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Permutation Statistics and ¢-Analogues

In combinatorics a statistic on a finite set
S is a mapping from S — N given by an
explicit combinatorial rule.

Ex. Given m = mymy - - - m, € S,,, define

invr = [{(¢,7) : e <j and m > 7}

and
majm = Z 1.
T3> Ti4+1
If m = 31542,
mvoe =2+2+1=5
and

majmr =1+3+4=28&.



Let
(n)g=(1-4q")/(1—q)
=14+qg+...+¢" 1
and

(n!)q = H(i)q

1=1
= (1+q)(1+q+q¢*) - - - (1+q+...+¢" 1)

be the g-analogues of n and n!. Then

Z qinvw _ (n')q _ Z qmajﬂ.

TESH TESH



Symmetric Functions

A symmetric function is a polynomial
f(x1,x2,...,x,) which satisfies

f@r,o ooy 2ry,) = f(21,...,T0),

ie. mf = f, for all m € 5,,.

Examples
e The monomial symmetric functions my(X)

2 2
m(2,1)(Z1,T2,T3) = T1T2 + T1T3

2 2 2 2
+ 51 + T5T3 + T3x1 + T3T2.
e The elementary symmetric functions ey (X)
e2(r1,%2,23) = T1T2 + 173 + T2T3.

e The power-sums pg(X) = > x¥.



e The Schur functions s)(X), which are
important in the representation theory of
the symmetric group:

sx(X) =) Kxpmg(X)
BHn

where K g equals the number of ways of
filling the Ferrers shape of A with elements
of the multiset {1°12°2...} weakly in-
creasing across rows and strictly increas-

ing down columns. For example K4 2) (2,2.1,1) =
al

2 3 2 2
I 1 2 4 1 1 3 4
2 14 3 4
1 1 2 3 I 1 2 2



Selberg’s Integral For k,a,b € C,

| (; — ;)"
/(o,nn 1l :

1<i<y3<n

ﬁ ¢ (1 —x) tdxy - - - dey,
- ﬁ T(a+ (i — DE)D(b + (i — 1))
L l(a+b+ (n+1i—2)k)
D(ik + 1)
“Tht1)

e Kadell (1988) conjectured there existed
symmetric functions which could be in-
serted into the integrand to generalize Sel-
berg’s integral in a certain interesting way.

e Macdonald (1988) showed how to define
such, by means of orthogonality with re-
spect to a generalization of the Hall scalar
product, or aternatively by means of a
complicated constant term identity.



Macdonald’s generalization: There exist
symmetric functions Py(X; q,t) such that
if t = ¢"* for some k € N,

1
’n,' (0 1)7?,

H H i —q %)@ —q " x;)

1<i1<3<n r=0

P\(X;q,1)

n
H x?_l(xi; Q)b—ldqxl T dqaj

F Ai +a+ (i —1)k)
— 1 H +a+b+(n+z—2))

X Fq(b + (¢ — 1)k)

Fg(Xi —Aj+( —i+1)k)
< 1 Lq(Ai = Aj +(J —9)k)




where k € N,

E' = kn(A)
+ kan(n —1)/2 4+ k*n(n — 1)(n — 2)/3,

t=q",

Tq(2) =(1— )" " *(¢:0)00/ (0% 0) 0

is the g-gamma function with

(73 9)oo = | | (1 — 24"),

i>0

and
| f@dga =3 ) =)

is the g-integral.



Plethysm: If F'(X) is a symmetric func-
tion, then F[(w — 1)X] is defined by ex-
pressing F'(X) as a polynomial in the pi (X) =
> . z¥’s and then replacing each pg(X) by
(w”* —1)pr(X). Macdonald’s construction
of the P, can be reformulated as follows.

Theorem. (Macdonald) Given a partition
14, there exists a unique symmetric polyno-
mial ﬁu[X;q, t| characterized by the fol-
lowing:

() HuX(q—1);0,1] € Qla,t){my :
A< '}

(i) HuX(t - 1);0,1] € Qq,t){my
A< p}

(#99) H,[1;q,t] = 1.

where we use the “dominance” partial or-
der on partitions;

A<p = M+...+N<ppm+...+pu

for 1 <1 <n.



