defining ideals.

Question 6.4.5. Let XΣ be a smooth toric variety, defined by a polytope P ,
and let A be the configuration of lattice points inside the polytope P × {1} ⊆
Zd+1. Is IA generated by quadrics? In other words, is the maximal degree of a
minimal generator of IA equal to two?

This question is still open, and suspected to have a negative answer, even
in the case where A defines a normal semigroup.

6.4.4 Higher syzygies

Questions about projective normality and quadratic generation are special
cases of questions about whether the toric variety has the property Np.

Definition 6.4.6. Let P be a lattice polytope in Zd, corresponding to the
toric variety XΣ. Let A be the set of lattice points in P ×{1}, let C = pos(A),
and let D be the semigroup C∩Zd+1. As before, we set S to be the polynomial
ring with one generator for every lattice point in P × {1}, and R to be the
S-module C[D], with xi · tv = tai+v.

Let
0 −→ Fk −→ . . . −→ F1 −→ F0 −→ R −→ 0
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be the minimal free resolution of R as an S-module, so each Fi is the direct
sum of shifts of S.

We say the line bundle corresponding to P has property Np if F0 = S and
Fi = ⊕S[−i− 1] for 1 ≤ i ≤ p.

Note that the condition N0 means that the embedding into projective space
defined by P is projectively normal (NA is a normal semigroup, as all Hilbert
basis elements of C are at height one). This means that R = S/IA. The
condition N1 means that IA is quadratically generated.

Hering, Schenck, and Smith [HSS05] have recently proved the following
theorem about when a toric variety has property Np.

Theorem 6.4.7. Let P be a lattice polytope in Zd, corresponding to the toric
variety XΣ. Then the line bundle corresponding to (d − 1 + p)P has property
Np.

Their proof, however, is not at all combinatorial. This leads to the following
question.

Question 6.4.8. Give a combinatorial proof of Theorem 6.4.7.

This question has been answered in the case p = 0, 1. The result that the
semigroup generated by the lattice points in (d−1)P is normal (N0) is a result
of Ewald and Wessels [EW91]. Another proof is given in [LTZ93]. The fact
that the when A is the set of lattice points in dP the ideal IA is quadratically
generated appears in [BGT97]. These proofs are all combinatorial, and inspired
the work in [HSS05].

6.5 Further reading

One of the canonical introductions to toric varieties in their algebro-geometric
formulation is Fulton’s book [Ful93]. Another good reference, which does not
assume any algebraic geometry background is Ewald [Ewa96]. The Cox ho-
mogeneous coordinate ring was introduced for simplicial toric varieties by Cox
in [Cox95]. It was generalized to all toric varieties by Mustaţa [Mus02]. More
about the connection between toric ideals and the toric varieties discussed here
can be found in Chapter 13 of [Stu96], and [Stu97]. The latter contains some
other (still) open questions about toric ideals.
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Gröbner, 25, 36, 40
homogeneous Gröbner, 36
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secondary

fan, 81
polytope, 81

simplicial, 29
simplicial complex, 77
standard monomial, 8
Stanley-Reisner

complex, 79
ideal, 79

state polytope, 38
support, 1
support of vector, 80
Syz(I), 111
syzygy, 98

term, 1
term order, 5
toric

ideal, 53, 54
ideal-variety correspondence, 126
Nullstellensatz, 126
variety, 53

affine, 119, 120
triangulation, 77

coherent, 77, 78
regular, 77, 78

unimodular, 84
univariate ideal, 2

variety, 2
normal, 119

weight vector, 25
weighted projective space, 124
Weil divisors, 123
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