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Introduction

A matroid Schubert variety is a certain compactification of a vector space
in (P1)n, n = 1, 2, 3, . . .
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Introduction

Matroid Schubert varieties
1 were first defined by Ardila and Boocher [AB16];
2 are a “trendy” subject in combinatorial algebra and algebraic

combinatorics, partly due to the successful resolution of Dowling and
Wilson’s top-heavy conjecture by Braden, Huh, Martherne, Proudfoot
and Wang [BHM+22], [BHM+23] using the geometry of matroid
Schubert varieties;

3 were rediscovered from the Poisson geometric perspective by Evens
and Li [EL24], as a Poisson subvariety of the variety of Lagrangian
subalgebras of g⋉ g∗;

4 have representation theoretical significance, e.g. Ilin, Kamnitzer, Li,
Przytycki and Rybnikov proved that they are intimately related to the
moduli space of “cactus flower curves”, the virtual cactus and
symmetric groups and Gaudin subalgebras [IKL+24];

5 lead to an additive/tropical analogue of the theory of toric varieties
[Cro23].
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Definition

F: any field, A ∈ Matn×d(F): matrix of rank d ⇝
Get embeddings

Fd ↪
A

−−−! Fn ↪−! (P1(F))n ⇝

Will regard Fd as a locally closed subvariety of (P1(F))n via the
composition of the two embeddings.

Definition

The matroid Schubert variety Y associated with A is the closure of Fd in
(P1(F))n.

Goal

Understand combinatorially the topology of Y in the case where F = R.
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An example

Take A =

1 0
0 1
1 1

. ⇝
The embeddings above are given by

F2 ↪
A

−−−−! F3 ↪−−−−−−−−! ((P1(F)))3

(a, b) 7−! (a, b, a+ b) 7−! ([1 : a], [1 : b], [1 : a+ b]). ⇝

If ([x0 : x1], [y0 : y1], [z0 : z1]) are the homogeneous coordinates on
(P1(F))3, then Y is cut out in (P1(F))3 by

x1y0z0 + x0y1z0 − x0y0z1 = 0. ⇝
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An example

Hence, Y has an affine paving given by

Y = F2 ⊔
(
F× {∞} × {∞}

)
⊔
(
{∞} × F× {∞}

)
⊔
(
{∞} × {∞} × F

)
⊔ {(∞,∞,∞)}.
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The zonotope associated with A

From now on we assume that F = R.
Let A1, . . . ,An be the row vectors of the matrix A.

Definition

The zonotope Z associated with A is the Minkowski sum

Z :=
n∑

i=1

[−Ai ,Ai ] =

{
n∑

i=1

ciAi : ci ∈ [−1, 1] ∀i ∈ [1, n]

}
.
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The zonotope associated with A

Z is a d-dimensional convex polytope sitting in Rd , equipped with the
Euclidean topology.
In particular, it makes sense to speak of two faces of Z being parallel.

Definition

Let p, q ∈ Z . We say that p is equivalent to q, p ∼ q, if there exist faces
F ,G of Z and a vector x ∈ Rd such that

p ∈ F , q ∈ G, F + x = G and p + x = q.

The set of equivalence classes in Z , equipped with the quotient of the
Euclidean topology, will be denoted by Z/∼.
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Example, cont’d

Back to the example where A =

1 0
0 1
1 1

. ⇝
The zonotope Z , as well as its parallel faces, is depicted as follows

Figure: The zonotope for the Coxeter arrangement of type A2
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Example, cont’d

From the above it is clear that Z/∼ is the 2-dimensional torus with two
points identified.
Moreover, Z/∼ has a CW complex structure (one cell for each equivalence
class of parallel faces of Z ) with

1 1 cell of dimension 2;

2 3 cells of dimension 1;

3 1 cell of dimension 0.

Recall that the number of cells of dimensions 2, 1, 0 in the affine paving of
Y are also 1, 3, 1!
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The homeomorphism

f : [−∞,∞] ! [−1, 1]: any increasing homeomorphism. ⇝
Get a map

Rd −! Int(Z )

x 7−!
n∑

i=1

f (Aix)Ai ,

where Int(Z ) stands for the interior of Z .
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The homeomorphism

Theorem (Jiang-L.)

There exists a unique continuous map φ : Y ! Z/∼ making the diagram

Rd Int(Z )

Y Z/∼φ

commutative.
Moreover, the map φ : Y ! Z/∼ is a homeomorphism and respects the
CW complex structures.
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Example, cont’d

To convince ourselves that the theorem is correct, let us consider again the

example where A =

1 0
0 1
1 1

.
Take f : [−∞,∞] ! [−1, 1], x 7! 2

π arctan(x). ⇝
Get a homeomorphism (P1(R))3 ! [−1, 1]3/parallel faces. ⇝
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Example, cont’d

The image of Y under this map is

Figure: Image of Y
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Flats of A

Definition

A flat of A is a subset F ⊆ [1, n] which is maximal, with respect to
inclusion, among all subsets G ⊆ [1, n] that satisfy the condition

Span{Ai : i ∈ F} = Span{Ai : i ∈ G}.