The Combinatorics of I:IM[X; q, t]

Descents Inversions
4 8
4 | 1 2t 6! 728q
5 2 0,
t
2| 5| 8 3
73 76
71 31 6] 9 q q
4 3
tq
6 6 7 | 8

4 | 4 1| 3 5| 6 1|3

Reading Word: 662484413



Definition. Let Inv(o, ) denote the set
of inversion triples, and and Des(o, i) the
set of descents. Set

(o, p) = |Inv(o, p)],

majlo.p) = Y 1+ leglw)
weEDes(o,u)

Remark: maj(o,1™) = maj(o) and inv(o,n) =
inv(o).

Definition. Let X = (z1,x2,... ,2,) and
set

CM [X7 q, t] — Z qinv(o',,u) tmaj(o',,u)xa,

o:p—zt o, <n

/A
o __
where x° = HZ To, -

Theorem. (H., Haiman, Loehr; 2004 ) (Con-
jectured by H., PNAS (2004))

~

H,|X;q,t] = CulX;q,t].



The Proof

Proposition. Let A be an alphabet of pos-
itive and negative letters, with any fixed
total ordering. Then

CulX(w—1);q,8] = Y (—1)#res
o:u—A
w#posqinvtma,jx|0|
where #neqg, #pos are the # of negative
and positive letters, respectively.
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1<1<2<2<--<n<n



Involution 1

(a) We say two squares “attack” each other
if they form a potential inversion pair. Find
last attacking pair of 1’s, 1’s in the read-
ing word (if none, find last attacking pair
of 2’s, etc.).

(b) Switch the sign of first element (in
reading word order) of attacking pair.

(c) Use ordering 1 <1< ---<n <.

e The Descent set is fixed, so the t-weight
is fixed. The g-weight is also fixed

e The fixed points are those super fillings
without attacking pairs, so at most one
1,1 in any row, at most one 2,2 in any
row, so if the coeflicient of xi‘lxg‘z -+ 1S
nonzero, we must have A\ < p’, A\ + s <
uy + ph, ete., where u' is the conjugate
partition obtained by rotating the Ferrers
graph of p.



Involution 2

(a) Find Ist 1 or 1 in reading word, not in
the bottom row. (if none, find first 2 or 2
not in the bottom two rows, etc.).

(b) Switch the sign of this element.
(c) Use the ordering

<2< <n<n<--- <2<

e The ¢ and t weights are preserved.

e The fixed points have 1,1’s only in the
bottom row, 2,2’s only in the bottom two
rows, etc. Thus if coefficient of #1252 - - -

is nonzero, we must have A1 < puq, A +
A2 < g + pa, ete.

The fact that C),|1;¢,t] = 1 is easy to
show, and the proof is complete.



Using the well-known relation H w25 q,t] =

~

H /|Z;t,q], involution (1) from the proof
of our theorem gives a interpretation for

T H X (1)t q) = Ju[X; g,

in terms of super fillings of u’. By group-
ing super fillings o according to the value
of |o| we get

Corollary. For any partition u,

Ju [X3 q, t] —
Z qumaj(T,u’)tn(u)—inV(T,u’)
nonattacking fillings (T,u’)
W H (1— ql—l—leg(w)tl—l—arm(w))
wep/

T (w)=T(South(w))

X 1] (1—1).

wE,u/
T(w)#£T (South(w))



Theorem. (Lascoux - Schitzenberger) 1978
(cocharge formula for Hall-Littlewood poly-
nomaals)

X 0, t ZSA Z tcocharge(T).

TeSSYT(A,p)

— 435224113
’ ¢

43521 =t

N W
N Ol
AN

4
2413

t13

Proof: Difficult, using recurrences.



a<b<c

C...D

2 a
3112 D
214415 a...b
11 36|7 aD
+ ib...a

11222132341123: ¢ )

New Proof:

H,[X;0,5)= Y  t™0#)go,
o:inv(o,u)=0

Now use well-known properties of the RSK
algorithm to get the Schur expansion:

Z( Z tcocharge(P))

A PESSYT(\p)
(>, %
QESSYT(\)



LLT Polynomials

In 1997, Lascoux, Leclerc and Thibon
introduced ribbon tableaux generating func-
tions, or spin generating functions, com-
monly known as LLT polynomials, which
depend on z1,...x, and a parameter q.
They proved (non-combinatorially) these
polynomials are symmetric in the x; and
conjectured they are Schur positive.

