
.

Secant Varieties and Inverse Systems

Anthony V. Geramita

Ottawa Workshop on Inverse Systems
January, 2005

1



X ⊂ Pn non-degenerate, reduced, irreducible projec-
tive variety.

Definitions:

1) Secant P
s−1 to X: linear subspace, Π, of P

n gen-
erated by s linearly independent points of X.
2) (s − 1)st Secant Variety to X:

Secs−1(X) = X
s :=

∪ { P ∈ Π | Π a secant Ps−1 to X }

Why “closure” in the definition?

Example: X rational normal cubic in P
3 i.e. let

R = C[x0, x1] = ⊕∞

i=0Ri, then X is the image of:

P
1 = P(R1) {= projective space of linear forms }

↓

P3 = P(R3) {= projective space of cubic forms }

described by
[L] → [L3].
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When is P ∈ P3 on a secant line to X? (P /∈ X)
Consider the projection of P

3 into P
2 from P

and restrict it to X. The image of X is a plane ra-
tional cubic curve, hence a cubic curve with a singu-
larity i.e. with either a node or a cusp.

The singularity of that curve is a node iff the
point P lies on a secant line to X; and a cusp iff
the point P lies on a tangent line to X (by Bezout,
a point P cannot lie on both a secant line and a
tangent line simultaneously).

But, a point P is on a tangent line to X iff it is
on the tangent developable to X, which is a surface
Y in P

3. So, the points which lie on (true!) secants
to X form an open set (P3 \ Y) (whose closure is all
of P

3).

The Main Problem: Given X, what is the dimen-
sion of X

s = Secs−1(X)?

(Subproblem: What’s the least s for which X
s =

Pn?)
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The Naive Answer! It has the dimension it ought
to have: in other words count parameters!

To describe a secant Ps−1 to X we need s general
points of X, i.e. a point in X × X × · · · × X (s-
times) (i.e. “s dim X” parameters) PLUS we have to
add the fact that we can choose any point on the
secant P

s−1 itself, another s− 1 parameters. So, the
dimension of X

s should be

s dim X + (s − 1).

Wait !!! of course Xs is also in Pn, so, the naive
parameter count gives:

min{n, s dim X + (s − 1)}.

The Naive Answer is not always correct!

If naive answer correct ⇒ secant line variety to a
surface in P5 is all P5; so, find a surface in P5 whose
secant line variety isn’t P5.
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Veronese Surface in P5: R = C[x, y, z] = ⊕∞

i=0Ri;
the Veronese surface in P

5 is the image of P
2 via

φ : P
2 = P(R1) −→ P

5 = P(R2) by [L] −→ [L2].

The secant line variety is the closure of the set of all
[Q] ∈ P

5 (Q a quadratic form in R, i.e. an element
of R2) such that [Q] = [L2

1 + L2
2].

Recall that quadratic forms (over C) are (after a
change of basis) either L2 or L2

1+L2
2 or a sum of three

squares of linear forms (depending on the rank of the
associated symmetric matrix). So, for a quadratic
form to lie on a “true” secant, we must have that
(under some change of variables) we can write [Q] =
[L2

1 + L2
2]. But, that would mean that the rank of

the associated matrix was 2, i.e. the determinant of
that matrix is 0. So, the secant line variety is a cubic
hypersurface of P

5 and has dimension 4, not 5.
A key tool in trying to figure out the dimensions

of Secant Varieties is the Lemma of Terracini:

Lemma: (Terracini) Let X ⊂ Pn be as above. The
dimension of X

s+1 is the same as the dimension of
the linear span of the tangent spaces to s+1 general
points of X.
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(...because that linear space IS the tangent space to
Secs(X) at a general point of the secant P

s generated
by those s + 1 general points.)

******************************

I want to show today how Inverse Systems enter in
considering the Main Problem for the collection of
all the Veronese varieties. I.e. let R = C[x0, . . . , xn],
define νd(P

n) as the image of

νd : P
n = P(R1) → P(Rd) = P

Nd , Nd =

(

d + n

n

)

− 1

where
νd(L) = Ld.

In this case, the variety we are interested in is:

Secs(νd(P
n)) = { [F ] | F = Ld

0 + · · · + Ld
s} .

(Waring Problem for Forms.)
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By Terracini’s Lemma we need a good way to de-
scribe the tangent space at a general point of νd(P

n).
Let’s consider νd affinely, i.e. we have

νd : R1 ' A
n+1(C) −→ Rd ' A

Nd+1

and we want to understand the tangent space at a
point of the image of this map.

I.e. if P ∈ A
n+1 we are interested in the image of

the linear transformation (dνd)P , where

(dνd)P : TP (An+1) → Tνd(P )(A
Nd+1).

How does the linear transformation (dνd)P act on a
vector v in TP (An+1)?
Take a curve C in An+1 through P which has tangent
vector v at P and apply νd to C and obtain a curve
νd(C) through νd(P ). The tangent vector to νd(C)
at νd(P ), call it v′, is (dνd)P (v).

