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KOHNERT POSETS

Definition 1. A diagram D is a finite subset of N × N. A Kohnert move on a
diagram moves the rightmost cell in a row to the first empty space below it.

Definition 2. The Kohnert poset of a diagram D, denoted P(D), is the set of
all diagrams that can be obtained from D via a sequence of Kohnert moves,
with D1 > D2 if D2 can be obtained from D1 via a sequence of Kohnert moves.
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Example: P(D) (top on left, bottom on right)

Kohnert moves and posets originated in Kohnert’s Ph.D. thesis [5]. Col-
menarejo, Hutchins, Mayers, and Phillips initiated the study of boundedness
and rankedness of Kohnert posets and classified those of key diagrams [2].

KOHNERT POLYNOMIALS

Definition 3 ([1, Definition 2.2]). The Kohnert polynomial of a diagram D is
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Assaf and Searles showed that if {Dα} is any set of diagrams indexed by weak
compositions such that rwt(Dα) = α, then {KDα

} is a basis of the polynomial
ring [1]. Key diagrams yield Demazure characters and Rothe diagrams yield
Schubert polynomials. Criteria for monomial multiplicity-freeness of these fam-
ilies of polynomials were given by Hodges and Yong in [4], and Fink, Mészáros,
and St. Dizier in [3], respectively.

NORTHEAST DIAGRAMS

Definition 4. A diagram D is northeast if for all pairs (r, c), (r′, c′) ∈ D,
(max(r, r′),max(c, c′)) ∈ D as well.

Definition 5. For a weak composition α = (α1, . . . , αn), the lock diagram D(α)
is the right-justified diagram with exactly αi cells in row i.

Lock diagrams are a subclass of northeast diagrams. They are the natural
analog of the well-studied, left-justified key diagrams. Wang initiated the study
of lock polynomials and a crystal structure that intertwines with that of keys [6].
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A northeast diagram
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The lock diagram D(0, 1, 3, 2)

BOUNDEDNESS

Theorem 6. If D is northeast, then P(D) is bounded if and only if D
does not contain x1 = (r1, c1), x2 = (r2, c2), and x3 = (r3, c3) such that:

(a) r1 ≤ r2 < r3

(b) c1 < c2 = c3

(c) for all c1 ≤ c < c2, cwt(D)c < cwt(D)c2

(d) for each column c ≥ c1, there is at least one empty position (r, c) where r < r1

(e) for each r1 < r ≤ r3, the cell (r, c1) is not in D0

Forbidden configuration:

x1

x2

x3

Corollary 7.P( D(α)) is bounded if and only if the nonzero entries of α after the
first zero are weakly increasing.

RANKEDNESS

Theorem 8. If D is northeast, then P(D) is ranked if and only if D
does not contain x1 = (r1, c1), x2 = (r2, c2), and x3 = (r3, c3) such that:

(a) r1 < r2 ≤ r3

(b) c1 = c2 < c3

(c) for each c1 ≤ c < c3 there is at least one empty position (r, c) where r < r1

(d) for each c ≥ c3, the number of r < r3 such that (r, c) ∈ D is less than r1

Forbidden configuration:

x1

x2

x3

Corollary 9. P( D(α)) is ranked if and only if for every pair αi, αi+k ≥ 2 with
αi+j ∈ {0, 1} for all 1 ≤ j < k, we have #{j : 1 ≤ j < k and αi+j = 1} ≥ #{j :
j < i and αj = 0}.
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P( D(3, 2, 0, 1, 0, 1, 3)) is ranked and bounded

MONOMIAL MULTIPLICITY-FREENESS

Theorem 10. If D is a northeast diagram, then the Kohnert polynomial KD is
monomial multiplicity-free if and only if D does not contain x1 = (r1, c1) and
x2 = (r2, c2) such that:

(a) r1 < r2

(b) c1 < c2

(c) there exists s1 < r1 such that the position (s1, c1) is empty

(d) for each c > c1, there are at least two empty positions (r, c) where r ≤ r1

Forbidden configuration:

x1

x2

Corollary 11. The lock polynomial K D(α) is monomial multiplicity-free if and
only if α does not contain a subcomposition of the form (0, 0, αi, αj) for αi > 1
and αj > 0.
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K D(0,1,2,2,0,1) is monomial multiplicity-free
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