Theorem. (H., Hatman, Loehr, Remmel,
Ulyanov; 2003) (to appear in Duke Math.
J.) The LLT polynomial equals a power
of q times the sum, over all tuples T of
SSYT of skew shape, of ¢A™(T)  where
dinv(T) is the total number of inversion
pairs, described below.

e Schilling, Schimizono and White have a
similar result, with dinv replaced by the
number of “inversion triples”, more com-
plicated to describe.



weight =0

diny 4.3, 4 56
g XX, X5X, XX, 1215,
13
S0 nversion par: a<b
—~ 7 and elther or
3|3 b . a
1112 -
a b

e In H., Haiman, Loehr we show how ﬁu X q,t]
can be expressed as a sum of LL'T polyno-
mials times nonnegative powers of t. We

also give a new, combinatorial proof of
LLT symmetry.



Theorem. If we fiz a descent set D, then
Z gmailom) ginv(o.p) po
o:Des(o)=D
18 a fized power of t times a fixed power of

q times an LLT product of ribbons.

Proof: There is a bijection between fillings

with a fixed descent set D and tuples of
SSYT of ribbons:

\l

N N N N N
N \ N ~ N
N
N N
N N
N ~ N
N N N
N N N
N N N
~
N

RPN RPWR A
gl = NWw

N N
N N
N N
N ~
N N
N N
N N

Now use the fact that

inv(o, u) = dinv — Z arm(w).
weEDes(o)



We define the (q,t)-Kostka coefficients
as follows:

XQa ZKA,LL Q7 SA ]

Macdonald conjectured these coefficients
were in N|g,t]. He proved K ,(1,1) =
K 1n and asked if

K}\ (gt Z qa(u 1) 4b(1,T)

for some statistics a, b on partitions i and
standard tableaux 7'

By the previous result, understanding
the Schur coeflicients is equivalent to un-
derstanding the Schur coefficients of LLT
products of ribbons. (LLT products of tu-
ples of partition diagrams are known to be
Schur positive. A combinatorial interpre-
tation is known for tuples of length 2).



Theorem. (HHL) If u has at most two
columns, t.e. u1 < 2, then

K ulgt) =y tmailomginviom go

o)

summed over all fillings o of 1 for which
the reading word o109 - - - 0, 1S Yamanouchit,
i.e. each final segment oxop11 -0, has
partition content.

Proof: This also follows from van Leeuwen’s
(2000) theorem on LLT Schur coefficients
for 2-tuples, but our proof is simpler, avoid-
ing domino tableaux.

e H. (PNAS 2004) contains a conjectured
combinatorial formula for three column
shapes, which reduces to above when u
has 2 columns.



The n! Conjecture

(2,0)
(1,0) | (1,1)
(0,00 | (0,1
L
Ly
A(p) =11 ys
L y4
L ys

H=(221)
T1Y1 x%
L2Y2 x%
T3Ys3 x%
L4Y4 $i
T5Y5 x%




For p = n let V(i) denote the linear
span over Q of all partial derivatives of all
orders of A(u). V(u) decomposes as a di-
rect sum of its bihomogeneous subspaces
V%I (u) of degree ¢ in the z-variables and
7 in the y-variables. There is an S,-action
on V% (u) given by

ﬂj?::f(xﬁl7°°°7xﬁn7yﬁl7°°°7yﬁn)

called the diagonal action.
The Frobenius Series is the symmetric
function

Z sx(X) Z qitjmij,

AFn 1,7>0

where m;; 1s the multiplicity of the irre-
ducible S,-character y* in the diagonal
action on V%7 (u).



Theorem. (Haiman; JAMS 2001) (The
‘n! Conjecture”, advanced by Garsia and
Haiman in the early 1990’s). The Frobe-
nius Series of V() is given by the modi-
fied Macdonald polynomaial F[u 1 X;q,t]. In
particular, the dimension of V(u) is n!,

where n =) . ;.
Corollary.
KA,/L(C]; t) S N[Qat]

The proof uses algebraic geometry and
commutative algebra. It doesn’t yield any
combinatorial interpretation for the Ky ,(q,1).