So, let P = L ∈ A
n+1 and choose a vector v =

M in TP (An+1) ' An+1 and consider the line in
An+1 through P in the direction v (the simplest
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curve one can think of which passes through P and
has tangent vector v at P ).
The points on this line are parameterized by:

t −→ L + tM.

The image of this curve under νd is:

νd(L + tM) = (L + tM)d.

Now
d

dt

(

(L + tM)d
)

= d(L + tM)d−1M

and if we evaluate this when t = 0 (i.e. at the point
νd(P )), we get that the tangent space at the image
of the point L is

〈dLd−1M〉 = 〈Ld−1M〉

where M varies over R1.
Thus, by Terracini’s Lemma the dimension of

the (affine cone over the) variety Secs(νd(P
n)) is the

same as the dimension of the vector space

V = 〈Ld−1
0 R1 + Ld−1

1 R1 + . . . + Ld−1
s R1〉.

where L0, . . . , Ls correspond to a general set of s+1
points in P

n.
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We find this dimension via Inverse Systems (but
first we change some notation).

Let

R = C[x0, . . . , xn], S = C[y0, . . . , yn]

and let

V = 〈Ld−1
0 S1 + Ld−1

1 S1 + . . . + Ld−1
s S1〉.

where the Li are general linear forms in S1. We want
to find dim V .
Recall that we can let R act on S via partial differ-
entiation, i.e.

Ri × Sj → Sj−i

where , when i = 1, we have

xi × F =
∂

∂yi

F

It is easy to see that

Ri × Si → C = S0
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is a perfect pairing and so if V ⊂ Si then

V ⊥ = { w ∈ Ri | w ◦ v = 0 for all v ∈ V }.

From standard results in linear algebra we have:

dimV = dimRi − dimV ⊥

and
(V1 + V2)

⊥ = (V1)
⊥ ∩ (V2)

⊥

so, by induction

dim(V0+. . .+Vs) = dim Ri−dim((V0)
⊥∩. . .∩(Vs)

⊥).

This action makes S into a graded R-module (note
the direction of the action) so that if M is any graded
R-submodule of S then I = annR(M) is a homoge-
neous ideal of R. In the other direction, if I is a
homogeneous ideal of R we define the inverse sys-

tem of I, denoted I−1 by

I−1 := { m ∈ S | i ◦ m = 0, for all i ∈ I }.

The noted theorem of Macaulay tells us how to
calculate I−1 very easily:
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Theorem: (I−1)d = I⊥

d .

The result that brings everything together in this
circle of ideas is the calculation of the inverse system
for a specific ideal!

Lemma: Let P = [a0 : . . . : an] ∈ Pn and let ℘ ⊂ R
be the associated prime ideal. Let L = a0y0 + . . . +
anyn be an element of S1. Then, if I = ℘t+1 then

I−1 = S0 ⊕ . . . ⊕ St ⊕ LSt ⊕ L2St ⊕ . . .

i.e.

I−1 =

{

Sj for j ≤ t,

Lj−tSt for j ≥ t + 1.

(some remarks on the proof of the Lemma).
It is easy to prove the Lemma in case P = [1 : 0 :
. . . : 0], i.e. for L = y0 for then I = (x1, . . . , xn) and
it is easy to see the result. One proceeds from this
by a change of variable.

Now, let’s consider the vector space we were consid-
ering above, i.e.

V = 〈Ld−1
0 S1 + . . . + Ld−1

s S1〉;
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by applying the Lemma to this vector space we see
that V = (I⊥)d where

I = ℘2
0 ∩ · · · ∩ ℘2

s

where the ℘i are the prime ideals corresponding to
the points which correspond to the linear forms Li,
i.e. are a generic set of s + 1 points in Pn.

We thus obtain the following theorem:

Theorem:

Consider the Veronese Variety νd(P
n) ⊂ PN ,

N =
(

d+n

n

)

− 1. Then

dim(Secs(νd(P
n)) = dimC(R/℘2

0 ∩ · · · ∩ ℘2
s)d − 1.

Consequently, the effort in solving the Main Problem
for the Veronese Varieties revolves around finding
the dimension of this quotient. But, that quotient is
nothing more than the Hilbert function of the ideal

I = ℘2
0 ∩ · · · ∩ ℘2

s

in a single degree d.

12



The achievement of J. Alexander and A. Hirschowitz
was to find the entire Hilbert function of this “fat
point” ideal.
I won’t go into details here, but with my collabora-
tors, M.V. Catalisano, and A. Gimigliano, we have
done a similar thing for the Segre Varieties, i.e. using
Inverse systems, we have shown that the dimensions
of the secant varieties of the various Segre Embed-
dings of Pn1 × . . .×Pnt are related to calculating the
Hilbert functions of certain “fat linear schemes” in
Pn1+...+nt . We have, in certain cases, been able to
calculate those Hilbert functions and so resolve the
problem. But, the results here for the Segre Varieties
are very, very far from complete and would take us
far from the discussion of Inverse Systems.
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