The rank rk(F ) of a flat F of A is

rk(A) := dim Span{Ai : i ∈ F}.

The join F ∨ G of two flats F ,G of A is the minimal, with respect to
inclusion, flat of A that contains both F and G .

Fact

The flats of A are in natural bijection with the equivalence classes of
parallel faces of Z .
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Example, cont’d

The matrix A =

1 0
0 1
1 1

 has

1 1 flat of rank 2: {1, 2, 3};
2 3 flats of rank 1: {1}, {2} and {3};
3 1 flat of rank 0: ∅.
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Cohomology

Let (C ∗(Z/∼;Z), d) be the cellular complex of Z/∼ defined by the CW
complex structure explained above.
For a flat F of A, write ξF for the cellular cochain which is dual to
equivalence class of parallel faces of Z that corresponds to F , so

C ∗(Z/∼;Z) =
⊕

F : flat of A

Z · ξF .

Li, Yu (University of Toronto) Matroid Schubert varieties and zonotopes Toronto, January 2025 18 / 38



Cohomology

Theorem (Jiang-L.)

1 The cellular differential d is zero;

2 As graded Z-modules, we have

H∗(Z/∼;Z) ∼=
⊕

F : flat of A

Z · [ξF ],

where [ξF ] is placed in degree rk(F );

3 For flats F ,G of A, up to a sign, the cup product of [ξF ] and [ξG ] is
given by

[ξF ] ⌣ [ξG ] =

{
[ξF∨G ] if rk(F ) + rk(G ) = rk(F ∨ G )

0 otherwise.

Li, Yu (University of Toronto) Matroid Schubert varieties and zonotopes Toronto, January 2025 19 / 38



Cohomology

Remarks
1 The last theorem is true for the complex locus of Y equipped with

the Euclidean topology, except that [ξF ] is placed in degree 2rk(F );

2 Let X be a projective variety defined over R. It is very rare that
H∗(X (R);Z) is isomorphic to H∗(X (C);Z) with degrees halved. In
fact, the projective space Pm, for m ≥ 2, does not have this property.

Li, Yu (University of Toronto) Matroid Schubert varieties and zonotopes Toronto, January 2025 20 / 38



Z/2-equivariant cohomology (Z/2 coefficients)

The group Z/2 acts on (P1(R))n, where the nontrivial element acts by
multiplying each component by −1.
It is evident that Y is stable under this action.

Theorem (Jiang-L.)

1 With Z/2 coefficients, Y is Z/2-equivariantly formal. In particular,
we have an isomorphism

H∗
Z/2(Y ;Z/2) ∼= H∗(Y ;Z/2)⊗Z/2 (Z/2)[s]

of (Z/2)[s]-modules;

2 For flats F ,G of A, we have(
[ξF ]⊗ s0

)
⌣

(
[ξG ]⊗ s0

)
= [ξF∨G ]⊗ srk(F )+rk(G)−rk(F∨G).
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Z/2-equivariant cohomology (Z coefficients)

Theorem (Jiang-L.)

1 H∗
Z/2(Y ;Z) is concentrated in even degrees;

2 For each k ∈ Z≥0, we have

H2k
Z/2(Y ;Z) ∼= H2k(Y ;Z)⊕

2k⊕
i=1

H2k−i (Y ;Z)
2H2k−i (Y ;Z)

s i ;

3 For flats F ,G of A and a, b ∈ Z≥0 with rk(F ) + a, rk(G ) + b ∈ 2Z,
we have

([ξF ]⊗ sa) ⌣
(
[ξG ]⊗ sb

)
= [ξF∨G ]⊗ srk(F )+rk(G)−rk(F∨G)+a+b.
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Topological pseudomanifold

Theorem (Jiang-L.)

The space Y , with the stratification given by the skeleta of its CW
complex structure, is a topological pseudomanifold. Moreover, the
structure of the link at each point can be described combinatorially.
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Example cont’d

For A =

1 0
0 1
1 1

, the variety Y is smooth except at the point (∞,∞,∞).

From the picture below it is evident that the link at (∞,∞,∞) is S1 ⊔ S1.

Figure: Neighborhood of (∞,∞,∞)
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Coxeter arrangements

From now on we assume that A is a Coxeter arrangement, i.e. the rows of
A are indexed by the roots of a root system Φ, the columns by a base
{α1, . . . , αd} of Φ, and for α ∈ Φ with

α = c1α1 + · · ·+ cdαd ,

the row of A indexed by α is [c1 . . . cd ].
In this case, the matroid Schubert variety Y is also called the wonderful
compactification of a Cartan subalgebra [EL24].
Let W be the Weyl group of Φ. It is evident that the W -action on (P1)Φ

by permuting the components leaves Y stable. Hence, W acts on Y .
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W -equivariant fundamental group

G ↷ X : group action on a topological space, x0 ∈ X : base point ⇝

Definition

The G -equivariant fundamental group of (X , x0) is

πG
1 (X , x0) := {(g , p) : p is a homotopy class of paths x0 −! g · x0}.