Since the coefficient of my» in the ex-
pansion of the Frobenius series into mono-
mials equals the Hilbert series, the above
theorem and our formula together imply

Corollary. (HHL) The Hilbert Series of
V(u) is given by

Z gmaj(o,u) qinV(U,u) _

O'ES'n,



What led to the statistics?

(Garsia and Haiman pioneered the study
of the space of diagonal harmonics DH,,,
which is

{f:) Oxldyff=0,Yh+k >0}

1=1

The space DH, decomposes as a direct
sum of subspaces of bihomogeneous de-
gree (i,7); DHy, = €D, ; DH?"J. The Hilbert
Sertes is the sum

Y ¢'t/dim(DH}Y).
3,5>0

Example: If n = 2, a basis for the space
is 1,x9 — x1,y2 — y1, and the Hilbert Se-
ries 1s 1 + g + ¢.



The Frobenius Series is the sum

D s X) DY ¢tTmyg

An i,7>0

where m; ; 1s the multiplicity of x* in the
character of DH"’ under the diagonal ac-
tion of S,,.

Example: If n = 2, the Frobenius series
is

s2(X) + 512(X) (g + 7).

_ Let V be a linear operator on the basis
H,(X;q,t) given by

VPNIM(X; q,t) = t"(“)q"(“/)ﬁu(){; q,t).

Theorem. (Haiman, Inventiones 2002)

The Frobenius Series of DH,, is given by
Ven(X).

Corollary. The dimension of the space
DH, of diagonal harmonics, as a vector
space over Q, is (n +1)"~1.



Corollary. The dimension of the space
DH; of diagonal harmonic alternants, cor-
responding to the sign character Xln, 18

the nth Catalan number

c 1 (2n>
n+1\n
Garsia and Haiman (1995) introduced

the g, t-Catalan sequence, C},(q, t), defined
by

Cr(q,t) = (Vey, s1n).

Using some of Macdonald’s original re-
sults, C,(q,t) can be expressed as a com-
plicated sum of rational functions in gq,t.
They posed the problem of finding com-
binatorial statistics to describe C),(q,1).



Example. From the rational function def-
inition of Cy(q,t), for n = 2 we have

t2 q2 t2 L q2
Ca(q,t) = =
2(q, ) T T g

— = t+q.
t—q 1

After simplification the terms in Cs(q,t)
are

§)
_ q. q
SRRy
4= 91 t?q*(1 4 q +¢)
C (g —t2)(t —¢?)
t6
:137
8 (12— q)(t — g)
So
C3(Q7t):

¢O(t* —q) +t2¢*(L+q+t)(g—t) +t°(t — ¢?)
(g2 —t)(t? —q)(q — 1)

= ¢+ ¢t +qt® + qt + 17
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0
0
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Q2
8

area=4, dinv=7

Theorem. (Garsia, H., 2001, PNAS)
(First conjectured by H. (Adv. Math.) in
a different form, and later independently
by Haiman)

C’n(q,t) _ Z qdinv(ﬂ')tarea(ﬂ')7

wEDn
where dinv(m) = #{(,7),1 < j} with

area; = area; or area; = area; — l.



8 2

7 3

2

2 1

2

1

0

10 1

9 1

6 0
6 13

q t

dinv = #{(4,7),1 < j} satisfying either

area; = area; and car; < carj, Or

area; = area; — 1 and car; > car;



Conjecture. (H., Loehr) The Hilbert Se-
ries of DH,, is given by

Z qdinv(a)tarea(a) 7

where the sum is over all parking func-
tions on n cars.

Conjecture. (H., Hatman, Loehr, Rem-

mel, Ulyanov, 2003, to appear in Duke
Math. J.)

Ve, = Z qdinv((f)ta,rea,((f)x(f7

where the sum 1s over all “word parking
functions” with n cars.

Open Problem. Prove C,(q,t) = C,(t,q)
biyjectively, and similarly for the Hilbert
series, etc.



o

e ¢ = 1: Macdonald’s work implies that
Hy[X;1,8) =) ™) g7,

o)

e descents everywhere:
. . i
— dinv —
inv(o, u) inv Z <2>
1>1
e no descents :  inv(o,u) = dinv
e in general:

inv(o, u) = dinv — Z arm(w)

weE Des