The multiplication in πG
1 (X , x0) is given by

(g1, p1) · (g2, p2) = (g1g2, p1 ∗ (g1 · p2)).
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W -equivariant fundamental group

n ∈ Z>0 ⇝
Sn: symmetric group (with generators si ), Brn: braid group (with
generators σi ) ⇝

Definition

The virtual braid group VBn is the free product Sn ∗ Brn modulo the
relations

si si+1σi = σi+1si si+1 ∀i ∈ [1, n − 1]

siσj = σjsi ∀i , j ∈ [1, n − 1] with |i − j | > 1.

The virtual symmetric group VSn is VBn/⟨σ2
i = 1: i ∈ [1, n − 1]⟩.

The pure virtual symmetric group PVSn is

ker (VSn −! Sn, si , σi 7−! si ) .
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W -equivariant fundamental group

Theorem (BEER [BEER06], IKLPR [IKL+24])

If A is of type An, then

π
Sn+1

1 (Y ) ∼= VSn and π1(Y ) ∼= PVSn.

Theorem (Jiang-L.)

Let A be a Coxeter arrangement, then

πW
1 (Y ) ∼= VW and π1(Y ) ∼= PVW.

Remark

It is proved in [BEER06], [IKL+24] that, if A is of type An, the space Y is
a CAT(0) space, hence a K (π, 1) space. However, this is NOT true in
general.
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Positive geometry

Definition

The totally nonnegative part Y≥0 of Y is

{(xi )ni=1 ∈ Y ⊆ (P1(R))n : xi ∈ R≥0 ⊔ {∞} ∀i ∈ [1, n]}.

Theorem (IKLPR [IKL+24])

Let A be a Coxeter arrangement. The totally nonnegative part Y≥0 is
combinatorially isomorphic to a d-dimensional cube.
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Positive geometry

Theorem (Jiang-L.)

Let A be a Coxeter arrangement. The triple

(Y ,Y≥0,Ω :=
dx1
x1

∧ · · · ∧ dxd
xd

)

is a positive geometry in the sense of Lam [Lam22].
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Generalization to oriented matroids

Matrices with entries in R are precisely the realizable oriented matroids.
For an arbitrary oriented matroid M, da Silva and Moulton [DM98]
defined the crinkled zonotope ZM associated with M.
We were able to generalize the equivalence relation ∼ on Z to this more
general setting. Although the notion of matroid Schubert variety for a
general oriented matroid is undefined, the quotient space ZM/∼ still
makes sense.

Theorem (Jiang-L.)

All results above hold for ZM/∼.

In view of the last theorem, it is reasonable to call ZM/∼ the matroid
Schubert variety associated to the (not-necessarily-realizable) oriented
matroid M.
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Example, cont’d

Figure: Crinkled zonotope for the oriented matroid of type A2
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Wilf’s conjecture

n, k ∈ Z≥0 ⇝ S(n, k): Stirling number of the second kind (number of
partitions of [1, n] into k nonempty parts) ⇝ B(n) :=

∑
k≥0(−1)kS(n, k):

the nth alternating Bell number ⇝

Wilf’s conjecture

For any n ∈ Z≥0 \ {2}, B(n) ̸= 0.

Theorem (Jiang-L.)

Let A be the Coxeter arrangement of type An. We have

hk(Y ;Z) = S(n + 1, n − k + 1) ∀k ∈ Z≥0.

In particular, Wilf’s conjecture holds if the Euler characteristic χ(Y ) of Y
is nonzero for all n ∈ Z≥0 \ {1}.
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A mysterious duality

The Orlik-Solomon algebra associated with A is the cohomology of

Cd \
n⋃

i=1

(ker(Ai )⊗R C) .

For k ∈ Z≥0, let wk (resp. Wk) be the Whitney number of the first (resp.
second) kind of A.
The two kinds of Whitney numbers are combinatorially dual to each other.

Theorem

For any k ∈ Z≥0,

1 hk
(
Cd \

n⋃
i=1

(ker(Ai )⊗R C) ;Z
)

= |wk |;

2 (Jiang-L.) hk(Y ;Z) = Wn−k .
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A mysterious duality

Question

Find geometric/topological relations between Y and

Cd \
n⋃

i=1
(ker(Ai )⊗R C) that explains the combinatorial duality between

the two kinds of Whitney numbers.
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Koszulity of the cohomology of Y

Koszulity of the cohomology of Y

Characterize those matrices A such that H∗(Y ;Q) is a Koszul algebra.

With the exception of the root system of type F4, we have proved the
following result.

Theorem (Jiang-L.)

Let A be a Coxeter arrangement. The following are equivalent

1 H∗(Y ;Q) is Koszul;

2 H∗(Y ;Q) has a quadratic Gröbner basis;

3 A is supersolvable;

4 A is of types An(n ≥ 1), Bn(n ≥ 2) or G2.
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More open questions

Questions
1 Compute the intersection cohomology of Y ;

2 Characterize those matrices A such that Y is a K (π, 1) space;

3 · · · .
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Thank you!
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